
A Confidence-based Software Voter for Safety-Critical Systems

Mohammadreza Rezaee, Yasser Sedaghat, Masoud Khosravi-Farmad
Dependable Distributed Embedded Systems (DDEmS) Laboratory

Computer Engineering Department
Ferdowsi University of Mashhad

mohammadreza.rezaee@stu.um.ac.ir, y_sedaghat@um.ac.ir, masoud.khosravifarmad@stu.um.ac.ir

Abstract— To tolerate software faults, N-Version
Programming (NVP) and N-Modular Redundant
(NMR) techniques are widely employed. In these
techniques, N modules operate on the same data and
send their outputs to a software voter. Since the voter
is a single point of failure in the techniques, availability
and safety are essential requirements. In this paper a
confidence-based software voting technique is
proposed. The proposed technique considers weight
oscillation and confidence of each module to improve
availability and safety of the voter. Evaluation results
showed that availability and safety of confidence-based
software voter in contrast with standard majority voter
and adaptive majority voter has improved about 4.4%,
4.9%, and 5.8% for three error injection scenarios.

Keywords—Fault-masking, N-Version Programming
(NVP), N-Modular Redundant (NMR), Software Voter.

I. INTRODUCTION

A safety-critical system is a system whose failure may
result in financial disaster, death or serious injury to people,
or ecological harm [1]. High-speed rail and avionics are
good examples for such safety-critical systems which are at
least partially controlled by software. Dependability is a
major requirement in safety-critical systems which itself
requires high reliability. Reliability is the probability (as a
function of the time t) that the system has been up
continuously in the time interval [0, t] [2]. It is said that a
system is failed if its behavior deviates from its intended
service [3]. To avoid failures, errors must not occur, and
faults should be masked to prevent occurrence of errors.
This is the reason fault masking techniques are widely
used. Using redundancy is one of the fault masking
techniques and is used to achieve safety, availability and
reliability. Redundancy can include information
redundancy, temporal redundancy or resource redundancy
[4]. N-Modular Redundant (NMR) and N-Version
Programming (NVP) are examples of using redundancy.

The simplest form of NMR is Triple Modular
Redundant (TMR) which is shown in Figure 1. In TMR,
three similar modules execute identical operations on the
same data and send their outputs to a voter. Voter produces
a single output as a final result [5]. A system with fault
masking technique may have redundant modules. Voters
are used to mask faulty outputs of these modules in every
voting cycle [6].

Figure 1 A TMR Voter [5]

 The Voter tend to be a single point of failure for most
software fault tolerance techniques, so it should be
designed and developed to be highly reliable, effective, and
efficient [7]. The number of redundant modules in most of
safety-critical systems like air traffic control and aircraft
control rarely exceeds 5 [8].

Many voting techniques have been proposed in the
literature, see [5], [6] and [9], from which the majority
voter and its modified versions have been widely used. A
majority voter with n inputs produces result if and only if
there is an agreement between at least [(n +1)/2] of its
inputs. Otherwise the voter throws an exception and leads
the system towards a fail-safe state. Therefore, the majority
voter in a TMR system masks a fault in any of three
modules in each voting cycle.

It should be mentioned that there are three kinds of
faults which may influence the behavior of modules, i.e.
permanent faults, transient faults and intermittent faults.
Faulty Modules can produce wrong results and send them
to the voter [3]. Most of the voting techniques concentrate
on masking permanent and transient faults while the
proposed technique masks intermittent faults (transient
faults which occur frequently) in addition to permanent and
transient faults.

Since a voter is a single point of failure in NMR
systems, availability and safety are essential requirements.
Availability is defined as readiness for correct service and
safety means the absence of catastrophic consequences on
the user(s) and the environment [10]. In contrast with the
existent software voters, this paper presents a software
voting technique which has improved availability and
safety.

The paper has been organized as follows. In section II,
several voting technique are introduced. Section III
proposes a new technique that improves majority voter. In
section IV the experimental methodology and test results
of the proposed method are evaluated. Finally some
conclusions are given in section V.

