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This paper presents an investigation into large deflection analysis of moderately thick radially functionally 
graded (RFG) annular sector plates fully and partially rested on two-parameter (Pasternak) elastic 
foundation by employing Generalized Differential Quadrature (GDQ) method. The material properties 
are graded through the radial direction of plates according to a power-law distribution of the volume 
fraction of the constituent. Based on the first-order shear deformation theory in conjunction with non-
linear von Kármán assumptions, the equilibrium equations are derived. Application of GDQ method to the 
equilibrium equations leads to a system of non-linear algebraic equations. The set of non-linear algebraic 
equations are then solved by employing the Newton–Raphson iterative scheme. It is shown that the 
predictions of GDQ method vis-à-vis other numerical methods reported in the literature, are in a good 
agreement. Furthermore, effects of change in power law index, geometrical parameters and stiffness of 
foundation are studied in detail.

© 2014 Elsevier Masson SAS. All rights reserved.
1. Introduction

Analysis of plates and shells made of functionally graded ma-
terials (FGMs) has become famous among researchers since their 
introduction in 1984 by a group of material scientists in Japan [32]. 
Material properties of FGMs vary continuously in at least one di-
rection according to a specific profile. These materials are typically 
made of ceramic and metal. The ceramic component enables the 
material to withstand high-temperature environments due to its 
low thermal conductivity and the ductile metal component pre-
cludes fracture.

An analytical closed form solution is not always obtainable 
therefore several semi-analytical and numerical methods have 
been presented. Among them one may refer to the GDQ method 
which is a numerical method with high accuracy even by em-
ploying a few numbers of grid points. The main advantage of the 
GDQ method vis-à-vis its classical version differential quadrature 
method (DQM) [5], is that the weighting coefficients are readily 
obtained without restrictions on the choice of grid points.

Circular and annular sector plates have numerous applications 
in industrial fields. Nevertheless, studies on annular sector plates 
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are rare compared to those available on rectangular plates. Large 
deflection analysis of moderately thick annular sector plates is pre-
sented by Salehi and Shahidi [29] using dynamic relaxation (DR) 
method. Nath et al. [23] studied non-linear bending analysis of 
moderately thick annular sector plates using Chebyshev polyno-
mials. Aghdam et al. [1] used extended Kantorovich method (EKM) 
to obtain solutions for bending analysis of thin fully clamped an-
nular sector plates subjected to uniform and non-uniform load. 
In another work of Aghdam et al. [2] bending analysis of mod-
erately thick FG annular sector plates was carried out using EKM 
in conjunction with GDQ method. Andakhshideh et al. [3] em-
ployed GDQ method to study non-linear bending of laminated 
annular sector plates with any combination of boundary condi-
tions. Some researchers also studied RFG annular sector plates. 
Mousavi and Tahani [21] presented EKM solutions for moderately 
thick RFG annular sector plates. Recently, Fereidoon et al. [10] in-
vestigated small deflection of thin RFG annular sector plates using 
EKM. Hejripour and Saidi [15] studied non-linear free vibration 
analysis of moderately thick annular sector plates by DQM. Saidi 
et al. [28] presented analytical solutions for bending of thin FG an-
nular sector plates. On the basis of the Reddy’s third-order shear 
deformation theory, bending [4], buckling [14], and free vibration 
[9] of annular sector plates have been carried out.

Several attempts have been made to model an actual founda-
tion. Winkler foundation is simplest and most widely used model. 
This model represents a continuous elastic foundation as closely 
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spaced, linear, separate springs. To modify the Winkler model, sev-
eral two-parameter models such as Pasternak model are proposed. 
In this model the springs of Winkler model are assumed to attach 
to a plate consist of incompressible vertical elements which can 
deform only by transverse shear.

Studies on rectangular plates resting on Winkler or Paster-
nak foundations have attracted the attention of many researchers. 
Kobayashi and Sonoda [18] presented Levy-type solutions for 
bending analysis of moderately thick square plates resting on 
Winkler foundation. Liew et al. [19] studied moderately thick 
square plates resting on Winkler foundation employing DQM. Us-
ing the DQ method, bending analysis of moderately thick square 
plates rested on two-parameter foundation was performed by Han 
and Liew [13]. Liu [20] employed differential quadrature element 
method to analyze bending response of moderately thick square 
plates on Winkler foundation with any combination of boundary 
conditions and various sorts of loadings.

As per the review of literature it appears that although numer-
ous studies on bending analysis of rectangular plates resting on 
foundation are available, but very few studies on analysis of an-
nular sector plates resting on foundation have been carried out. 
Naderi and Saidi [22] presented an analytical solution for buck-
ling analysis of moderately thick FG annular sector plates rest-
ing on Winkler foundation. Hosseini-Hashemi et al. [16] investi-
gated buckling of RFG thin annular sector plates resting on Paster-
nak elastic foundation using DQM. In another work of Hosseini-
Hashemi et al. [17] vibration analysis of variable thickness RFG 
annular sector plates on elastic foundation was carried out.

