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Abstract

This paper presents the effects of geometric tolerances on the rotating shafts natural frequencies. Due to
modeling the tolerances, a code is written in MATLAB 2013 software that produces deviated points.
Deviated points are controlled by different geometric tolerances, including cylindricity, total run-out and
coaxiality tolerances. Final surfaces and models passing through the points are created using SolidWorks
2013 software and finally modal analysis is carried out with the FE software. It is observed whatever the
natural frequency is higher or the geometric tolerances are greater, the real and ideal shafts natural
frequencies are more distant. Also difference percentage between ideal and real frequencies is investigated. 
The results show that the percentage value is approximately constant for every mode shapes.
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1. Introduction

Today, high rotational speed shafts are very applicable especially in rapid pump and turbomachinery industries.
Investigating the natural frequency of rotating shafts is necessary in designing of shafts. In order to comply with
safety lines to prevent failure due the deflections over the allowable limit, applying rotational speeds close to the
critical speeds are avoided. In the manufacturing processes, creation of pieces with no tolerance in the view of
dimension and geometry, will be very difficult and expensive and its value depends on the performance
characteristics of the piece. In general, manufacturing the parts with relative motions compared to each other, should
be more accurate than the fixed parts. Moving parts are always being excited by applied loads and if the frequency of 
the applied loads becomes equal to one of the natural frequencies of the moving parts, the resonance phenomenon
occurs. Therefore themanufacturing process should be such a way that the final product be ever closer to the ideal
target. Then natural frequencies of produced models can be estimated by obtaining natural frequencies of ideal
models from the possible methods and then necessary forecasts and preventions can be performed. These frequencies 
are known as the critical rotational speeds in rotating shafts. Today, the critical rotational speed is highly regarded
and the damping system should be designed such a way that damps the extremely large lateral forces acting on the
bearings during the resonance.

When the rotational speed of rotating shafts is high, any defects and deviations in the geometry and material of
the system, could bring destructive events. Lots of researchers have studied the vibrations of rotating shafts with the
effects of different parameters such as misalignment, unbalancing, clearance and cracks. Xu and Maragoni [1]
developed a theoretical model of a complete motor-flexible coupling-rotor system capable of describing the
mechanical vibration resulting from misalignment and unbalance. They presented that the vibrations induced by
misalignment are amplified into major vibration sources. They also validated the results by some experimental
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studies [2]. Lee et. al. [3] derived a dynamic model for misaligned rotor-ball bearing systems driven through a
flexible coupling by treating the reaction loads and deformations at the bearing and coupling elements as the
misalignment effect. They showed as the angular misalignment increases, the whirling orbits tend to collapse toward
a straight line and the natural frequency of the misaligned rotor system associated with the misalignment direction
increases largely. Tejas et. al. [4] investigated the effect of misalignment on vibration response of coupled rotors.
They modelled the coupled rotor system using Timoshenko beam elements with all six dof. They found that the
misalignment couples vibrations in bending, longitudinal and torsional modes. They also presented experimental
investigations for validating the results [5]. Dimarogonas and Papadopoulos [6] investigated the vibration of cracked
shafts in bending. They obtained analytical solutions for the closing crack under the assumption of large static
deflections, a situation common in turbomachinery. Vibration and stability of a rotating shaft containing a transverse
crack was studied by Huang et. al. [7]. The steady state responses and the stability criteria are then obtained, and the
effects of crack depth, crack location and rotational speed are discussed. It is discovered that the crack affects the
dynamic response more significantly when it occurs near a place where the bending moment exhibits a larger value.
Also the investigations of the dynamics of a rotor system with bearing clearance is presented by Flowers et. al. [8].
Akturk [9] presented some characteristic parameters affecting the natural frequency of a rotating shaft supported by
defect-free ball bearings. He presented a new analytical investigation into the effects of preload, the number of
rolling elements and ball set position. So controlling the geometry of shafts and their involved rotating parts is very
important and geometric tolerances are more important and effective than dimensional tolerances. This paper
investigates the effects of geometric tolerances of rotating shafts on the vibrations of rotating shafts. Tolerances of
the bearings and the type of adaptation between shaft and bearings are not discussed here and rigid bearings with no
damping effects and friction are considered. Geometric tolerances associated with shafts are such as straightness,
circularity, cylindricity, concentricity, coaxiality, circular run-out (radial) and total radial run-out tolerances [10-12].