2014 IEEE 12th International Conference on Dependable, Autonomic and Secure Computing

978-1-4799-5079-9/14 $31.00 © 2014 IEEE

DOI 10.1109/DASC.2014.43

196

II. RELATED WORK
Voting algorithms have been widely studied in several

areas of fault masking systems. Among them, “Unanimity
voter” produces results if only all of its inputs are in
agreement. The application of this voter is in situations
where reaching agreement on all voter inputs is extremely
necessary [5]. In order to reduce the severity of this
technique, other voting techniques have been introduced.
The “majority voter” is one of these techniques that
outputs a result where at least [(ܰ + 1)/2] of its inputs
are in agreement, otherwise “No-result” will be produced
[7]. In inexact voting, if the difference between voter
inputs is smaller than a predefined threshold, these results
will be assumed to be in an agreement, while in exact
voting, agreement means that the inputs are the same [5].
Frequently, the application of the inexact voting is in
software applications which the voter inputs are not
exactly the same, even in a fault free environment [5]. An
example is software programs that handle floating point
calculations. Because there is no mathematical way to
define threshold value in inexact voters, this value must be
selected carefully through some empirical ways. If the
threshold is too small, it leads to many false alarms, while
selecting too large values for the threshold avoids false
alarms, but the coverage of the fault detection will be
reduced due to missing some real faults. “Plural voter” is
much like majority voter yet it implements m-out-of-n
voting, where m is less than a strict majority, like as 2-out-
of-5 or 3-out-of-7 [5]. “Consensus voter” introduced in
[15], is a plurality voting technique which is used in multi-
version software with small output space.

Gersting et al. in [9], proposed a majority voter which
considers history record of each module as cumulative
number of times it is participated in majority agreement in
all previous voting cycles. If there is no agreement
between results of the modules, this voter chooses the
output of the module that has the highest history record.
This technique forces the voter to produce a result even in
the case of disagreement. In [6] Shabgahi et al. proposed
“Adaptive majority voter” which showed using the history
record of modules leads to improve the availability and
safety of software TMR systems. In each voting cycle
(from the moment that voter receives all inputs till the time
the result is produced), when there is an agreement
between modules results, this voter selects the result of a
module which has the highest history record. This module
is interpreted as the most reliable one. In cases of
disagreement, this technique acts the same as the
traditional majority voter.

“Smoothing voter” is a kind of majority voter which is
build by adding an acceptance test to the majority voter
[8]. Smoothing voter assumes that an error occurs when
there is an excessive discontinuity between consecutive
module results. In any real-time embedded control
applications, which has a feedback control and periodic
computation, this assumption is valid. In each voting
cycle, in cases of disagreement, this voter selects the
closest result to the previous voter output as a probable
correct output. This result is taken as the voter output if it
has a distance smaller than a pre-defined value named the

“smoothing threshold”; otherwise this voter will not
produce any results.

In contrast with the majority voter, which selects a
participated input in agreement as the voter output, the
“Average voter” calculates a new result which is not
among its inputs. This result is the mean of the voter
inputs. Moreover, “Weighted average voter” calculates the
weighted mean of its inputs. Weight values can be
determined statically or dynamically, which have various
methods. Several examples about these techniques have
been presented in [11] and [12]. The weighted average is
calculated using ݔ = ∑ ݓ . /ݔ ∑ ݓ where ݔ stands for
the voter inputs, ݓ represents the weight of module i, and
 denotes the voter output. The precision of the producedݔ
results by a weighted average voter depends on the method
which determines the weights of modules. One example of
a dynamic determination of weights is based on the
distance of module results with the calculated weighted
average output in each voting cycle. If a module result is
far from the calculated weighted average output, it will be
assigned a smaller weight compared with a module that its
result is closer to the voter output.

“Median voter” selects the median of its inputs as the
voted result by a simple algorithm [7]. Majority, Weighted
average and Median voting techniques have been
generalized to N-Modular Redundant systems in [13].

In several papers, such as [13], [4], [14], [15] and [16],
the mentioned voting techniques have been compared.
Lorczak et al. in [13] has compared generalized majority,
plurality, median and weighted average voters under
different failure scenarios and cases that each voter could
produce incorrect results are assessed. In cases of
disagreement, weighted average and median voters can
produce catastrophic errors (incorrect output); in contrast,
majority and plurality voters produce exceptions in these
cases which may lead the system towards a fail-safe state.
In [4], the results of an experimental evaluation of several
voters in a variety of simulated error scenarios have been
reported. To compare the probability of selecting a correct
result by majority, plurality, median and average voters,
[14] has derived an expression for each technique. The
reliability of consensus, majority and 2-out-of-n voters are
compared in terms of output space cardinality and
different values of module reliability in [15]. Parhami in
[16] discussed the complexity analyses of different
weighted voting algorithms in the worst case.

