
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=lssp20

Download by: [Hacettepe University] Date: 19 October 2016, At: 04:07

Communications in Statistics - Simulation and
Computation

ISSN: 0361-0918 (Print) 1532-4141 (Online) Journal homepage: http://www.tandfonline.com/loi/lssp20

Exponentiality Test Based on the Progressive Type
II Censoring via Cumulative Entropy

S. Baratpour & A. Habibi Rad

To cite this article: S. Baratpour & A. Habibi Rad (2016) Exponentiality Test Based on the
Progressive Type II Censoring via Cumulative Entropy, Communications in Statistics -
Simulation and Computation, 45:7, 2625-2637, DOI: 10.1080/03610918.2014.917673

To link to this article:  http://dx.doi.org/10.1080/03610918.2014.917673

Accepted author version posted online: 15
Sep 2014.
Published online: 15 Sep 2014.

Submit your article to this journal 

Article views: 56

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=lssp20
http://www.tandfonline.com/loi/lssp20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/03610918.2014.917673
http://dx.doi.org/10.1080/03610918.2014.917673
http://www.tandfonline.com/action/authorSubmission?journalCode=lssp20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=lssp20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/03610918.2014.917673
http://www.tandfonline.com/doi/mlt/10.1080/03610918.2014.917673
http://crossmark.crossref.org/dialog/?doi=10.1080/03610918.2014.917673&domain=pdf&date_stamp=2014-09-15
http://crossmark.crossref.org/dialog/?doi=10.1080/03610918.2014.917673&domain=pdf&date_stamp=2014-09-15


Communications in Statistics—Simulation and Computation R©, 45: 2625–2637, 2016
Copyright © Taylor & Francis Group, LLC
ISSN: 0361-0918 print / 1532-4141 online
DOI: 10.1080/03610918.2014.917673

Exponentiality Test Based on the Progressive Type II
Censoring via Cumulative Entropy

S. BARATPOUR AND A. HABIBI RAD

Department of Statistics, Ferdowsi University of Mashhad, Mashhad, Iran

In this article, we use cumulative residual Kullback-Leibler information (CRKL) and
cumulative Kullback-Leibler information (CKL) to construct two goodness-of-fit test
statistics for testing exponentiality with progressively Type-II censored data. The power
of the proposed tests are compared with the power of goodness-of-fit test for exponen-
tiality introduced by Balakrishnan et al. (2007). We show that when the hazard function
of the alternative is monotone decreasing, the test based on CRKL has higher power
and when the hazard function of the alternative is non-monotone, the test based on CKL
has higher power. But, when it is monotone increasing the power difference between
test based on CKL and their proposed test is not so remarkable. The use of the proposed
tests is shown in an illustrative example.

Keywords Cumulative residual entropy; Exponential distribution; Kullback-Leibler
divergence; Maximum entropy; Power study.

Mathematics Subject Classification 62G10; 62E10; 94A17; 65C05.

1. Introduction

In the context of probability theory, entropy describes the amount of uncertainty associated
with a random variable. Entropy as a baseline concept in the field of information theory, was
introduced by Shannon (1948). For a non-negative absolutely continuous random variable
X, Shannon entropy called differential entropy, is defined as

H (X) = −
∫ ∞

0
f (x) ln f (x)dx,

where “ ln′′ means natural logarithm and f (x) is the probability density function (pdf)
of X. Recent years have witnessed a growing interest in utilizing information-theoretic
measures for distributional disparities as a tool for statistical inference in a variety of fields.
For testing problems, the earliest work dates back to Vasicek (1976) which used Shannon
maximum entropy to construct a goodness-of-fit test for normality. Vasicek approach has
much affected the development of entropy-based tests of fit for several parametric models;
for example, see Grzegorzewski and Wieczorkowski (1999), Taufer (2002), and Alizadeh
Noughabi and Arghami (2011). In probability theory and information theory, the Kullback-
Leibler (KL) divergence [Kullback and Leibler (1951) and Kullback (1959, 1987)] is a
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non-symmetric measure of the difference between two distributions F (x) and G(x) which
is defined as follows:

KL(F : G) =
∫ ∞

−∞
f (x) ln

f (x)

g(x)
dx,

where f (x) and g(x) are pdfs of distributions F (x) and G(x), respectively. Tests of fit based
on KL information have been developed; see Ebrahimi et al. (1992), Choi et al. (2004), and
Gurevich and Davidson (2008).