Apart from Nobakhti and Aghdam [25] that studied thick rect-
angular plates partially rested on foundation, all previous studies 
in the literature are confined to plates completely resting on foun-
dation. However, plates partially rested on foundation have a wide 
range of applications in industry, i.e., plates that are employed to 
cover holes or cavities in structures. Thus far the authors have 
not encountered any paper dealing with large deflection analysis 
of RFG annular sector plates as well as bending analysis of annular 
sector plates on foundation. Particular interest of the present study 
is large deflection analysis of RFG annular sector plates fully and 
partially rested on Pasternak foundation.

In the present paper, non-linear bending analysis of RFG an-
nular sector plates resting on Pasternak foundations or stripes is 
presented. By employing the principle of minimum total poten-
tial energy the equilibrium equations are obtained based on the 
first-order shear deformation theory (FSDT) and von Kármán type 
non-linearity. The GDQ method in conjunction with the Newton–
Raphson iterative scheme is then used to solve the set of five non-
linear equilibrium equations. A comparison study is carried out 
and validity and accuracy of the results are demonstrated. Further-
more, the influences produced by geometrical parameters, power 
law index and stiffness of the foundation are studied in detail.

2. Theoretical formulation

2.1. Geometry and material properties

An annular sector plate with inner radius ri outer radius ro con-
stant thickness h and total angle α subjected to a uniform pressure 
P z rested on Pasternak elastic foundation is considered. The nor-
mal and shear coefficients of the Pasternak foundation are k f and 
g f , respectively. The Pasternak foundation model can become the 
Winkler foundation model by assuming g f = 0. In addition, prob-
lem can be extended to a plate partially rested on foundation i.e., 
portions of the plate along edges are rested on foundation, and 
there is no foundation at the middle of the plate. The portions 
of the plate on foundation along circumferential edges and radial 
edges are specified by t and τ , respectively. The geometry of the 
Fig. 1. Geometry and coordinate system of an annular sector plate resting on Paster-
nak foundation.

Fig. 2. RFG annular sector plate partially rested on foundation.

plate, coordinate system and the portions of the plate with and 
without foundation are shown in Figs. 1 and 2.

It is assumed that the material properties of the FGM plates 
vary continuously in radial direction according to a power-law 
function. Therefore, the Young’s modulus and Poisson’s ratio can 
be expressed as follows [21]:

E(r) = (Ec − Em)

(
r − ri

ro − ri

)n

+ Em,

ν(r) = (νc − νm)

(
r − ri

ro − ri

)n

+ νm, (1)

where c and m refer to the ceramic and metal constituents, re-
spectively and n denotes the power-law index and is equal or 
greater than zero. It is obvious from Eq. (1) that the inner surface 
(r = ri) of the plate is metal-rich and the outer surface (r = ro) is 
purely ceramic. Furthermore, when n is zero or takes a very large 
value the plate material is homogeneous and completely ceramic 
or metal, respectively.

2.2. Equilibrium equations

The displacement field of the plate based upon the first order 
shear deformation theory in polar coordinate is given as [27]:

U (r, θ, z) = u(r, θ) + zφr(r, θ),

V (r, θ, z) = v(r, θ) + zφθ (r, θ),

W (r, θ, z) = w(r, θ), (2)

where U , V and W are displacement fields related to r, θ and z
directions, respectively. Furthermore, u, v and w indicate the dis-
placement component of a point at the middle surface (i.e., z = 0) 
of the plate along r, θ and z directions, respectively, also φr and 
φθ denote rotation about the θ - and r-axes, respectively. By intro-
ducing the displacement field (2) into the von Kármán non-linear 
strain-displacement equations [12] strain components are found as 
follows:
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εr = ∂u

∂r
+ 1

2

(
∂ w

∂r

)2

+ z
∂φr

∂r
,

εθ = 1

r

(
∂v

∂θ
+ u

)
+ 1

2r2

(
∂ w

∂θ

)2

+ z

r

(
∂φθ

∂θ
+ φr

)
,

εz = 0,

2εrθ = ∂v

∂r
+ 1

r

∂u

∂θ
− v

r
+ 1

r

∂ w

∂r

∂ w

∂θ
+ z

(
∂φθ

∂r
+ 1

r

∂φr

∂θ
− φθ

r

)
,

2εrz = ∂ w

∂r
+ φr,

2εθ z = 1

r

∂ w

∂θ
+ φθ . (3)

Employing the principle of minimum total potential energy [26]
the equilibrium equations are obtained as:

δu: ∂Nr

∂r
+ 1

r

∂Nrθ

∂θ
+ Nr − Nθ

r
= 0,

δv: ∂Nrθ

∂r
+ 1

r

∂Nθ

∂θ
+ 2

r
Nrθ = 0,

δw: ∂ Q r

∂r
+ 1

r

∂ Q θ

∂θ
+ 1

r
Q r + N1 − k f w + g f ∇2 w = P z,

δφr : ∂Mr

∂r
+ ∂Mrθ

r∂θ
+ Mr − Mθ

r
− Q r = 0,

δφθ : ∂Mrθ

∂r
+ ∂Mθ

r∂θ
+ 2

r
Mrθ − Q θ = 0, (4)

in which,

N1 = Nr
∂2 w

∂r2
+ Nθ

(
1

r

∂ w

∂r
+ 1

r2

∂2 w

∂θ2

)

