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Abstract

This paper presents the effects of geometric tolerances on the rotating shafts natural frequencies. Due to
modeling the tolerances, a code is written in MATLAB 2013 software that produces deviated points.
Deviated points are controlled by different geometric tolerances, including cylindricity, total run-out and
coaxidlity tolerances. Fina surfaces and models passing through the points are created using SolidWorks
2013 software and finally modal analysis is carried out with the FE software. It is observed whatever the
natural frequency is higher or the geometric tolerances are greater, the real and ideal shafts natural
frequencies are more distant. Also difference percentage between ideal and real frequenciesisinvestigated.
The results show that the percentage value is approximately constant for every mode shapes.
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1. Introduction

Today, high rotational speed shafts are very applicable especially in rapid pump and turbomachinery industries.
Investigating the natural frequency of rotating shafts is necessary in designing of shafts. In order to comply with
safety lines to prevent failure due the deflections over the allowable limit, applying rotational speeds close to the
critical speeds are avoided. In the manufacturing processes, creation of pieces with no tolerance in the view of
dimension and geometry, will be very difficult and expensive and its value depends on the performance
characteristics of the piece. In general, manufacturing the parts with relative motions compared to each other, should
be more accurate than the fixed parts. Moving parts are always being excited by applied loads and if the frequency of
the applied loads becomes equal to one of the natura frequencies of the moving parts, the resonance phenomenon
occurs. Therefore themanufacturing process should be such a way that the final product be ever closer to the ideal
target. Then natural frequencies of produced models can be estimated by obtaining natural frequencies of ideal
models from the possible methods and then necessary forecasts and preventions can be performed. These frequencies
are known as the critical rotational speeds in rotating shafts. Today, the critical rotational speed is highly regarded
and the damping system should be designed such a way that damps the extremely large lateral forces acting on the
bearings during the resonance.

When the rotational speed of rotating shafts is high, any defects and deviations in the geometry and material of
the system, could bring destructive events. Lots of researchers have studied the vibrations of rotating shafts with the
effects of different parameters such as misalignment, unbalancing, clearance and cracks. Xu and Maragoni [1]
developed a theoreticall model of a complete motor-flexible coupling-rotor system capable of describing the
mechanical vibration resulting from misalignment and unbalance. They presented that the vibrations induced by
misalignment are amplified into major vibration sources. They also validated the results by some experimental
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studies [2]. Lee et. al. [3] derived a dynamic model for misaligned rotor-ball bearing systems driven through a
flexible coupling by treating the reaction loads and deformations at the bearing and coupling elements as the
misalignment effect. They showed as the angular misalignment increases, the whirling orbits tend to collapse toward
a straight line and the natural frequency of the misaligned rotor system associated with the misalignment direction
increases largely. Tejas et. a. [4] investigated the effect of misalignment on vibration response of coupled rotors.
They modelled the coupled rotor system using Timoshenko beam elements with all six dof. They found that the
misalignment couples vibrations in bending, longitudinal and torsional modes. They also presented experimental
investigations for validating the results [5]. Dimarogonas and Papadopoulos [6] investigated the vibration of cracked
shafts in bending. They obtained analytical solutions for the closing crack under the assumption of large static
deflections, a situation common in turbomachinery. Vibration and stability of arotating shaft containing a transverse
crack was studied by Huang et. a. [7]. The steady state responses and the stability criteria are then obtained, and the
effects of crack depth, crack location and rotational speed are discussed. It is discovered that the crack affects the
dynamic response more significantly when it occurs near a place where the bending moment exhibits a larger value.
Also the investigations of the dynamics of a rotor system with bearing clearance is presented by Flowers et. al. [8].
Akturk [9] presented some characteristic parameters affecting the natural frequency of a rotating shaft supported by
defect-free ball bearings. He presented a new analytical investigation into the effects of preload, the number of
rolling elements and ball set position. So controlling the geometry of shafts and their involved rotating parts is very
important and geometric tolerances are more important and effective than dimensional tolerances. This paper
investigates the effects of geometric tolerances of rotating shafts on the vibrations of rotating shafts. Tolerances of
the bearings and the type of adaptation between shaft and bearings are not discussed here and rigid bearings with no
damping effects and friction are considered. Geometric tolerances associated with shafts are such as straightness,
circularity, cylindricity, concentricity, coaxiality, circular run-out (radial) and total radial run-out tolerances [10-12].
The results of such an analysis would be useful in every system that has rotating shafts. But the presented study
will be more valuable for very sensitive and high speed systems that any deviation in critical rotational speed is very
important. Up to now, industrially-developed motors have normally reached 250,000 revolutions per minute [13].
Some rotating shafts are supercritical that means their rotational speed goes further than the first critical rotational
speed. So the effects of the tolerances on the higher natural frequencies than fundamental frequency, are investigated
too. This article aims to show the effects of geometric tolerances, by increasing the natural frequencies and mode
shapes.