Another type of entropy, the cumulative residual entropy (CRE) was introduced by Rao
et al. (2004) in order to provide a way to accommodate random variables that do not have
a defined density function. This measure dose not have limitations of the use of Shannon
entropy in measuring the randomness of certain systems (see also Rao, 2005) and is based
on the complementary cumulative distribution function (ccdf), F̄ (x) = 1 − F (x), which
in the reliability is called survival function. This measure is defined for the non-negative
random variables as follows:

CRE(X) = −
∫ ∞

0
F̄ (x) ln F̄ (x)dx.

Asadi and Zohrevand (2007) proposed a dynamic form of CRE and obtain some of its
properties (also see Navarro et al., 2010). Sunoj and Linu (2012) introduced a generalized
measure of dynamic form of CRE, namely cumulative residual Renyis entropy, and studied
its properties. Baratpour (2010) characterized the first order statistics based on the CRE.

Baratpour and Habibi Rad (2011) defined a new measure of distance between two non-
negative and continuous distributions based on CRE, called cumulative residual Kullback-
Leibler (CRKL) divergence and construct a goodness-of-fit test for exponentiality. They
proved that CRKL is non-negative and equality holds if and only if F (x) = G(x), a.e. This
measure is defined as follows:

CRKL(F : G) =
∫ ∞

0
F̄ (x) ln

F̄ (x)

Ḡ(x)
dx − [E(X) − E(Y )] ,

where F̄ (x) and Ḡ(x) are ccdf of X and Y, respectively.
Di Crescenzo and Longobardi (2009) introduced and studied the cumulative entropy

(CE) which is suitable to measure information when uncertainty is related to the past, a
dual concept of CRE which relates to uncertainty on the future lifetime of a system. For
the non-negative and continuous random variables X with distribution function F (x), CE
is defined as

CE(X) = −
∫ ∞

0
F (x) ln F (x)dx.

Park et al. (2012) considered another extension to the cumulative distribution, called cu-
mulative KL information (CKL) which is defined as

CKL(F : G) =
∫ ∞

0
F (x) ln

F (x)

G(x)
dx − [E(Y ) − E(X)].

By noting that ln x ≤ x − 1, x > 0 and equality holds if and only if x = 1, we conclude
that CKL(F : G) ≥ 0 and equality holds if and only if F = G, a.e.

In many life-testing and reliability studies, the experimenter may be unable to obtain
complete information on failure times for all experimental units. There are also situations



Exponentiality Cumulative Entropy 2627

wherein the removal of units prior to failure is preplanned in order to reduce the cost and
time associated with testing. For these and other reasons, progressive censoring has been
discussed by Nelson (1982).

A progressively Type-II censored data arises in the following manner. n units are placed
on a life-testing experiment and when the first failure occurs, R1 of the n−1 surviving units
are withdrawn from the experiment. When the next failure occurs, R2 of the n − 2 − R1

surviving units are withdrawn from the experiment, and so on. Finally, at the time of the m-th
failure, all the remaining Rm = n−m−R1−· · ·−Rm−1 surviving units are withdrawn from
the experiment. It is clear that when we set m = n and all Ri = 0, we obtain the complete
sample situation; when we set R1 = · · · = Rm−1 = 0 and Rm = n−m, we obtain the Type-
II censored sample. Progressive censoring and its applications have been discussed by a
number of authors including Viveros and Balakrishnan (1994), Balasooria and Balakrishnan
(2000), Ng et al. (2002), and Balakrishnan (2007). A book-length account is available in
Balakrishnan and Aggarwala (2000). The goodness-of-fit test based on progressively Type-
II censored sample is widely used as a tool for testing distributional hypotheses. Some key
references are Marohn (2002), Balakrishnan et al. (2002, 2004), and Wang (2008). Also,
entropy/Kullback-Leibler information with progressively Type-II censored order statistics
was investigated by Cramer and Bagh (2011).

The goal of this article is to propose CE tests of fit for the exponential distribution with
progressively Type-II censored data. Two test statistics are derived from CRKL and CKL,
and the powers of them are studied. The article is organized as follows: In Section 2, based
on the CRKL and CKL and using progressively Type-II censored data, two test statistics
are constructed. In Section 3, we obtain the power of the proposed tests by Mont Carlo
simulation. We show that when the alternative has monotone decreasing hazard function,
the test based on CRKL has good power and when the alternative has monotone increasing
or non-monotone hazard function, the test based on CKL has high power. The use of the
proposed tests is illustrated in Section 4.