+ 2Nrθ

(
1

r

∂2 w

∂r∂θ
− 1

r2

∂ w

∂θ

)
. (5)

Furthermore, in the third equilibrium equation ∇2 is the Laplacian 
operator in polar coordinate. The stress and moment resultants in 
(4) and (5) are defined as follows:

(Nr, Nθ , Nrθ ) =
h/2∫

−h/2

(σr,σθ ,σrθ )dz,

(Q r, Q θ ) = K 2

h/2∫
−h/2

(σrz,σθ z)dz,

(Mr, Mθ , Mrθ ) =
h/2∫

−h/2

z(σr,σθ ,σrθ )dz, (6)

where K 2 is the shear correction factor which is considered to be 
5/6 [24]. Considering plane-stress state for the RFG annular sector 
plate, the stresses are defined as:

σr = E(r)

1 − ν(r)2

(
εr + ν(r)εθ

)
,

σθ = E(r)

1 − ν(r)2

(
εθ + ν(r)εr

)
,

σrθ = E(r)

2(1 + υ(r))
(2εrθ ),

σrz = E(r)

2(1 + υ(r))
(2εrz),

σθ z = E(r)
(2εθ z). (7)
2(1 + υ(r))
Substituting Eqs. (1) and (3) into Eq. (7) and the subsequent results 
into Eq. (6), the stress and moment resultants are written in terms 
of displacements and rotations as follows:

{F } = [C]{U }, (8)

in which

{F } = {Nr, Nθ , Nrθ , Mr, Mθ , Mrθ , Q r, Q θ }T , (9a)

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 0 0 0 0 0 0
A12 A11 0 0 0 0 0 0
0 0 A33 0 0 0 0 0
0 0 0 D11 D12 0 0 0
0 0 0 D12 D11 0 0 0
0 0 0 0 0 D33 0 0
0 0 0 0 0 0 A33 0
0 0 0 0 0 0 0 A33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9b)

{U } =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u/∂r + (∂ w/∂r)2/2
∂v/r∂θ + u/r + (∂ w/r∂θ)2/2

∂u/r∂θ + ∂v/∂r − v/r + (∂ w/∂r)(∂ w/r∂θ)

∂φr/∂r
∂φθ/r∂θ + φr/r

∂φr/r∂θ + ∂φθ/∂r − φθ/r
K 2(φr + ∂ w/∂r)

K 2(φθ + ∂ w/r∂θ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (9c)

The coefficients in (9b) are defined as:

(A11, D11) = E(r)

1 − ν(r)2

(
h,

h3

12

)
,

(A12, D12) = E(r)ν(r)

1 − ν(r)2

(
h,

h3

12

)
,

(A33, D33) = E(r)

2(1 + ν(r))

(
h,

h3

12

)
. (10)

Upon substitution of Eq. (8) into Eq. (4), the ultimate form of equi-
librium equations can be obtained as:

A11
∂2u

∂r2
+ A33

r2

∂2u

∂θ2
+

(
dA11

dr
+ A11

r

)
∂u

∂r
+

(
1

r

dA12

dr
− A11

r2

)
u

+
(

A33

r
+ A12

r

)
∂2 v

∂r∂θ
+

(
1

r

dA12

dr
− A11

r2
− A33

r2

)
∂v

∂θ

+ 1

2

(
dA11

dr
+ A11

r
− A12

r

)(
∂ w

∂r

)2

+ 1

2

(
1

r2

dA12

dr
− A11

r3
− A12

r3

)(
∂ w

∂θ

)2

+ A11
∂ w

∂r

∂2 w

∂r2

+ A33

r2

∂ w

∂r

∂2 w

∂θ2
+

(
A33

r2
+ A12

r2

)
∂ w

∂θ

∂2 w

∂r∂θ
= 0, (11a)

(
A33

r
+ A12

r

)
∂2u

∂r∂θ
+

(
1

r

dA33

dr
+ A11

r2
+ A33

r2

)
∂u

∂θ

+ A33
∂2 v

∂r2
+ A11

r2

∂2 v

∂θ2
+

(
dA33

dr
+ A33

r

)
∂v

∂r

+
(

−1

r

dA33

dr
− A33

r2

)
v +

(
A12

r
+ A33

r

)
∂ w

∂r

∂2 w

∂r∂θ

+ A33

r

∂2 w

∂r2

∂ w

∂θ
+

(
1

r

dA33

dr
+ A33

r2

)
∂ w

∂θ

∂ w

∂r

+ A11
3

∂2 w
2

∂ w = 0, (11b)

r ∂θ ∂θ
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D33

r
+ D12

r

)
∂2φθ

∂r∂θ
+

(−D33

r2
− D11

r2
+ 1

r

dD12
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)
∂φθ

∂θ

+ D11
∂2φr

∂r2
+

(
dD11

dr
+ D11

r

)
∂φr

∂r

+ D33
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∂2φr

∂θ2

(
1

r

dD12
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− D11

r2
− A33 K 2

)
φr

− A33 K 2 ∂ w

∂r
= 0, (11d)(

D33

r
+ D12

r

)
∂2φr

∂r∂θ
+

(
D33

r2
+ D11

r2
+ 1

r

dD33
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)
∂φr

∂θ

+ D33
∂2φθ

∂r2
+

(
dD33
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+ D33

r

)
∂φθ

∂r

+ D11
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∂2φθ

∂θ2

(
−1

r

dD33
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− D33

r2
− A33 K 2

)
φθ

− A33

r
K 2 ∂ w

∂θ
= 0. (11e)