2. Implementation Method

In this paper three different rotating shafts from view of size and shape are considered:
I) Rotating shaft with 50 mm diameter and 500 mm length.
I1) Rotating shaft with 50 mm diameter and 1,000 mm length.
[11) Step shaft including narrow section with 50 mm diameter and 300 mm length and stockish section with 66 mm
diameter and 600 mm length that is modeled from areal rotating shaft.

In the manufacturing processes of these presented shafts, three types of output deviated surfaces are considered.
Specific geometric tolerances should be used for geometry controlling for each of these types. Here the kind of
tolerance is less important, because each of these tolerances may contain another one too and aso different
tolerances can be applied on a same type and relatively same results may be achieved. These types and related
geometric tolerances are followed in Fig. 1.

Fig. 1. Exaggerated output surface of manufacturing processes. a first manufacturing process — cylindricity tolerance used.
bsecond manufacturing process — total radial run-out tolerance used. ¢ third manufacturing process — coaxiality tolerance used.

For the first type, the deviations generated from Ideal state are applied on specific sections along the axis of
rotation by a negative effect such a way that on each of these sections, based on a specified angle, deviations are
considered on different points of the circumference of the cross section. Therefore the circumferences of these
sections are not uniform circles and have some deviations. For the second type, negative deviations on specific
sections along the axis of rotation are applied only on the radius of the section circles. Therefore these sections are
uniform circles and they only differ in size, from each other. In addition, centers of all these circles are located on the
axis of ideal cylinder (datum axis). For the third type, the deviations are such a way that all sections are uniform
circles with a diameter equal to the ideal diameter, but the deviations are applied on the centers of the sections and
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the centers are not located on a straight line and they have distances from datum axis.

These three mentioned types for machining processes, are applied on the models. Modeling the deviationsis done
by generating a set of deviated points with the help of random numbers in MATLAB. Different types of deviations
with different tolerance values and different number of deviated points are applied on the mentioned rotating shafts.
So the effects of these parameters on the natural frequencies will be investigated too. Furthermore to enhance the
accuracy of the results, several models will be created with the same conditions and the average of the results is
considered asthe final result. Thiswill reduces the errors. Desired parameters are followed in Fig. 2.

Fig. 2. Displaying considerable parameters on the shaft

Where, €l is the number of longitudinal sections and €2 is the number of points applying the deviations in every
section. For applying the deviations, a parameter called the diametric tolerance coefficient (T,) will be used that is
equal to the ratio of geometric tolerance to the shaft diameter. So for step shaft with a constant diametric tolerance
coefficient, surface deviation ranges of the shaft parts are different.

T=T.xD (1)

For generating random numbers, standard normal distribution (Gaussian distribution) is used which the
probability density function includes ¢=0 and x=1. The intervals of the numbers generated by this function are
infinite, so for limiting them only the in the range [o-3u, 6+3u] are acceptable. This range includes more than 99.7%
of total generated numbers so its error can be neglected.

For example if the input for the diametric tolerance coefficient is 0.01 and the diameter of the shaft is 50mm, then
the tolerance equals to 0.5mm that means the maximum deviation between the ideal points and generated points is
0.5mm. After generating the deviated points, they are imported into the SolidWorks software. it is necessary to create
closed curves passing through the points on the same longitudinal plane. After passing a cylindrical surface through
these section curves, the external surface of the shafts may be created and finally the solid model could be created
easly.

3. Analyzing the M odels

Finite element method is used for estimating the natural frequencies. For this purpose, Ansys the commercial FE
software is used. Two dimensional quadratic order surface elements are used. Shafts are made of steel with the

following characteristics:
Table 1. Physical characteristics of presented shafts

Module of elasticity (N/nf) Poisson’s ratio Density (Kg/m®)
E =2.1x10" »=03 p = 7800
For finding the appropriate number of nodes for meshing, it is necessary to perform mesh sensitivity test for
every shaft. The results of this test for rotating shaft (1), is shown in Fig. 3. It is observed that the slope of curve is
decreasing, so the selection of approximately 10,000 nodes for the shaft (1) is suitable.

625
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Fig. 3. Mesh senditivity graph related to the first bending mode shape of ideal shaft (1)
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Referring to Fig. 4, three main loads are applied to the rotating shafts: first gravity, second the reaction forces
exerted by constraints such as bearings and third the transverse forces applied on the shaft playing the role of
componentsinstalled on the shaft such as gears. Shafts are often constrained on both sides. It is directly connected or
coupled to the drive shaft or electric motor from one side. Although the support is clamped in reality but for
illustrating the effects of tolerances, boundary conditions are merely considered as simply supported. Boundary
conditions for the rotating shafts (1) and (1) are simply supported with the possibility of longitudinal motion. So one
side is constrained in three directions and the other side, just in two transverse directions. The same boundary
conditions are applied to the shaft (111) and because it is a step shaft, the second bearing is located at the step. The
boundary conditions are applied to the model using Ansys as shownin Fig. 4.