2. The Test Procedure

In this section, we construct two test statistics for testing exponentiality versus some
alternatives. These test statistics are based on CRKL and CKL which are EDF test statistics.
The EDF tests are in term of some distance measures between the empirical distribution
function Fn(x) and Fθ̂ (x), where θ̂ denotes a consistent estimator of θ under H0. Large
values of this measure will lead to the rejection of H0.

Let x1;m:n < x2;m:n < ... < xm;m:n be a progressively Type-II right censored sample
with progressive censoring scheme R = (R1, R2, ..., Rm) from a continuous distribution
function F (x) and F0(x) = 1 − exp(− x

θ
), x > 0, θ > 0, denotes exponential distribution

function, where θ is the unknown parameter. The aim of this article is testing the hypothesis

H0 : F (x) = Fθ (x), vs.Ha : F (x) �= Fθ (x),

based on the x1;m:n < x2;m:n < ... < xm;m:n and using CRKL and CKL information. We use
the empirical distribution function Fm:n(x) for the estimation of distribution function F (x).
The empirical distribution function Fm:n(x) is given by

Fm:n(x) = 0, x < x1:m:n

= αi:m:n, xi:m:n ≤ x < xi+1:m:n, i = 1, ..., m − 1

= αm:m:n, x ≥ xi:m:n,
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Table 1
Power of the T1 test for monotone decreasing hazard alternatives at 5% and 10% significance
levels for several progressively censored schemes when the sample sizes are n = 10, 20,

and 30

5% significance level 10% significance level
schemes

n m (R1, · · · , Rm) G(0.5) W(0.5) LN(2) G(0.5) W(0.5) LN(2)

10 5 5,0,0,0,0 .328 .422 .222 .457 .550 .309
5 0,5,0,0,0 .348 .449 .231 .493 .589 .324
5 0,0,5,0,0 .344 .446 .235 .459 .548 .328
5 0,0,0,5,0 .246 .327 .206 .337 .410 .288
5 0,0,0,0,5 .276 .362 .212 .384 .472 .296
5 1,1,1,1,1 .293 .382 .221 .396 .480 .308
7 3,0,0,0,0,0,0 .325 .462 .331 .464 .595 .439
7 0,3,0,0,0,0,0 .345 .480 .339 .478 .615 .446
7 0,0,0,3,0,0,0 .348 .496 .355 .480 .619 .453
7 0,0,0,0,0,3,0 .241 .352 .289 .335 .447 .378
7 0,0,0,0,0,0,3 .308 .449 .330 .443 .584 .440
7 1,0,0,1,0,0,1 .331 .479 .337 .468 .606 .444

20 10 10,0,0,...,0,0,0 .422 .567 .334 .572 .699 .440
10 0,10,0,...,0,0,0 .459 .598 .342 .608 .728 .453
10 0,...,0,10,0,...,0 .472 .641 .367 .637 .760 .470
10 0,0,0,...,0,10,0 .234 .331 .253 .327 .423 .339
10 0,0,0,...,0,0,10 .363 .502 .325 .501 .631 .431
10 1,1,1,...,1,1,1 .376 .505 .325 .507 .637 .429
15 5,0,0,...,0,0,0 .428 .649 .536 .579 .771 .644
15 0,5,0,...,0,0,0 .434 .655 .537 .586 .776 .645
15 0,...,0,5,0,...,0 .466 .694 .560 .618 .806 .666
15 0,0,0,...,0,5,0 .246 .401 .386 .359 .514 .487
15 0,0,0,...,0,0,5 .403 .627 .527 .545 .749 .640
15 1,1,...,1,...,1,1 .358 .570 .487 .509 .713 .609
18 2,0,0,...,0,0,0 .425 .692 .641 .582 .809 .736
18 0,2,0,...,0,0,0 .431 .699 .640 .585 .806 .738
18 0,...,0,2,0,...,0 .444 .705 .648 .599 .822 .745
18 0,0,0,...,0,2,0 .302 .529 .531 .443 .674 .656
18 0,0,0,...,0,0,2 .410 .687 .629 .562 .792 .732
18 1,0,0,...,0,0,1 .413 .683 .637 .571 .798 .733