The results of such an analysis would be useful in every system that has rotating shafts. But the presented study
will be more valuable for very sensitive and high speed systems that any deviation in critical rotational speed is very
important. Up to now, industrially-developed motors have normally reached 250,000 revolutions per minute [13].
Some rotating shafts are supercritical that means their rotational speed goes further than the first critical rotational
speed. So the effects of the tolerances on the higher natural frequencies than fundamental frequency, are investigated
too. This article aims to show the effects of geometric tolerances, by increasing the natural frequencies and mode
shapes.

2. Implementation Method

In this paper three different rotating shafts from view of size and shape are considered:
I) Rotating shaft with 50 mm diameter and 500 mm length.
II) Rotating shaft with 50 mm diameter and 1,000 mm length.
III) Step shaft including narrow section with 50 mm diameter and 300 mm length and stockish section with 66 mm
diameter and 600 mm length that is modeled from a real rotating shaft.

In the manufacturing processes of these presented shafts, three types of output deviated surfaces are considered.
Specific geometric tolerances should be used for geometry controlling for each of these types. Here the kind of
tolerance is less important, because each of these tolerances may contain another one too and also different
tolerances can be applied on a same type and relatively same results may be achieved. These types and related
geometric tolerances are followed in Fig. 1.

Fig. 1. Exaggerated output surface of manufacturing processes. a first manufacturing process cylindricity tolerance used.
bsecond manufacturing process total radial run-out tolerance used. c third manufacturing process coaxiality tolerance used.

For the first type, the deviations generated from Ideal state are applied on specific sections along the axis of
rotation by a negative effect such a way that on each of these sections, based on a specified angle, deviations are
considered on different points of the circumference of the cross section. Therefore the circumferences of these
sections are not uniform circles and have some deviations. For the second type, negative deviations on specific
sections along the axis of rotation are applied only on the radius of the section circles. Therefore these sections are
uniform circles and they only differ in size, from each other. In addition, centers of all these circles are located on the 
axis of ideal cylinder (datum axis). For the third type, the deviations are such a way that all sections are uniform
circles with a diameter equal to the ideal diameter, but the deviations are applied on the centers of the sections and

a) b) c)
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the centers are not located on a straight line and they have distances from datum axis.

These three mentioned types for machining processes, are applied on the models. Modeling the deviations is done 
by generating a set of deviated points with the help of random numbers in MATLAB. Different types of deviations
with different tolerance values and different number of deviated points are applied on the mentioned rotating shafts.
So the effects of these parameters on the natural frequencies will be investigated too. Furthermore to enhance the
accuracy of the results, several models will be created with the same conditions and the average of the results is
considered as the final result. This will reduces the errors. Desired parameters are followed in Fig. 2.

Fig. 2. Displaying considerable parameters on the shaft
Where, e1 is the number of longitudinal sections and e2 is the number of points applying the deviations in every

section. For applying the deviations, a parameter called the diametric tolerance coefficient (Tc) will be used that is
equal to the ratio of geometric tolerance to the shaft diameter. So for step shaft with a constant diametric tolerance
coefficient, surface deviation ranges of the shaft parts are different.

(1)
For generating random numbers, standard normal distribution (Gaussian distribution) is used which the

probability density function includes =0 and =1. The intervals of the numbers generated by this function are
infinite, so for limiting them only the in the range [ -3 , +3 ] are acceptable. This range includes more than 99.7%
of total generated numbers so its error can be neglected.

For example if the input for the diametric tolerance coefficient is 0.01 and the diameter of the shaft is 50mm, then 
the tolerance equals to 0.5mm that means the maximum deviation between the ideal points and generated points is
0.5mm. After generating the deviated points, they are imported into the SolidWorks software. it is necessary to create 
closed curves passing through the points on the same longitudinal plane. After passing a cylindrical surface through
these section curves, the external surface of the shafts may be created and finally the solid model could be created
easily.

3. Analyzing the Models

Finite element method is used for estimating the natural frequencies. For this purpose, Ansys the commercial FE
software is used. Two dimensional quadratic order surface elements are used. Shafts are made of steel with the
following characteristics:

Table 1. Physical characteristics of presented shafts

Module of elasticity (N/m2) Poisson s ratio Density (Kg/m3)
E = 2.1×1011 = 0.3 = 7800

For finding the appropriate number of nodes for meshing, it is necessary to perform mesh sensitivity test for
every shaft. The results of this test for rotating shaft (I), is shown in Fig. 3. It is observed that the slope of curve is
decreasing, so the selection of approximately 10,000 nodes for the shaft (I) is suitable.