Gravity ————

Constraints "

Lateral Loads

Fig. 4. Applying forces on rotating shaft (I11)
Performing the static analysis and subsequent the modal analysis [14], the results including natural frequencies,
mode shapes and also the relative displacements would be obtained. From eg. (2) it is observed that the torsional
natural frequency w, of the shaft is independent of the diameter and just is a function of shear modulus G, density p

and length L of the shaft [15].
’k 1
W, = 79 ] = EmRz,m = mpR2L

GI R*
Mzkgg,kng,lzT
1 |G
I 2
=1 [ 2

It is also observed from the results that the effects of geometric tolerances on the natural frequencies of torsional
and longitudina mode shapes, are negligible. Thus, only natural frequencies of the bending mode shapes will be
studied.

4. Results & Discussions

Mode shapes of rotating shafts (1) and (I11) are presented in appendix. Due to the geometry similarity of shafts (1)
and (1), their mode shapes are also similar thus the mode shapes of shaft (I) are not presented. The values of natural
frequencies of ideal rotating shafts are listed in Table 2:

Table 2. Natural frequencies of ideal shafts

Bending mode Natural  frequencies (Hz)

shape number Shaft (1) Shaft (I1) Shaft (111)
1 588.78 153.33 388.58
2 1849.1 493.17 760.54
3 3668.5 1015.3 1991.5
4 5890.5 1704.4 2254.8
5 e 25418 -

It is observed that natural frequency difference between the ideal and deviated shafts are following a particular
rule for bending mode shapes. As applying deviations negatively on the rotating shafts will always results in
decreasing the natural frequencies. As can be seen from Fig. 5 & 6, difference values congtitute a particular
percentage of natural frequencies of ideal models and the percentages are nearly identical for different types of
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deviations and different natural frequencies. It is observed that the results for the cylindricity and total run-out
tolerances for a same tolerance vaue, are just a little different. As the geometric tolerance value goes higher,
difference percentage goes higher too. The results are computed from the average results related to different cases
with different number of deviation applying points but the same tolerance coefficients.

a= Cylindricity tolerance
b = Total run-out tolerance

:
o 2 ¥ a- Tc=0.005
D@ %1-5 b- Tc=0.005
% 8 1 ®a- Tc=0.01
% 05 mb-Tc=0.01
= 0 "a- Tc=0.025
z

1 2 3 4

Bending Mode Shape Number

Fig. 5. Comparing natural frequency difference percentages for different cases of shaft (1)

a= Cylindricity tolerance
b = Total run-out tolerance

8

% 2 a- Tc=0.005
5g 15 b - Tc=0.005
o e

Sg =a- Tc=0.01
85

[T

g 0.5 mb- Tc=0.01
&

zZ ma- Tc=0.025

1 2 3 4 5
Bending Mode Shape Number
Fig. 6. Comparing natural frequency difference percentages for different cases of shaft (11)

The ratio between difference percentages and diametric tol erance coefficients are computed and related results for
al shafts are presented in Fig. 7t0 9. Theratio is adimensionless number and doesn't have a physical meaning, but it
can be seen that for each shaft with different diametric tolerance coefficients, the results are approximately the same.
Also noting that the ratio is approximately equal for different kinds of shafts and here it is nearly equal to 60.
Designers can use the results to estimate the difference values of natural frequencies of real and ideal shafts for
different support conditions and tolerances.

® Tc=0.005

70
60 = Tc=0.01
50

40 Tc=0.025
30
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10

4

1 Bending l\%ode Shape l:\)’lumber
Fig. 7. Comparing the ratio between natural frequency difference percentages and diametric tolerance coefficients for different
cases of shaft (1)
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Fig. 8. Comparing the ratio between natural frequency difference percentages and diametric tolerance coefficients for different

cases of shaft (1)
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Fig. 9. Comparing the ratio between natural frequency difference percentages and diametric tolerance coefficients for different

cases of shaft (I11)

As mentioned before to enhance the accuracy, average of the results were presented. In this case, mean value isn’t
sufficient alone and the data distribution around the mean value should be presented. For example the output results
related to the first natural frequency of shaft (1) with T,=0.005 are presented in Fig. 10. Running the written code for
lots of times would results in different sets of points. As shown, the horizontal axis shows the difference percentage
of natural frequencies between the output values and mean value. The vertical axis just shows the compactness of the
points about the mean value. As presented, where the points are compact, the curve goes upward and where the
points are expanded, the curve goes downward. Trend of the points is approximated by the normal density function.
Therefore as the input applied deviation was based on the normal distribution, the output results are distributed about
the mean value based on the normal distribution too.