“Fuzzy voters” are another type of voters that operate
based on the distance between voters inputs with each
other or the distance between voters inputs and voters
output. The fuzzy rules are defined using this distances.
[17], [18] and [19] used fuzzy rules to assign weights in
weighted algorithms or the majority degree in plurality
voters to enhance the accuracy of these voters. These
algorithms produce acceptable results. As mentioned in
section I, voters are used in safety-critical systems which
are mostly real-time systems too. Time overhead of
running fuzzy rules may lead the system toward a situation
that passes the real-time deadlines, so simpler algorithms
are preferred.

The voters are generally divided into two main groups:

197

a. The first group includes median, average and
weighted average voters, which always produce
an output even if their inputs are completely
dissimilar. .

b. The voters of the second group, such as
smoothing, and adaptive majority voters, generate
results if only some of their inputs are similar;
otherwise, “No-result” (exception) is generated.

It is obvious that the voters in the first group produce
more correct outputs but also more catastrophic outputs
than voters in the second group. The voters in the
second group generate less incorrect results because of
their good error detection capability. Voters in this
group produce an output after processing their inputs
(e.g., input validation checking, recording module
faults, checking value validity, using diagnostic
information, using variant fault records). The proposed
voting technique in this paper is the combination of the
both groups; such that it produces more correct outputs
like the first group while it utilizes the employed error
detection mechanism in the second group.

III. PROPOSED TECHNIQUE
As mentioned before, in the weighted average voting

technique, weight should be considered to reduce the
effects of faulty modules on the voter result. If fault occur
in a module frequently, the module weight changes
repeatedly. To tolerate the effects of intermittent faults, a
weighted average voter should consider module weight
oscillation.

In a TMR system with an inexact majority voter as
shown in Figure 1, a weight wi is assigned to each module
mi which represents the existence of faults recently affected
the module results. At the starting point, a same weight is
assigned to all of the modules. If a fault affects a module
result so that the module does not participate in the
agreement, its weight decreases, while the weight of
modules that participated in the agreement increases. If the
voter produces “No-result” (there is no agreement), the
weights will not change. Changes that are made to weights
are predefined. It is important to choose an optimal
predefined values for increasing and decreasing weights.
The modified weights will not exceed the start (maximum)
value and will never be negative values. For an NMR
system, the mentioned policy is defined formally as
follows:

a. Sort the voter inputs ascending, at each voting
cycle. As a result, for any voter input i (ݔ) where
݅ < ݊ then ݔ < .ାଵݔ

b. Define a voting threshold (∝) and examine the
following inequality :

ݔ − ݔ <∝ where ݅ = 1,2,3, … , ݊ − 1

and ݆ = ݅ + 1, ݅ + 2, … , ݊

For each i and j that make the inequality correct,
ߙ is set to 1, which represents that there is an
agreement between the module outputs i and j in
that voting cycle, otherwise ߙ is set to 0.

c. For each module i, build the following set of (݊ −
1) Boolean values

ଵߙ} , ଶߙ , … , {ߙ − {ߙ}

Because the module results are sorted, at any point
where ߙ = 0, the rest of ߙ , ݇ > ݆ will be 0.
For each module ݉, if the value of ߙ

ୀଵ is

greater than(݊ − 1)/2 , the parameter ܵ which
indicates that the module ݉ has been participated
in majority consensus, is set to 1 and its weight
increments by a predefined value, otherwise ܵ is
set to 0 and its weight decrements.

d. The normalized value ܲ = ଵ

. ∑ ܵ

ୀଵ (l) is a

measure for reliability level of module i. it is
concluded from this formula that a module with a
higher ܲ has a better performance.