Fig. 3. Mesh sensitivity graph related to the first bending mode shape of ideal shaft (I)
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Referring to Fig. 4, three main loads are applied to the rotating shafts: first gravity, second the reaction forces

exerted by constraints such as bearings and third the transverse forces applied on the shaft playing the role of
components installed on the shaft such as gears. Shafts are often constrained on both sides. It is directly connected or 
coupled to the drive shaft or electric motor from one side. Although the support is clamped in reality but for
illustrating the effects of tolerances, boundary conditions are merely considered as simply supported. Boundary
conditions for the rotating shafts (I) and (II) are simply supported with the possibility of longitudinal motion. So one
side is constrained in three directions and the other side, just in two transverse directions. The same boundary
conditions are applied to the shaft (III) and because it is a step shaft, the second bearing is located at the step. The
boundary conditions are applied to the model using Ansys as shown in Fig. 4.

Fig. 4. Applying forces on rotating shaft (III)
Performing the static analysis and subsequent the modal analysis [14], the results including natural frequencies,

mode shapes and also the relative displacements would be obtained. From eq. (2) it is observed that the torsional
natural frequency n of the shaft is independent of the diameter and just is a function of shear modulus G, density
and length L of the shaft [15].

(2)

It is also observed from the results that the effects of geometric tolerances on the natural frequencies of torsional
and longitudinal mode shapes, are negligible. Thus, only natural frequencies of the bending mode shapes will be
studied.

4. Results & Discussions

Mode shapes of rotating shafts (II) and (III) are presented in appendix. Due to the geometry similarity of shafts (I)
and (II), their mode shapes are also similar thus the mode shapes of shaft (I) are not presented. The values of natural
frequencies of ideal rotating shafts are listed in Table 2:

Table 2. Natural frequencies of ideal shafts
Bending mode
shape number

Natural frequencies (Hz)
Shaft (I) Shaft (II) Shaft (III)

1 588.78 153.33 388.58
2 1849.1 493.17 760.54
3 3668.5 1015.3 1991.5
4 5890.5 1704.4 2254.8
5 ------ 2541.8 ------

It is observed that natural frequency difference between the ideal and deviated shafts are following a particular
rule for bending mode shapes. As applying deviations negatively on the rotating shafts will always results in
decreasing the natural frequencies. As can be seen from Fig. 5 & 6, difference values constitute a particular
percentage of natural frequencies of ideal models and the percentages are nearly identical for different types of
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random method, their effects on the natural frequencies have been determined using the finite element simulation
software. The results show that whatever the natural frequency of shafts increases, natural frequency difference
between ideal and deviated surface models, almost linearly increases too. Also as expected, increasing the geometric
tolerances would result in increasing the difference values. It is observed that this difference value is equal to a
specific percentage of natural frequency of related mode shape. For a given rotating shaft, the percentage value is
almost constant for all mode shapes. Ratio between the difference percentage and diametric tolerance coefficient, is
almost independent of the value of tolerance coefficient and the kind of rotating shaft.
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Nomenclature

Geometric tolerance [m]TDiameter of the shaft [m]D
Diametric tolerance coefficientTcModule of elasticity [N/m2]E

Greek SymbolsShear modulus [N/m2]G
Torsional angle [rad]Area moment of inertia (polar) [m4]I
Standard deviationMass moment of inertia [Kg.m2]J
Poisson s ratioTorsional rigidity [N/rad]K
Density [Kg/m3]Length of the shaft [m]L
Mean (mathematical expectation)Mass [Kg]m
Natural frequency [rad/s]nForce moment [N.m]M

Radius of the shaft [m]R

Appendix

Vibrating mode shapes related to shafts (II) and (III) are shown in below:

Fig. 13. Mode shapes of shaft (II). Mode shapes 1, 2, 4 & 6 are first four bending vibrating modes. Mode shapes 3 & 5 are the 
torsional and longitudinal vibrating mode shapes respectively.
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Fig. 14. First four bending mode shapes of shaft (III)
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