The system of five non-linear partial differential equations is solved 
in conjunction with the following clamped boundary and simply 
supported conditions:

(a) On the radial edges
Clamped:

u = v = w = φr = φθ = 0, (12)

Simply supported:

u = v = w = φr = Mθ = 0, (13)

(b) On the circumferential edges
Clamped:

u = v = w = φr = φθ = 0, (14)

Simply supported:

u = v = w = Mr = φθ = 0. (15)
2.3. Application of the GDQ method

In this part a review of the GDQ method is outlined, more de-
tail of DQM and its developments can be found in [6,31,30]. In the 
GDQ method the partial derivative of a function with respect to 
a variable at a specific grid point is approximated as a weighted 
linear sum of the function values at all discrete points in the com-
plete domain of that variable. In order to clarify the concept, a one 
dimensional function f (x) on a domain a ≤ x ≤ b which is dis-
cretized by N grid points is considered. The mth-order differential 
of the function at an arbitrary grid point xi is given by:

dm f (x)

dxm

∣∣∣∣
x=xi

=
N∑

j=1

C (m)
i j f (x j), i = 1,2, ..., N (16)

where C (m)
i j are the weighting coefficients, and for the first order 

derivative are calculated by:

C (1)
i j = M(1)(xi)

(xi − x j)M(1)(x j)
, i, j = 1,2, ..., N (17)

where

M(1)(xk) =
N∏

j=1( j �=k)

(xk − x j). (18)

Eq. (17) is used for i �= j, the rest of weighting coefficients are 
obtained by:

C (1)
ii = −

N∑
j=1( j �=i)

C (1)
i j , i = 1,2, ..., N (19)

Furthermore, the following recurrence formula is used to obtain 
weighting coefficients of second- and higher-order derivatives:

C (m)
i j = m

[
C (1)

i j C (m−1)
ii − C (m−1)

i j

xi − x j

]
, (20)

Eq. (20) is employed for i �= j, i, j = 1, 2, ..., N and m = 2, 3, ...,
N − 1. The rest of weighting coefficients are calculated by:

C (m)
ii = −

N∑
j=1( j �=i)

C (m)
i j , (21)

where i = 1, 2, ..., N and m = 2, 3, ..., N − 1.
The accuracy of the method depends on numbers of grid points 

as well as positions of them. It is found that one of the best choices 
for obtaining grid points is the roots of Chebyshev polynomials as:

xi = 1

2

[
a + b + (a − b) cos

(
(i − 1)π

N − 1

)]
, i = 1,2, ..., N (22)

To solve the problem, the equilibrium equations in terms of dis-
placements and rotations are re-written in discretized algebraic 
form according to GDQ method. The discretized form of the first 
equilibrium equation is obtained as:
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(
Nr∑
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)
+ A33
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r=ri
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)

+
(
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r
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(
Nr∑

k=1

Aiku(k, j)

)

+
(

1

r

dA12

dr
− A11

r2

)∣∣∣∣ u(i, j)

r=ri
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(
Nr∑
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Aik w(k, j)

)2

+ 1

2

(
1

r2

dA12

dr
− A11

r3
− A12

r3

)∣∣∣∣
r=ri

(
Nθ∑

k=1

A jk w(i,k)

)2

+ A11|r=ri

(
Nr∑

k=1

Aik w(k, j)

)(
Nr∑

k=1

Bik w(k, j)

)

+ A33

r2

∣∣∣∣
r=ri

(
Nr∑

k=1

Aik w(k, j)

)(
Nθ∑

k=1

B jk w(i,k)

)

+
(

A33

r2
+ A12

r2

)∣∣∣∣
r=ri

(
Nθ∑

k=1

A jk w(i,k)

)

×
(

Nr∑
k=1

Aik

Nθ∑
m=1

A jm w(k,m)

)
= 0, (23)

where i = 1, 2, ..., Nr and j = 1, 2, ..., Nθ . Furthermore, Apq and 
Apq , denote weighting coefficients for first order derivative with 
respect to r and θ , respectively, and B pq and B pq , are weighting 
coefficients of second order derivative with respect to r and θ , re-
spectively.

The remaining equilibrium equations are discretized in an anal-
ogous manner. The discretization of the five equilibrium equations 
leads to a system of 5(Nr ×Nθ ) non-linear algebraic equations with 
the same numbers of unknowns. In the present study, Newton–
Raphson iterative method is employed to provide solution for the 
system of non-linear algebraic equations. Although the method 
is well known, but for the sake of completeness, a description 
of the method is presented here for a system of two non-linear 
equations; the same procedure is adopted to solve the system of 
5(Nr × Nθ ) non-linear algebraic equations of the annular sector 
plate.