Therewith weight, another parameter called oscillation
ܿݏܱ is added to each module, which represents the number
of oscillation occurred in the modules weight. Whenever a
module weight is increasing or is stable for one or several
cycles and just after that this module does not participate in
the agreement, its weight decreases, therefore there would
be an oscillation in its weight diagram. In this case, ܱܿݏ is
decremented by 1. Also there would be an oscillation in
case a modules weight acts oppositely, so ܱܿݏ is
incremented in this situation too. Figure 2 shows an
example of weight diagram. As can be seen in the diagram
the module works correctly until column 5. After that its
weight decreases because its result does not participate in
the agreement so the Osc decreases to 2 (Osc starts at 1).
After two cycles that the weight increases, the module
participates in agreement again which made the weight to
decrease and increase the Osc to 3. The rest of the diagram
shows that Ocs decreases with any pulse happening in
weight diagram.

Figure 2 Sample weight diagram

The above strategy is defined formally as follows:

a. For each modules weight ݓ, if it is increasing or
is stable on the predefined maximum weight, then

݂ is set to 1, otherwise if the weight is decreasing
or is stable on the predefined minimum weight, ݂
is set to 0. Therefore at any voting cycle, ݂ = 1
indicates that the module mi has performed
correctly; on the other hand, ݂ = 0, means that
this module has performed incorrectly.

b. For each module, oscillation ܱܿݏାଵ is calculated
as: (ܱܿݏଵ = 1)

ାଵܿݏܱ = ൝
ܿݏܱ + 1, ݂ = ݓ ݀݊ܽ 1 > ାଵݓ
ܿݏܱ + 1, ݂ = ݓ ݀݊ܽ 0 < ାଵݓ
ܿݏܱ ݁ݏ݅ݓݎℎ݁ݐܱ ,

osc=2

osc=3

osc=4

osc=5

osc=10

osc=11

osc=12

osc=13

osc=14 osc=20

osc=21

osc=22

osc=23

-1
0
1
2
3
4
5
6
7
8
9

10
11

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

w
ei
gh

t

cycles

198

The last parameter that is required to calculate the final
result of the proposed technique is “confidence”, ܥ, which
is equal to the weight of the module i, divided by the
oscillation of that module. It is obvious that the higher ݓ,
the higher ܥ will be, while the magnitude of ܱܿݏ
decreases the value of ܥ. So the module with the higher ݓ
and the lower ܱܿݏ has the highest ܥ and is considered as
the most reliable module. Confidence in this paper is
formally defined as ܥ = .ܿݏܱ/ݓ

As mentioned before, the starting value for ܱܿݏ is 1
and due to the increasing nature of oscillation, ܱܿݏ will
never be equal to zero, so the value of the equation will
never be undefined. Furthermore, since ܥ is calculated
only for the modules that are participated in the agreement
consensus (which have a non-zero weight), ܥ will not be 0
in this equation.

Finally, the outputs of the voter are calculated
according to the following steps:

a. If there is an agreement between the module
results, the final result is calculated by the
modules which are in the agreement as:

ݐݑܱ =
∑ ܿ ∗ ݎ

ୀଵ
∑ ܿ

ୀଵ

Where h is the number of modules which
participate in the agreement consensus and ݎ
stands for the result of module i.

b. f no agreement is detected, the voter throws an
exception which will be interpreted as “No-
result”. In this case, the values of ݓ and ܱܿݏ
do not change.

An example of how the proposed technique operates is
shown in Table 1. In this example the voter threshold is 0.5
and the correct result in all sets is 1. The start (maximum)
weight is set to 10 and weights increase by 2 and decrease
by 3. The first majority set found will be the final majority
set, if there are more than one (These numbers are just to
simplify the test).

IV. EXPERIMENTAL RESULTS
To evaluate the improvement of the proposed voter

(confidence-based voter), it is compared with the standard
majority voter because it has the same definition of
agreement consensus, and the adaptive majority voter [6]
because it also applies the history record of modules to

extend the standard majority voter. These voters are placed
in a hypothetical TMR system and modules results are sent
to these voters. The produced results are then compared
together. Similar to previous studies, e.g. [4], [6], [8], to
evaluate the voter, modules outputs are produced, using
100 + ,with different t values for each module (ݐ)݊݅ݏ 100
so it is possible to inject error (to the notional correct value
100) to modules independently. The injected errors can be
controlled by selecting a random t within the interval of
+ ߠ−] the error ,ߠ By selecting different values for .[ߠ
injected to each module can be controlled, so the
magnitude of injected errors for different modules varies.
Also the injected errors for a module can be various in
different cycles to simulate intermittent and transient
faults.