-0.08 -0.06 -0.04 -0.02 0 002 0.04 006 0.08

Difference Percentage of Natural Frequencies Between the
Output Vaues and Mean Vaue

Fig. 10. Distribution curve of output results of the first natural frequency of shaft (1) with T¢=0.005 about the mean value.
By comparing the Fig. 10 with Fig. 11 that is a normal density function, it can be concluded that the standard
deviation of normal curve in Fig. 10 is about 0.02. Therefore about 68% of the results just have up to 0.02%
difference from the mean value and about 27% of the results are 0.02% to 0.04% different, and the rest of points are
about 0.04% to 0.06% different from the mean value.
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34.1% 34.1%

—30 —20 —1lo W 1o 20 30

Fig. 11. Normal density function with related probability ranges[16]

Table 3 shows the simple variances of output results for first three bending mode shapes of shaft (I) with
T.=0.005. Thefirst row is related to the points presented in Fig. 10. As can be seen the values of simple variances of
natural frequencies are little that means the results are compact about the related mean values. As shown the values
of simple variances of difference percentages of natural frequencies are near each other, that means the distribution
of the results related to second and third mode shapes, are like the results of first mode shape and therefore the Fig.
10isnearly identical for al bending mode shapes of the rotating shaft.

Table 3. Simple variances of output results of first three bending mode shapes of shaft (I) with T=0.005

Bending mode shape number Simple variance of natural frequencies Simple variance of difference percentages
1 0.023434 0.000676
2 0.222588 0.000651
3 0.846501 0.000629

The results of the deviation applying related to the third type of manufacturing process, show that frequency
difference values related to the bending mode shapes are always negative as in the previous types, but these
difference values are very small and can be neglected. It is obvious by attention to the shape of the shaft and little
distance between the bearings. That's why the results are not presented for this type of applying deviations. Mean
result values for all shafts for different diametric tolerance coefficients are shown in Fig. 12. It can be seen that the
critical rotational speed difference between the ideal and real shafts, nearly not depends on the kind of shafts and is
only related to the natural frequency of ideal models. In general it can be stated whatever the natural frequency is
higher, the difference is higher too. These differences can be roughly approximated by straight lines. It is observed,
increasing the diametric tolerance coefficient, would also increase the slope of approximation lines, which means the
increase of the critical rotational speed differences between the ideal and real values.

—o—Tc=0.005 Tc=0.01 < 102
0 5 10 15 20 25 30 35 40
= 0
=3
2
B o )
e <) 250
P
g ~J -500
3 T
= e
3 N -750
&
T A -1000
S
B
&
s e -1250
g
-1500

Natural Frequencies of All Three Ideal Shafts (Hz)
Fig. 12. Critical rotational speed differences between ideal and real shaftsvs. natural frequencies of related ideal shafts

5. Conclusion

In this paper an attempt has been made to investigate the relation between the natural frequencies of rotating
shafts and related geometric tolerances. Three rotating shafts with different sizes and geometries have been
considered. By applying different geometric tolerances in the form of shaft surface deviations by a completely
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random method, their effects on the natural frequencies have been determined using the finite element simulation
software. The results show that whatever the natural frequency of shafts increases, natura frequency difference
between ideal and deviated surface models, almost linearly increases too. Also as expected, increasing the geometric
tolerances would result in increasing the difference values. It is observed that this difference value is egual to a
specific percentage of natural frequency of related mode shape. For a given rotating shaft, the percentage value is
amost constant for all mode shapes. Ratio between the difference percentage and diametric tolerance coefficient, is
amost independent of the value of tolerance coefficient and the kind of rotating shaft.
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Nomenclature

Diameter of the shaft [m] T Geometric tolerance [m]
Module of elasticity [N/m?] T. Diametric tolerance coefficient
Shear modulus [N/m?] Greek Symbols

Areamoment of inertia (polar) [m’] 0 Torsional angle [rad]

Mass moment of inertia [Kg.m?]

VZIIrxX“— QMO

u Standard deviation
Torsiona rigidity [N/rad] 1) Poisson’sratio
Length of the shaft [m] p Density [Kg/m?]
Mass [Kg] o Mean (mathematical expectation)
Force moment [N.m] wn Natural frequency [rad/s]
Radius of the shaft [m]
Appendix

ANSYS

TANSYS| = TANSYS

L0 ) E—

@
.

5 6

Fig. 13. Mode shapes of shaft (I1). Mode shapes 1, 2, 4 & 6 arefirst four bending vibrating modes. Mode shapes 3 & 5 are the
torsional and longitudinal vibrating mode shapes respectively.
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