The following set of equations is considered:

f (x, y) = 0,

g(x, y) = 0, (24)

where f (x, y) and g(x, y) are two general non-linear equations. 
Assuming that (x = r, y = s) represents a root of the equations, and 
(xi, yi ) are an initial guesses in the vicinity of the root; a Taylor 
series for the set of Eqs. (24) may be expanded about the point 
(xi, yi ) as follows:

f (r, s) = 0 = f (xi, yi) + ∂ f (xi, yi)

∂x
(r − xi)

+ ∂ f (xi, yi)

∂ y
(s − yi) + ...,

g(r, s) = 0 = g(xi, yi) + ∂ g(xi, yi)

∂x
(r − xi)

+ ∂ g(xi, yi)

∂ y
(s − yi) + .... (25)

By cutting the series, the following linear equations are obtained:
[
∂ f (xi ,yi)

∂x
∂ f (xi ,yi)

∂ y
∂ g(xi ,yi)

∂x
∂ g(xi ,yi)

∂ y

][
xi
yi

]
=

[ − f (xi, yi)

−g(xi, yi)

]
, (26)

where xi = r − xi and yi = s − yi . The values of xi and 
yi can be obtained from the system of linear equations (26). 
By adding (xi, yi ) to the initial guesses (xi, yi ) another point 
nearer the root can be obtained as:[

xi+1
yi+1

]
=

[
xi
yi

]
+

[
xi
yi

]
, (27)

where (xi+1, yi+1) are modified guesses and are used instead of 
(xi, yi ) for the second iteration. The above procedure is repeated 
until a point which is sufficiently close to the root is obtained. 
Finally, it should be pointed out that for analysis of plates partially 
rested on foundation, the foundation parameters k f and g f are 
present only for those grid points rested on foundation, however, 
for the other grid points at the middle part of the plate k f and g f
are considered to be zero.

3. Numerical results and discussions

3.1. Verification

In order to demonstrate the accuracy and validity of the results, 
several comparison studies are carried out. First, the accuracy of 
the method for plates on foundation is demonstrated. Due to lack 
of study on bending analysis of annular sector plate resting on 
foundation, isotropic square plates with side a resting on Paster-
nak foundation are considered. For the purpose of changing the 
geometry of an annular sector plate to a square plate, the follow-
ing large radii and small angle are assumed:

a = ro − ri,

α = a
ro+ri

2

. (28)

The linear non-dimensional deflections and moment resultants at 
the middle point of the square plates with different boundary con-
ditions are tabulated in Table 1. The non-dimensional quantities 
used in this table are as follows:

W ∗ = w D

P za4
× 103; M∗

x,y = Mx,y

P za2
× 102;

K F = a4k f

D
; G F = a2 g f

D
, (29)

where D is the plate flexural rigidity defined as D = Eh3/12(1 −
ν2) and Poisson’s ratio is ν = 0.3. It should be noted that the 
results reported in Table 1 are for square plates with thickness-
to-side ratio h/a = 0.2, also the non-dimensional foundation pa-
rameters are assumed to be K F = 625 and G F = 20. The validity 
of the results can be concluded from this table. Furthermore, it 
can be seen that the convergence of deflection is faster than mo-
ment resultant, that is using relatively small number of grid points 
of 11 × 11 is sufficient to provide reasonably accurate results for 
deflection.

In order to demonstrate the accuracy of the results in non-
linear analysis, an isotropic solid sector plate (i.e., ri = 0) with 
α = π/3 subjected to various values of pressures is considered. 
Non-linear deflections as well as moment and stress resultants at 
point (r − ri)/(ro − ri) = 0.647 and θ = π/6 of the plate for two 
values of h/ro are compared with those reported by earlier re-
searchers [29,23] in Tables 2–6. Due to the fact that in the GDQ 
method, positions of the grid points are the roots of Chebyshev 
polynomials; finding response of the plate at (r − ri)/(ro − ri) =
0.647 is not straightforward. Therefore, the reported deflections 
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Table 1
Convergence and validity of deflections and moment resultants at the middle point for linear bending analysis of a square plate resting on Pasternak foundation with 
K F = 625 and G F = 20.

Grid 
point

CCCC SSSS SCSC

W ∗ M∗
x = M∗

y W ∗ M∗
x = M∗

y W ∗ M∗
x M∗

y

5 × 5 0.8886 1.0874 1.0926 1.1234 0.9785 1.0436 1.1624
7 × 7 0.8368 0.7662 1.0879 0.9174 0.9472 0.7920 0.8745
9 × 9 0.8366 0.7687 1.0910 0.9316 0.9484 0.8031 0.8781
11 × 11 0.8368 0.7722 1.0911 0.9319 0.9485 0.8042 0.8807
13 × 13 0.8368 0.7720 1.0911 0.9319 0.9485 0.8041 0.8805
15 × 15 0.8368 0.7721 1.0911 0.9319 0.9485 0.8041 0.8805
17 × 17 0.8368 0.7722 1.0911 0.9319 0.9485 0.8041 0.8805
[13] 0.8368 0.7722 1.0911 0.9319 0.9485 0.8041 0.8805
Table 2
Comparison of deflections at (r = 0.647, θ = π/6) for non-linear bending analysis 
of isotropic solid sector plates.

