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Abstract 
In this paper, the rupturing of a bubble under an external 
oscillatory excitation in a cylindrical container is 
studied using an in-house developed numerical model. 
The container is occupied by an incompressible liquid. 
The Volume-Of-Fluid (VOF) method is used to track 
the liquid-gas interface. The two-step projection method 
is used to discretize the continuity and momentum 
equations. The main purpose of this study is the 
characterization of bubble rupturing phenomenon. The 
frequency and amplitude effects on the rupturing 
threshold are evaluated. Furthermore, the effect of the 
presence and the absence of gravity on this threshold are 
studied. Finally, a correlation consisting Bond number, 
Reynolds number and non-dimensional amplitude is 
provided to capture the bubble-rupturing region. The 
effect of container walls on the bubble rupturing is also 
considered. The comparison between the results of 
numerical simulations and those of the available 
experiments reveals a good agreement.  
    
Keywords: Bubble rupturing, Normal gravity, 
Microgravity, Rupturing threshold, VOF method.   

Introduction 
The understanding of bubble rupturing phenomenon is 
important in many applications such as acoustic 
cavitation in turbomachines. The acoustic cavitation is a 
destructive phenomenon happened in many rotator 
systems. In this process, the energy of bubbles is 
suddenly released and the bubble rupturing occurs. In 
addition, another parameter plays an important role in 
the rupturing of bubbles. This parameter is the forced 
oscillations of the bubble.  
The bubble rupturing has a significant effect in 
improvement of the reaction rate, heat transfer and mass 
transfer in the bubble columns reactors. With due 
attention to this applications, the identification of bubble 
rupturing conditions can be desirable for many 
industrial and physical processes. A cylindrical 
container including a bubble and water is considered to 
simulate the process. A sinusoidal motion with different 
values of frequency and amplitude drives the container. 
For each amplitude, the frequency of oscillations is 
increased until the rupturing of bubble occurs. This 
frequency represents a critical value for the rupturing 
threshold which is a curved boundary in which the 
bubble-rupturing occurs.  
Yoshikawa et al. [1,2] studied the rupturing of bubble in 
the normal gravity and microgravity conditions. Their 
results show that the rupturing threshold in normal 

gravity is more than that of the microgravity condition. 
Zoueshtiagh et al. [3] investigated the effects of liquid 
viscosity, surface tension and size of the bubble on the 
rupturing phenomenon using experiments. According to 
these results, the reduction of Bond number and 
increasing the amplitude increases the rupturing 
possibility. Shen et al. [4] considered the rupturing of 
bubble under an acoustic wave excitation. Their results 
show that using dual frequency excitation decreases the 
rupturing threshold of the bubble. O hern et al. [5] 
experimentally studied the rupturing of a bubble in the 
silicon oil liquid. Their results show that most of the 
ruptured bubbles move towards the bottom of the 
container.         
Marmottant et al. [6] provided a new model to 
investigate the dynamics of bubble covered by a lipid 
layer. In their study, the rupturing of bubble under 
ultrasound excitation has been numerically studied. 
Movassat et al. [7] investigated the role of pressure 
distribution on the rupturing of a bubble. The effects of 
the frequency and amplitude on the bubble rupturing 
were also studied. 
The available literature on the rupturing of bubble under 
forced oscillations is rare and many studies focused on 
experimental works rather than numerical simulations. 
Therefore, this study is focused on the rupturing 
phenomenon of a bubble under forces oscillations and 
the effects of the important parameters. A correlation is 
also provided to predict the rupturing region based on 
dimensionless numbers. The effects of the bubble-wall 
distance, and the normal and micro gravity conditions 
are also considered. The simulations are performed 
using an in-house developed numerical model.   

Governing Equations  
The fluids are assumed incompressible and Newtonian 
with a constant viscosity. The conservation of mass and 
momentum equations are:   
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where V

 

is the velocity vector, 

 

the density, 

 

the 

dynamic viscosity, P the pressure, and STF

 

represents 

the surface tension force per unit volume. The last term 
in the right hand side of the momentum equation 
specifies the external oscillation force imposed on the 
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container where A and F indicate the amplitude and 
frequency, respectively. To track the bubble free surface 
the following equation is used:    
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where f represents the liquid volume fraction defined as:    
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To obtain the main dimensionless numbers in the 
bubble rupturing phenomenon, the momentum equation 
is non-dimensionalized as:   
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where Re and Bo are the Reynolds and Bond numbers, 
respectively, and D represents the bubble diameter. In 
this equation, the non-dimensional parameters are 
defined as:   
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In equations (6) to (11), 