In each experiment set including 10000 voting cycles
(n), the number of correct results (nc), the number of
incorrect results (ni) and the number of cycles which
produced “No-result” (nn) is counted. This information is
further used to calculate the safety and availability of the
voters. As mentioned in Section I, availability is defined as
readiness for correct service and safety means the absence
of catastrophic consequences on user(s) and the
environment. The value ܵ = 1 −

 is taken as the safety

index and the value ܣ =

 is defined as the availability
index of voters [6]. According to this definition, the ideal
voter is a voter with ܵ = 1 and ܣ = 1.

The accuracy threshold determines if the distance
between the notional correct value and the voter output is
within acceptable limits. Accuracy threshold is assumed to
be 0.5 which is equal to the voter threshold. Note that the
voter threshold is maximum acceptable divergence of
module outputs from the notional correct value in each
voting cycle. Since all three mentioned voters apply the
same way in response to disagreement, cases which
produce “No-result” are identical. The experimental
results also prove this point.

Different experiments with various amount of injected
errors to the modules executed, in which f1 represents the
amount of injected error to the first module, f2 represents
the amount of injected error to the second module, etc. The
experimental result of voters with various injected error
levels: ଵ݂ ⊆ [−0.5, +0.5] , ଶ݂ ⊆ [−1, +1] , ଷ݂ ⊆
[−1.5, +1.5] is shown in Table 2.

Table 1 Example of Confidence-based Voter

m1 m2 m3 w1 w2 w3 osc1 osc2 osc3 c1 c2 c3
1 1.2 1.5 1.8 10 10 7 1 1 2 10 10 3.5 1.35
2 0.9 1.3 1.7 10 10 4 1 1 2 10 10 2 1.1
3 1.4 0.7 1.4 10 7 6 1 2 3 10 3.5 2 1.4
4 0.8 1 0.3 10 9 3 1 3 4 10 3 0.75 0.846153846
5 0.8 1 1.6 10 10 0 1 3 4 10 3.333333 -- 0.85
6 1.1 1.7 1.6 10 7 2 1 4 5 10 1.75 0.4 1.119230769
7 0.4 1.2 1.8 10 7 2 1 4 5 no-result
8 1.3 0.4 0.2 7 9 4 2 5 5 3.5 1.8 0.8 0.338461538
9 1 1 1.9 9 10 1 3 5 6 3 2 0.166667 1

10 1.2 1.6 1.7 10 10 3 3 5 7 3.333333 2 0.428571 1.376033058
11 0.5 0.4 1.2 10 10 0 3 5 8 3.333333 2 --- 0.4625

test set final answer
module results module weights module oscillations module confidence

199

Table 2 Results of the First Test
Voting

Techniques
Correct
Results

Incorrect
Results

No
Results

Majority 2346 3128 4526
Adaptive
Majority 2510 2964 4526

Confidence-
based 2753 2721 4526

The results show that the confidence-based voter has
more correct and less incorrect results than both standard
majority voter and adaptive majority voter.

Another experimental result of voters with different
injected error levels: ଵ݂ ⊆ [−1, +1] , ଶ݂ ⊆ [−1.5, +1.5] ,

ଷ݂ ⊆ [−2, +2] is as follow:

Table 3 Results of the Second Test
Voting

Techniques
Correct
Results

Incorrect
Results

No
Results

Majority 1011 3101 5888
Adaptive
Majority 1056 3056 5888

Confidence-
based 1107 3005 5888

As can be seen in the above results, number of
disagreed outputs are the same in all three voters, the
reason is using the same strategy in response to
disagreement by the mentioned voters.

The final results of voters with equal but small injected
error levels: ଵ݂ , ଶ݂, ଷ݂ ⊆ [−0.5, +0.5] is as follow:

Table 4 Results of the Third Test
Voting

Techniques
Correct
Results

Incorrect
Results

No
Results

Majority 4645 4602 753
Adaptive
Majority 5647 3600 753

Confidence-
based 6865 2382 753

The results show that all of the voters have a same low
probability of reaching disagreement. In this case, 753
number from 10000 number of answers are “No-result”
(7.5%), so there is a considerable difference in
performance of the voters compared to the previous
mentioned experiments.