P zr4
o

Eh4

w/h

h/ro = 0.05 h/ro = 0.1

Present [23] [29] Present [23] [29]

100 0.32485 0.32484 0.36010 0.39396 0.39401 0.45760
200 0.57876 0.57860 0.62920 0.66719 0.66701 0.75440
300 0.77136 0.77103 0.83100 0.86203 0.86158 0.96290
400 0.92446 0.92389 0.99190 1.01328 1.01249 1.12460
500 1.05149 1.05078 1.12600 1.13757 1.13652 1.25800

Table 3
Comparison of radial moment resultants at (r = 0.647, θ = π/6) for non-linear 
bending analysis of isotropic solid sector plates.

P zr4
o

Eh4

Mrr2
o /(Eh4)

h/ro = 0.05 h/ro = 0.1

Present [23] [29] Present [23] [29]

100 0.96621 0.95753 0.949 0.93977 0.91313 0.881
200 1.66036 1.64170 1.586 1.51291 1.47220 1.383
300 2.13281 2.10337 2.012 1.89318 1.82196 1.711
400 2.48533 2.43229 1.959 2.15794 2.06698 1.959
500 2.74479 2.68104 2.564 2.36303 2.25343 2.160

Table 4
Comparison of circumferential moment resultants at (r = 0.647, θ = π/6) for non-
linear bending analysis of isotropic solid sector plates.

P zr4
o

Eh4

Mθ r2
o /(Eh4)

h/ro = 0.05 h/ro = 0.1

Present [23] [29] Present [23] [29]

100 1.03059 1.01757 1.058 0.99041 0.96363 1.066
200 1.76928 1.74793 1.772 1.60937 1.55517 1.652
300 2.27852 2.24375 2.253 2.00694 1.92614 2.027
400 2.65325 2.59922 2.305 2.29229 2.18652 2.305
500 2.93631 2.86978 2.877 2.51416 2.38495 2.527

for example are obtained, by passing a polynomial through the de-
flection of each nodes, and finding the value of that polynomial 
at (r − ri)/(ro − ri) = 0.647. From Tables 2–6 it can be concluded 
that, prediction of GDQ method for non-linear responses of the 
isotropic plates are in a close agreement with those reported by 
Refs. [29,23].

Owing to lack of data in the open literature for non-linear 
bending analysis of RFG annular sector plates, a comparison study 
with the finite element code ABAQUS is carried out. A thin 
RFG annular sector plate with α = π/3, ri/ro = 1/2, n = 3 and 
the material properties given in Table 7 under uniform pressure 
P zr4

o/(E Mh4) = 5000 is considered. Predictions of FEM as well 
as GDQ method for non-linear deflections along radial centerline 
(r, α/2) of the plate are depicted in Fig. 3. It can be concluded 
from this figure that the results of GDQ method for non-linear 
Table 5
Comparison of radial stress resultants at (r = 0.647, θ = π/6) for non-linear bend-
ing analysis of isotropic solid sector plates.

P zr4
o

Eh4

Nrr2
o /(Eh3)

h/ro = 0.05 h/ro = 0.1

Present [23] [29] Present [23] [29]

100 0.68234 0.69078 0.7174 0.95523 0.96666 1.0317
200 2.14115 2.17332 2.197 2.71864 2.74887 2.926
300 3.77432 3.82799 3.830 4.51872 4.56343 4.849
400 5.40029 5.45819 5.447 6.23029 6.28438 6.666
500 6.95269 7.02032 7.011 7.84803 7.90757 8.375

Table 6
Comparison of circumferential stress resultants at (r = 0.647, θ = π/6) for non-
linear bending analysis of isotropic solid sector plates.

P zr4
o

Eh4

Nθ r2
o /(Eh3)

h/ro = 0.05 h/ro = 0.1

Present [23] [29] Present [23] [29]

100 0.71473 0.71646 0.7000 1.00484 1.00727 0.9424
200 2.25032 2.25075 2.126 2.86236 2.86322 2.562
300 3.94475 3.95698 3.668 4.76065 4.75168 4.172
400 5.66698 5.63052 5.171 6.5665 6.54178 5.688
500 7.29901 7.22635 6.606 8.27380 8.22950 7.111

Table 7
Material properties of metal and ceramic constituent of an annular sector plate [11].

Property Metal (aluminum) Ceramic (silicon carbide)

Young’s modulus EM = 70 GPa EC = 427 GPa
Poisson ratio υM = 0.3 υC = 0.17

Fig. 3. Non-linear deflection of a thin RFG annular sector plate with n = 3 subjected 
to a uniform pressure.
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Fig. 4. Linear deflection along radial centerline of RFG annular sector plate rested on foundation.
analysis of RFG annular sector plates are in a good agreement with 
the prediction of FEM.