 

is surface tension coefficient, 

 

the free surface curvature of bubble, x the horizontal 
axis and y the axis of symmetry. The superscript (*) 
represents the non-dimensional form of parameters. The 
important non-dimensional numbers are:   
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Numerical Method  
The two-step projection method [8] is used to discretize 
the continuity and momentum equations. In this method,   
different terms of the momentum equation are 
discretized in two fractional steps. First,

 
a temporary 

velocity is obtained by an explicit discretization of the 
advective and viscous terms along with surface tension 
and external oscillatory forces:   
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Second, the new velocity vector is obtained as:   

1
2

1
1 1 n

n

n
n

P
t

VV

 

(16) 

Taking the divergence of this equation and using the 
continuity equation leads to the pressure Poisson 
equation as:   
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The pressure distribution at the new time level is 
obtained by solving Equation (17) by means of an 
Incomplete Cholesky Conjugate Gradient (ICCG) 
solver [9]. Having obtained the new pressure, the new 
time level velocities are calculated from Equation (16).  

The Youngs PLIC algorithm [10] is used to solve the 
volume fraction advection equation. The surface tension 
force term of Equation (2) is modeled using the CSF 
method [11] as:  
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where cellA and cell

 

are cell area occupied by air, and 

cell volume, respectively. The normal unit vector )(n is 

also defined as:   
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Results and Discussion  
The first case considered is that of a 4mm bubble in a 
cylindrical container under a microgravity condition. 
The container dimensions and the thermo-physical 
specifications of fluids are shown in Figure 1 and Table 
1, respectively. The result of the simulation for the time 
evolution of the bubble motion for this case is shown in 
Figure 2. As observed, dramatic changes in the bubble 
shape lead to its rupture which can be attributed to a 
large amplitude (A/D=0.2) and frequency (42 Hz) of the 
imposed oscillation.      
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Table 1. The thermo-physical specifications of fluids 

Property 
Density 

( 3m
kg ) 

Dynamic 
Viscosity 

2
.

m
sN 

Surface 
Tension 

)( m
N 

Air 1.225 178.94E-7 
Water 998.2 0.001003 

0.073 

  

mmRD cc 122

                   

Figure 1. The schematic configuration of a floating bubble in 
an oscillating container  

When the values of the frequency and amplitude are 
sufficiently high, the bubble breaks up and consequently 
the smaller pieces of the bubble are suspended in the 
liquid. For a better understanding of the bubble 
rupturing phenomenon, the pressure distribution at the 
rupturing moment (t=22.6ms) is displayed in Figure 3. 
As the figure shows, a low pressure zone is formed 
between the two separated smaller bubbles. At this time, 
a high-pressure gradient around the separation point 
drives away the surrounding air and replaces water 
instead; consequently, the bubble-rupturing occurs. This 
is further explained in Figure 4 where the pressure 
variations at the rupturing time (22.6 ms) along the axis 
of symmetry are shown. As seen in the figure, there exit 
two low pressure points in 12mm<y<13mm  range with 
a high pressure point in between which breaks the air 
bridge between the two smaller bubbles. The pressure 
distribution in axial direction varies with time in each 
bubble oscillating cycle. 

Next case considered is that of a 19.69 mm bubble in 
a 6×6×8 cm container under a microgravity condition, a 
case for which the experimental results are available in 
the literature [1]. In this case, at a certain excitation 
amplitude, the excitation frequency is varied until the 
bubble rupturing occur. The case is repeated for various 
values of the excitation amplitude ranged from 0.5 to 11 
cm. The frequency of the bubble-rupturing limit, 
normalized by the natural frequency, is then plotted 
against the nondimensional amplitude. The comparison 
between the results of the simulations for these cases 
with those of the experiment [1] is displayed in Figure 

5. The natural frequency of the bubble as introduced by 
Yoshikawa et al. [1] is defined as: 

2
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4
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where 

 
represents the initial volume of the bubble. 

The small discrepancies observed between the 
simulations and measurements in Figure 5 may be 
attributed to the fact that in the numerical simulation, 
the container was considered a 6cm-dia. cylinder with a 
height of 8 cm (for a 2D axisymmetric model) while in 
the experiment, the container had a cubic shape with the 
same height but with a 6cm-side square base.  

      

Figure 2. The time evolution of the bubble motion under 
microgravity condition for A/D=0.2, Bo= 0.3083, Re=133.756  

   

Figure 3. The pressure distribution at t=22.6ms for A/D=0.2, 
Bo= 0.3083, Re=133.756 
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The grid independency test of the numerical results 
is also shown in Figure 5 for two cases: 20 and 30 CPR 
(Cells per Radius of the bubble). The mean difference 
between the numerical results corresponding to 20 and 
30 CPR is less than 4%. Therefore, a uniform grid with 
20 CPR is considered for the rest of simulations in this 
study.   