Another experiment set executed, with a hypothesis that
the third module has a higher probability of being exposed
by errors than the first two modules. The injected errors
amplitude in this experiment set is in the range of ݐ ⊆
[0.6 , 1.4] in which always ଷ݂ = ଵ݂ + 0.2 . The selected
error scenarios are: (0.6 0.6 0.8), (0.7 0.7 0.9), (0.8
0.8 1), (0.9 0.9 1.1), (1 1 1.2)… (1.4 1.4 1.6)
where the first element of each tuple represents the
maximum injected error to the first module, the second
element of the tuple represents the maximum injected error
to the second module, etc. Figure 3 shows the availability
of voters versus injected error amplitude in this experiment
set. The safety of voters versus injected error amplitude is
shown in Figure 4.

Figure 3 Availability versus Injected Error amplitude

Figure 4 Safety versus Injected Error amplitude

According to section II, transient errors may occur in
modules of a TMR system. Another set of experiment with
previous assumptions is built to test these kind of errors.
At first, equal amount of errors are injected to all modules,
and then after running 4000 cycles, the error amplitude of
the third module is raised by 0.5 in the next 2000 cycles.
Availability of standard majority voter, Adaptive Majority
Voter and confidence-based voter, for this scenario, is
shown in Figure 5. In Figure 6 safety of standard majority
voter, Adaptive Majority Voter and confidence-based
voter, for this scenario is shown.

Figure 5 Availability versus Injected Error amplitude for transient

errors

Figure 6 Safety versus Error amplitude for transient errors

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Av
ai
la
bi
lit
y

Error

Majority Voter Adaptive Voter Confidence-Based Voter

0.5
0.52
0.54
0.56
0.58

0.6
0.62
0.64
0.66
0.68

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Sa
fe
ty

Error

Majority Voter Adaptive Voter Confidence-Based Voter

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Av
ai
la
bi
lit
y

Error

Majority Voter Adaptive Voter Confidence-Based Voter

0.5
0.52
0.54
0.56
0.58

0.6
0.62
0.64
0.66
0.68

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Sa
fe
ty

Error

Majority Voter Adaptive Voter Confidence-Based Voter

200

The last experiment set is executed to test the effects
intermittent errors, which are introduced in section II. The
scenario for this test is that, at first, equal amount of error
is injected to all of the modules. After that the injected
error to the third module is increased and decreased by 0.5
in a 2000 periods. Which means that in the first 2000
cycles, modules have an equal error amplitude, then in
second 2000 cycles the error amplitude of the third module
is raised by 0.5 and then it is decreased by 0.5, etc.

Figure 7 Availability versus Error amplitude for intermittent errors

Figure 8 Safety versus Injected Error amplitude for intermittent

errors

In the experiments, as the error amplitude increases, the
number of “No-result” increases too. As mentioned before
ܣ =

 and ܵ = 1 −

 that can be interpreted as ܣ =

1 − ା

 and ܵ = ା

 which indicate that availability
has inverse relationship with the number of “No-result”
while safety has direct relationship with number of “No-
result”, so as the number of “No-result” increases, the
availability decreases and the safety increases.

V. CONCLUSIONS
The paper addressed the benefits of considering

oscillation for each modules weight in standard majority
voter in a Triple Modular Redundant system. A new
technique, “confidence-based majority voter”, is proposed
and a method to produce confidence in a majority voter is
devised. The technique applies weight and oscillation to
mask permanent, transient and intermittent faults that may
occur during system’s life cycle. The results show that the
proposed technique improves the availability of standard
majority voter (4.4%) and safety of standard majority
voter (4.4%). In case of occurring transient faults in each
module this technique improves the availability and safety
of standard majority voter by 4.9%. If a system is exposed
to intermittent faults, this technique improves the
availability and safety of standard majority voter by 5.8%.
In cases of disagreement, this technique behaves the same

as the standard majority voter. The experimental results
demonstrate that the proposed voter is superior in safety
and availability against standard majority and adaptive
majority voters in different error scenarios.

REFERENCES
[1] J.C. Knight, “Safety critical systems: challenges and directions”,

Proceedings of the 24th International Conference on Software
Engineering (ICSE,2002), pages 547 – 550, 2002.