3.2. Annular sector plates

Now that the accuracy and validity of the results is demon-
strated, the linear and non-linear responses of annular sector 
plates are investigated in detail. Unless mentioned otherwise, a 
fully clamped moderately thick RFG annular sector plate with 
α = π/3, h/(ro − ri) = 0.1, ri/ro = 0.5 and material properties 
given in Table 7 is considered. Due to the fact that, linear bending 
analysis of isotropic and RFG annular sector plates rested on foun-
dation is not reported in the open literature; first, linear response 
of an annular sector plate on foundation is studied. Therefore, non-
dimensional linear deflections of the RFG annular sector plate on 
foundation along radial centerline (r, α/2) for various values of 
material index and foundation parameters are shown in Fig. 4. The 
non-dimensional parameters used in this figures are introduced as:

K f = r4
ok f

D M
; G f = r2

o g f

D M
, (30)

where D M is defined as D M = E Mh3/(12(1 − ν2
M)). It can be in-

ferred from Fig. 4 that plates with larger material index exhibit 
higher deflection as the volume fraction of ceramic reduces by in-
creasing the values of material index. Moreover, it can be seen 
that, by increasing the foundation parameters deflections of the 
plates decrease. Furthermore, the effect of raising the foundation 
shear parameter G f on reduction of the deflection is more than 
that of increasing the foundation normal parameter K f . The ef-
fect of foundation on reduction of deflection of plates with larger 
material index is more than that of plates with smaller material 
index; hence, the distance between the two displacements curves 
of ceramic and metallic plates decrease as the values of foundation 
parameters increase. In addition, the maximum deflection of the 
plates, especially the RFG plates, does not occur at the middle of 
the plate i.e., ((ro + ri)/2, α/2), and the maximum deflection tends
to be nearer to the inner radius where the metal constituent is 
more than the ceramic one.

Non-linear deflections along the radial centerline (r, α/2) of an-
nular sector plates subjected to uniform pressure of
(P zr4

o )/(E Mh4) = 9000 and for various values of K f and G f are 
shown in Fig. 5. The results presented in these figures are obtained 
from the non-linear analysis for plates with different combinations 
of clamped and simply supported boundary conditions (i.e., CCCC, 
SSSS, SCSC, CSCS). It is to be mentioned that each of these let-
ters, respectively, represent the clamped (C) or simply supported 
(S) conditions at the edges of (ri, θ), (r, 0), (ro, θ), and (r, α). Since 
the effect of changing Poisson’s ratio on mechanical behavior of 
FG plates is negligible [7,8], in analysis of annular sector plates 
with SSSS, SCSC and CSCS boundary conditions, Poisson’s ratio is 
assumed to be constant and equal to 0.3. The elasticity modulus 
of the FG plates are according to Table 7. As expected, it is seen 
from the results that deflections of fully simply supported plates 
are higher than plates with other boundary conditions. Likewise 
to previous results for linear analysis, maximum deflection of the 
plate does not occur at the middle of the plate ((ro + ri)/2, α/2)

and this condition for the RFG annular sector plate is more signifi-
cant. In addition, the deflection of the plate increases by increasing 
the value of material index n. Moreover, these results show that 
raising of the foundation shear parameter G f is more effective on 
reduction of the deflection vis-à-vis increasing of the foundation 
normal parameter K f .

Effects of thickness as well as pressure, on non-linear response 
of the annular sector plate are studied in Fig. 6. These figures show 
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Fig. 5. Non-dimensional deflection along radial centerline for non-linear bending of isotropic and RFG annular sector plate resting on foundation with various foundation 
parameters.
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Fig. 6. Non-linear middle point deflection versus pressure for RFG annular sector plates with h/(ro − ri) = 0.1 and h/(ro − ri) = 0.2 rested on Pasternak foundation.

Fig. 7. Moment and stress resultant at the middle point ((ro + ri)/2, α/2) versus pressure for non-linear bending of RFG annular sector plates resting on Pasternak foundation.
non-dimensional deflections at the middle point ((ro + ri)/2, α/2)

versus dimensionless pressure for non-linear bending of annular 
sector plates rested on Pasternak foundation with h/(ro − ri) = 0.2
and h/(ro − ri) = 0.1. Non-dimensional foundation parameters are 
K f = 10 000 and G f = 200. It has to be pointed out that these de-
flections are not the maximum deflections of the plates, because 
the maximum deflection of a RFG annular sector plate does not 
occur at the middle of the plate. As expected, the obtained re-
sults show that by decreasing the plate thickness h/(ro − ri), the 
non-dimensional deflections at the middle of the plate decrease. 
Moreover, because of more stiffness of ceramic in comparison with 
metal, plates with larger values of material index show more de-
flections than those of less index values.

In addition, moment and stress resultants at the middle of plate 
((ro +ri)/2, α/2) versus pressure for non-linear bending of the RFG 
annular sector plate on Pasternak foundation with h/(ro − ri) = 0.1
are depicted in Fig. 7. It can be seen that, as the values of material 
index n increase radial and circumferential moment resultants de-
crease. Moreover, the effects of raising pressure on radial moment 
and radial stress resultants are more than those of circumferential 
moment and circumferential stress resultants. Furthermore, vari-
ations of moment resultants with pressure tend to be linear for 
small values of pressure. Similarly, variations of stress resultants 
are almost linear for large values of pressure.