 

Figure 4. The pressure variations along the axis of symmetry 
at t=22.6ms  

 

Figure 5. The grid independency and validation of the 
numerical results  

In Figure 6, the critical region of bubble-rupturing 
under microgravity condition is displayed. The vertical 
and horizontal axes specify the ratio of Bond to 
Reynolds number and the non-dimensional amplitude, 
respectively. As observed, increasing the imposed 
amplitude decreases the minimum required frequency to 
break the bubble. While for small amplitudes, the 
rupturing-limit boundary has a sharp slope, for higher 
amplitudes the rupturing limit gradually approaches to 
the horizontal axis. An attempt was made to obtain a 
correlation for the rupturing limit based on Figure 6. 
From various curve-fitting attempts, a simple 
correlation was obtained as:  

9.0

0005.0
Re D

ABo 
(22)   

 

Figure 6. The rupturing threshold of a bubble under 
microgravity condition  

The introduced correlation is plotted in Figure 6. In 
order to verify the accuracy of the introduced 
correlation, the predictions from Eq. (22) are compared 
with a number of measurements and other numerical 
results available in the literature.  This comparison is 
presented in Figure 7. As seen from the figure, for a 
wide range of A/D, the introduced correlation accurately 
predicts the rupturing limit for a bubble under 
microgravity condition. It is also observed that this 
correlation results in a more accurate predictions 
compared to the correlation presented by Yoshikawa 
[2]. The correlation presented by Yoshikawa et al. [2] is 
shown in Equation (23).  

 

  Figure 7. The accuracy of the introduced correlation (Eq. 22) 
in comparison with other experimental and numerical results 
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where Oh represents the Ohnesorge number. 
Next, the effects of gravitational acceleration and 

cylinder walls are investigated. Figure 8 shows the 
effect of the gravity on the rupturing threshold of a 
single bubble. The presence of the gravitational force 
increases the effects of the buoyancy force; 
consequently, a stronger excitation is required to break 
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the bubble. In other words, the buoyancy effect 
postpones the bubble-rupturing phenomenon. For high 
amplitudes (A/D>0.2), the difference in the rupturing 
threshold between normal and microgravity conditions 
is trivial. This may be attributed to that fact that for high 
amplitudes, the imposed oscillations dominate the effect 
of the buoyancy force; therefore, the bubble-rupturing 
easily occurs regardless of the gravitational effects.     

 

Figure 8. The effect of gravity on the rupturing threshold of a 
bubble 

To investigate the effects of the top and bottom 
walls on the bubble dynamics during rupturing 
phenomenon, cylinders with various heights are 
simulated. Figure 9 shows the effect of the top and the 
bottom walls on the amplitude response of the bubble. 
the vertical axis represents the amplitude ratio ( the ratio 
of the bubble to the container amplitude). In this case, 
the imposed frequency has been considered to be 42 Hz. 
The effect of the top and bottom walls is minimal when 
the ratio of container height to initial diameter of the 
bubble is more than 5.  

 

Figure 9. The effect of the top and bottom walls on the bubble 
amplitude  

Conclusions 
The rupturing phenomenon of a bubble in a cylindrical 
container under an external oscillatory excitation was 
numerically studied. The VOF and two-step projection 
methods were used in the numerical model. The effects 

of different parameters such as the Bond number, the 
Reynolds number, the non-dimensional amplitude, the 
container walls and the pressure distribution on the 
bubble-rupturing was investigated. The numerical 
results compared with those of the experiments. At low 
amplitudes, increasing the ratio of Bond to Reynolds 
numbers increases the possibility of bubble-rupturing. 
From extensive simulations performed this study, a 
correlation was introduced to capture the critical region 
of bubble-rupturing phenomenon. The predictions from 
this correlation were verified with the results obtained 
from a number of measurements and other numerical 
results available in the literature. In addition, the bubble 
response to the external excitation is independent of the 
container wall effects when the ratio of the container 
height to the initial diameter of the bubble is more than 
5.     

List of Symbols 
A Amplitude of  oscillations 
Rc Radius of container 
D Bubble diameter 
Dc Diameter of container 
H Height of container 
F Frequency of oscillations 
F n Natural frequency 
f Volume fraction 

V

 

Velocity vector 
P Pressure 
T Period of oscillations 
t Time 

Re Reynolds number 
Bo Bond number 
Oh Ohnesorge number 
n

 

Normal unit vector  

Greek Symbols 

 

 Density 

 

 Dynamic viscosity 

 

 Surface tension 

 

 Free surface curvature of bubble  
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