30 15 15,0,0,...,0,0,0 .502 .663 .420 .641 .783 .534
15 0,15,0,...,0,0,0 .521 .687 .434 .677 .808 .535
15 0,...,0,15,0,...,0 .595 .747 .459 .723 .841 .565
15 0,0,0,...,0,15,0 .227 .336 .281 .323 .436 .371
15 0,0,0,...,0,0,15 .426 .587 .405 .564 .716 .517
15 1,1,1,1,...,1,1,1 .434 .600 .408 .583 .728 .519
20 10,0,0,...,0,0,0 .503 .722 .583 .652 .835 .692
20 0,10,0,...,0,0,0 .512 .737 .586 .669 .843 .694
20 0,...,0,10,0,...,0 .573 .793 .625 .721 .885 .722
20 0,0,0,...,0,10,0 .233 .383 .376 .340 .497 .475

(Continued on next page)
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Table 1
Power of the T1 test for monotone decreasing hazard alternatives at 5% and 10% significance
levels for several progressively censored schemes when the sample sizes are n = 10, 20,

and 30 (Continued)

5% significance level 10% significance level
schemes

n m (R1, · · · , Rm) G(0.5) W(0.5) LN(2) G(0.5) W(0.5) LN(2)

20 0,0,0,...,0,0,10 .455 .680 .558 .599 .793 .673
20 1,0,1,0,...,0,1,0 .432 .667 .550 .597 .786 .663
25 5,0,0,...,0,0,0 .503 .779 .720 .666 .877 .805
25 0,5,0,...,0,0,0 .507 .785 .716 .663 .881 .808
25 0,...,0,5,0,...,0 .534 .812 .728 .691 .901 .820
25 0,0,0,...,0,5,0 .277 .498 .523 .419 .648 .638
25 0,0,0,...,0,0,5 .469 .759 .700 .621 .853 .792
25 1,1,...,1,...,1,1 .435 .713 .670 .597 .832 .774

where αi:m:n = E(Ui:m:n) is the expected value of the ith Type-II progressively censored
order statistics from the Uniform (0, 1) distribution, given by Balakrishnan and Sandhu
(1995), and

αi:m:n = 1 −
m∏

j=m−i+1

{
j + Rm−j+1 + ... + Rm

j + 1 + Rm−j+1 + ... + Rm

}
.

Then, censored CRKL can be written as

CRKL(Fm:n : Fθ ) =
∫ xm;m:n

o

(1 − Fm:n(x)) ln
1 − Fm:n(x)

exp(− x
θ

)
dx

−
∫ xm;m:n

o

(1 − Fm:n(x)) dx +
∫ xm;m:n

o

exp(−x

θ
)dx

=
m−1∑
i=0

(1 − αi:m:n) ln(1 − αi:m:n)(xi+1:m:n − xi:m:n)

−
m−1∑
i=0

(1 − αi:m:n)(xi+1:m:n − xi:m:n) − θ (exp(−xi:m:m) − 1)

+ 1

2θ

m−1∑
i=0

(1 − αi:m:n)
(
x2

i+1:m:n − x2
i:m:n

)
. (1)

Substituting θ by its maximum likelihood estimation

θ̂ = 1

m

m∑
i=1

(Ri + 1)xi:m:n
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Table 2
Power of the T2 test for monotone increasing hazard alternatives at 5% and 10% significance
levels for several progressively censored schemes when the sample sizes are n = 10, 20,

and 30

5% significance level 10% significance level
schemes

n m (R1, · · · , Rm) G(2) W(2) B(2,1) G(2) W(2) B(2,1)

10 5 5,0,0,0,0 .265 .398 .496 .436 .585 .674
5 0,5,0,0,0 .265 .398 .492 .431 .582 .668
5 0,0,5,0,0 .264 .403 .494 .433 .587 .673
5 0,0,0,5,0 .267 .407 .507 .436 .596 .681
5 0,0,0,0,5 .272 .408 .515 .438 .599 .692
5 1,1,1,1,1 .267 .404 .513 .434 .592 .680
7 3,0,0,0,0,0,0 .375 .560 .679 .544 .721 .806
7 0,3,0,0,0,0,0 .369 .558 .677 .547 .716 .803
7 0,0,0,3,0,0,0 .376 .564 .687 .552 .726 .807
7 0,0,0,0,0,3,0 .374 .5722 .707 .553 .731 .821
7 0,0,0,0,0,0,3 .376 .579 .709 .555 .738 .826
7 1,0,0,1,0,0,1 .375 .575 .698 .551 .728 .817