3.3. Solid sector plates

RFG solid sector plates (i.e., ri = 0) with h/ro = 0.1 subjected 
to a uniform pressure (P zr4

o )/(E Mh4) = 3000 are considered. It 
is assumed that the plates are on the elastic Pasternak foun-
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Fig. 8. Effects of sector angle α on non-dimensional deflection along radial centerline for non-linear bending of RFG solid sector plates on the Pasternak foundation.
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Fig. 9. Non-dimensional deflection along radial centerline for non-linear bending of RFG annular sector plates partially rested on foundation.

Fig. 10. Non-dimensional deflection at the middle of the plate versus dimensionless foundation shear parameter for non-linear bending analysis of RFG annular sector plates 
with n = 2.
dation with non-dimensional foundation parameters K f = 10 000
and G f = 300. The effects of the angle α on non-linear dimen-
sionless deflections along radial centerline (r, α/2) of the RFG solid 
sector plates with different combination of clamped and simply 
supported boundary conditions (i.e., CCC, SSS, SCS and CSC) are 
studied in Fig. 8. Each letter of the boundary condition speci-
fies the condition at (r, 0), (ro, θ ) and (r, α) edges, respectively. It 
should be mentioned that the results presented in Fig. 8 are for 
plates with constant Poisson’s ratio of ν = 0.3 and the elasticity 
modulus of E M = 70 GPa and EC = 427 GPa. As expected, these 
results show that the solid sector plates display more deflections 
by increasing the material index n. Furthermore, deflections of the 
solid sector plates reduce by decreasing the sector angle α. In ad-
dition, it can be seen that the maximum deflection of isotropic as 
well as RFG solid sector plates does not occur at the middle of the 
plate. Comparing the deflections of isotropic solid sector plate with 
those of annular one with inner radius ri , shows that the position 
of maximum deflection of an isotropic sectorial plate depends on 
the geometry of the plate, Figs. 5 and 8. However, for a square 
plate that is a sectorial plate with large radii and small sector an-
gle α, the deflection at the middle of the plate is the maximum 
deflection.

3.4. Partially foundation

Responses of plates partially rested on foundation are studied in 
this part. A RFG annular sector plate with α = π/3, h/(ro − ri) =
0.1, ri/ro = 0.5 and material properties given in Table 7 subjected 
to a uniform pressure of (P zr4

o )/(E Mh4) = 2500 is considered. The 
portion of the plate on foundation along circumferential and ra-
dial edges are shown with t and τ , respectively, Fig. 2. In or-
der to create a virtual boundary at t/(ro − ri) = τ/α = 0.1 and 
t/(ro − ri) = τ/α = 0.2 to separate the portions of the plate with 
and without foundations, a mesh of 21 × 21 grid points is consid-
ered. For t/(ro − ri) = τ/α = 0.3, a mesh of 23 × 23 is assumed to 
perform this separation. Non-dimensional deflections along the ra-
dial centerline (r, α/2) for non-linear bending of the RFG annular 
sector plate partially rested on Pasternak foundation with different 
values of t/(ro − ri) = τ/α are depicted in Fig. 9. It is seen that 
deflections of the plates decrease as the foundation covers more 
portions of the plate. Similar to previous case, increasing the ma-
terial index cause more deflection.

The effects of foundation parameters on non-linear response of 
RFG annular sector plates with the geometry and material prop-
erties defined in the previous part are studied in Fig. 10. It is 
assumed that the plates are partially rested on foundations and are 
subjected to a uniform pressure of (P zr4

o )/(E Mh4) = 5000. Fig. 10
shows non-dimensional deflection at ((ro + ri)/2, α/2) versus the 
dimensionless foundation shear parameter G f for non-linear bend-
ing analysis of RFG annular sector plates with n = 2. It can be 
seen that by increasing the stiffness of the springs K f , and for 
the constant foundation shear parameter, deflections of the plates 
decrease. However, when K f is constant and G f increases, the de-
flections increase as it is similarly has been shown by Nobakhti 
and Aghdam [25].

4. Conclusions

In the present study, large deflection behavior of RFG an-
nular sector plates fully and partially rested on two-parameter 
elastic foundation was investigated using the GDQ method. The 
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von Kármán non-linear equilibrium equations of the plates within 
the first order shear deformation theory were solved using the 
GDQ method in conjunction with the Newton–Raphson iterative 
scheme. Several comparison studies were performed to demon-
strate the validity and accuracy of the results. Effects of geometric 
parameters, material index and foundation parameters were inves-
tigated in detail and some general observations are summarized as 
follows:

• The influence of the foundation shear parameter on deflection 
reduction is more than that of the normal parameter.

• The effect of the foundation on deflection reduction of plates 
with larger material index is more than that of plates with 
smaller material index.

• Position and magnitude of maximum deflection depends on 
the material index as well as the geometry of RFG annular 
sector plates, i.e., one may obtain customized deflections at 
a specific position by using proper material distribution and 
geometric parameters.

• The influences of transverse load on radial moment resultants 
are more than those of circumferential ones which also true 
for radial and circumferential stress resultants.

• By increasing the value of foundation normal parameter K f , 
when the foundation shear parameter G f is constant, the de-
flections of plate decrease. However, it is not the same when 
K f is constant and G f increase, and in some cases reverse 
trends are observed.
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