[2] Koren, I. and C.M. Krishna, Fault-Tolerant Systems, Elsevier,
2007.

[3] Kopetz, H., Real-Time Systems: Design Principles for Distributed
Embedded Applications, Springer, 2nd Edition, 2011.

[4] J. M. Bass, G. Latif-Shabgahi, and S. Bennet, “Experimental
comparison of voting algorithms in case of disagreement”,
Proceedings of the 23rd EUROMICRO Conference, New Frontiers
of Information Technology, pages 516 – 523, 1997.

[5] G. Latif-Shabgahi, J.M. Bass, and S. Bennett, “A Taxonomy for
Software Voting Algorithms Used in Safety-Critical Systems”,
IEEE Transactions on Reliability, Vol. 53 , Issue 3, pages 319 –
328, 2004.

[6] G. Latif-Shabgahi, and S. Bennett, “Adaptive Majority Voter: A
Novel Voting Algorithm for Real-Time Fault-Tolerant Control
Systems”, Proceedings of the 25th EUROMICRO Conference, Vol.
2 , pages 113 – 120, 1999.

[7] Pullum, L.L., Software Fault Tolerance Techniques and
Implementation, Artech House, 2001.

[8] G. Latif-Shabgahia, S. Bennett, and J.M. Bass, “Smoothing voter: a
novel voting algorithm for handling multiple errors in fault-tolerant
control systems”, Journal of Microprocessors and Microsystems,
Vol. 27, Issue 7, Elsevier, pages 303–313, 2003.

[9] J.L. Gersting, R.L. Nist, D.B. Roberts, and R.L. Van Valkenburg,
“A comparison of voting algorithms for n-version programming”,
Proceedings of the 24th Annual Hawaii International Conference
on System Sciences, Vol. 2, pages 253 – 262, 1991.

[10] A. Avizienis, J.C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing”,
IEEE Transactions on Dependable and Secure Computing, Vol. 1
, Issue 1, pages 11-33, 2004.

[11] R.B. Broen, “New voters for redundant systems”, Journal of
Dynamic Systems, Measurement and Control, pages 41–45, 1975.

[12] Z. Tong and R. Kain, “Vote assignments in weighted voting
mechanisms”, Proceedings of the 7th Symposium on Reliable
Distributed Systems, pages 138–143, 1988.

[13] P.R. Lorczak, A.K. Caglayan, and D.E. Eckhardt, “A theoretical
investigation of generalised voters”, in Digest of Papers FTCS’19:
IEEE 19th Annual International Symposium On Fault-Tolerant
Computing Systems, pages 444–451, 1989.

[14] D.M. Blough and F.G. Sullivan, “A comparison of voting strategies
for fault-tolerant distributed systems”, Proceedings of 9th IEEE
Symposium on Reliable Distributed Systems, pages 136–145, 1990.

[15] D.F. McAllister, C. Sun, and M.A. Vouk, “Reliability of voting in
fault tolerant software systems for small output space”, IEEE
Transactions on Reliability, Vol. 39 , Issue 5, pages 524–533, 1990.

[16] B. Parhami, “Voting Algorithms”, IEEE Transaction on Reliability
Vol. 43 , Issue 4, pages 617–629, 1994.

[17] G. Latif-Shabgahi, A.J. Hirst, “A fuzzy voting scheme for
hardware and software fault tolerant systems”, Fuzzy Sets and
Systems, Volume 150, Issue 3, 16 March 2005, pages 579-598.

[18] Ondrej Linda, Milos Manic, “Interval Type-2 fuzzy voter design
for fault tolerant systems, Information Sciences”, Journal of
Elsevier Volume 181, Issue 14, 15 July 2011, pages 2933-2950.

[19] Singamsetty, PhaniKumar and SeethaRamaiah Panchumarthy.
"Automatic Fuzzy Parameter Selection in Dynamic Fuzzy Voter for
Safety Critical Systems" IJFSA 2.2. pages 68-90, 2012.

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Av
ai
la
bi
lit
y

Error

Majority Voter Adaptive Voter Confidence-Based Voter

0.5
0.52
0.54
0.56
0.58

0.6
0.62
0.64
0.66
0.68

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Sa
fe
ty

Error

Majority Voter Adaptive Voter Confidence-Based Voter

201