20 10 10,0,0,...,0,0,0 .544 .705 .769 .698 .820 .865
10 0,10,0,...,0,0,0 .544 .705 .768 .697 .818 .862
10 0,...,0,10,0,...,0 .556 .721 .791 .709 .831 .875
10 0,0,0,...,0,10,0 .564 .738 .815 .715 .843 .893
10 0,0,0,...,0,0,10 .567 .735 .815 .714 .842 .893
10 1,1,1,...,1,1,1 .559 .734 .805 .712 .838 .887
15 5,0,0,...,0,0,0 .657 .816 .875 .783 .888 .926
15 0,5,0,...,0,0,0 .658 .815 .873 .783 .887 .924
15 0,...,0,5,0,...,0 .666 .824 .879 .790 .893 .931
15 0,0,0,...,0,5,0 .684 .844 .904 .797 .905 .943
15 0,0,0,...,0,0,5 .677 .840 .903 .792 .901 .942
15 1,1,...,1,...,1,1 .676 .833 .893 .796 .898 .938
18 2,0,0,...,0,0,0 .702 .847 .905 .809 .912 .944
18 0,2,0,...,0,0,0 .703 .847 .904 .809 .912 .944
18 0,...,0,2,0,...,0 .710 .852 .906 .813 .915 .946
18 0,0,0,...,0,2,0 .715 .865 .920 .821 .919 .952
18 0,0,0,...,0,0,2 .717 .861 .919 .817 .916 .952
18 1,0,0,...,0,0,1 .707 .855 .912 .816 .913 .951

30 15 15,0,0,...,0,0,0 .691 .814 .859 .806 .889 .917
15 0,15,0,...,0,0,0 .692 .815 .857 .805 .889 .915
15 0,...,0,15,0,...,0 .708 .832 .874 .819 .901 .928
15 0,0,0,...,0,15,0 .720 .852 .903 .828 .914 .944
15 0,0,0,...,0,0,15 .717 .850 .900 .825 .912 .942
15 1,1,1,1,...,1,1,1 .717 .845 .893 .826 .910 .938
20 10,0,0,...,0,0,0 .754 .862 .902 .847 .921 .946
20 0,10,0,...,0,0,0 .753 .867 .906 .847 .920 .945
20 0,...,0,10,0,...,0 .769 .879 .918 .857 .929 .952
20 0,0,0,...,0,10,0 .779 .896 .936 .863 .938 .968

(Continued on next page)
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Table 2
Power of the T2 test for monotone increasing hazard alternatives at 5% and 10% significance
levels for several progressively censored schemes when the sample sizes are n = 10, 20,

and 30 (Continued)

5% significance level 10% significance level
schemes

n m (R1, · · · , Rm) G(2) W(2) B(2,1) G(2) W(2) B(2,1)

20 0,0,0,...,0,0,10 .775 .892 .936 .860 .935 .963
20 1,0,1,0,...,0,1,0 .774 .886 .923 .861 .933 .958
25 5,0,0,...,0,0,0 .794 .894 .931 .873 .938 .961
25 0,5,0,...,0,0,0 .791 .896 .931 .873 .938 .960
25 0,...,0,5,0,...,0 .802 .902 .936 .878 .942 .964
25 0,0,0,...,0,5,0 .813 .915 .951 .884 .949 .972
25 0,0,0,...,0,0,5 .809 .912 .950 .881 .947 .971
25 1,1,...,1,...,1,1 .806 .908 .943 .881 .945 .968

in (1) and dividing to
∫ xm;m:n

o
1 − Fm:n(x)dx, the test statistic is as follows:

T1 = A + B

2θ̂
− θ̂C − 1, (2)

where

A =
∑m−1

i=0 (1 − αi:m:n) ln(1 − αi:m:n)(xi+1:m:n − xi:m:n)∑m−1
i=0 (1 − αi:m:n)(xi+1:m:n − xi:m:n)

,

B =
∑m−1

i=0 (1 − αi:m:n)(x2
i+1:m:n − x2

i:m:n)∑m−1
i=0 (1 − αi:m:n)(xi+1:m:n − xi:m:n)

,

C = exp(− xm:m:n

θ̂
)∑m−1

i=0 (1 − αi:m:n)(xi+1:m:n − xi:m:n)
.

Similarly, based on the CKL, the test statistic is as follows

T2 = D − E + θ̂F + 1, (3)

where

D =
∑m−1

i=1 αi:m:n ln(αi:m:n)(xi+1:m:n − xi:m:n)∑m−1
i=0 (1 − αi:m:n)(xi+1:m:n − xi:m:n)

,

E =
∑m−1

i=1 αi:m:n
∫ xi+1:m:n

xi:m:n
ln(1 − exp(− x

θ̂
))dx∑m−1

i=0 (1 − αi:m:n)(xi+1:m:n − xi:m:n)
,

F = exp(− xm:m:n

θ̂
) − 1∑m−1

i=0 (1 − αi:m:n)(xi+1:m:n − xi:m:n)
.

It is obvious that T1 and T2 are scale invariant and are appropriate for goodness-of-fit testing.
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Table 3
Power of the T2 test for non-monotone hazard alternatives at 5% and 10% significance
levels for several progressively censored schemes when the sample sizes are n = 10, 20,

and 30

5% significance level 10% significance level
schemes

n m (R1, · · · , Rm) LN(1) LL(.5) LN(1.2) LN(1) LL(.5) LN(1.2)

10 5 5,0,0,0,0 .251 .306 .145 .420 .484 .265
5 0,5,0,0,0 .250 .302 .144 .418 .479 .264
5 0,0,5,0,0 .250 .305 .144 .419 .482 .264
5 0,0,0,5,0 .251 .305 .145 .424 .483 .264
5 0,0,0,0,5 .249 .304 .144 .421 .485 .263
5 1,1,1,1,1 .249 .305 .144 .420 .484 .263
7 3,0,0,0,0,0,0 .314 .402 .155 .501 .572 .281
7 0,3,0,0,0,0,0 .313 .398 .155 .500 .580 .281
7 0,0,0,3,0,0,0 .314 .403 .154 .500 .573 .282
7 0,0,0,0,0,3,0 .311 .400 .153 .494 .584 .280
7 0,0,0,0,0,0,3 .309 .398 .153 .491 .582 .279
7 1,0,0,1,0,0,1 .317 .400 .153 .487 .583 .281

20 10 10,0,0,...,0,0,0 .613 .605 .338 .781 .742 .511
10 0,10,0,...,0,0,0 .612 .603 .338 .780 .743 .510
10 0,...,0,10,0,...,0 .613 .608 .334 .782 .752 .515
10 0,0,0,...,0,10,0 .604 .617 .330 .775 .752 .503
10 0,0,0,...,0,0,10 .599 .619 .325 .769 .750 .500
10 1,1,1,...,1,1,1 .613 .614 .330 .774 .754 .506
15 5,0,0,...,0,0,0 .694 .686 .358 .838 .801 .536
15 0,5,0,...,0,0,0 .702 .691 .358 .840 .802 .536
15 0,...,0,5,0,...,0 .702 .695 .359 .840 .806 .528
15 0,0,0,...,0,5,0 .680 .688 .342 .823 .801 .511
15 0,0,0,...,0,0,5 .676 .686 .341 .824 .796 .515
15 1,1,...,1,...,1,1 .689 .688 .348 .831 .800 .521
18 2,0,0,...,0,0,0 .716 .709 .354 .849 .813 .538
18 0,2,0,...,0,0,0 .718 .711 .354 .850 .813 .534
18 0,...,0,2,0,...,0 .725 .711 .348 .854 .813 .530
18 0,0,0,...,0,2,0 .702 .705 .332 .840 .810 .504
18 0,0,0,...,0,0,2 .703 .704 .342 .841 .808 .512
18 1,0,0,...,0,0,1 .714 .704 .347 .848 .809 .517

30 15 15,0,0,...,0,0,0 .828 .742 .526 .921 .840 .698
15 0,15,0,...,0,0,0 .828 .740 .526 .921 .840 .698
15 0,...,0,15,0,...,0 .834 .756 .527 .925 .852 .699
15 0,0,0,...,0,15,0 .814 .756 .499 .915 .852 .678
15 0,0,0,...,0,0,15 .809 .754 .495 .911 .850 .671
15 1,1,1,1,...,1,1,1 .809 .758 .511 .911 .853 .683
20 10,0,0,...,0,0,0 .867 .779 .549 .941 .869 .711
20 0,10,0,...,0,0,0 .867 .785 .549 .941 .867 .711
20 0,...,0,10,0,...,0 .871 .793 .547 .943 .875 .709
20 0,0,0,...,0,10,0 .846 .796 .507 .930 .875 .674

(Continued on next page)
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Table 3
Power of the T2 test for non-monotone hazard alternatives at 5% and 10% significance
levels for several progressively censored schemes when the sample sizes are n = 10, 20,

and 30 (Continued)

5% significance level 10% significance level
schemes

n m (R1, · · · , Rm) LN(1) LL(.5) LN(1.2) LN(1) LL(.5) LN(1.2)

20 0,0,0,...,0,0,10 .846 .786 .510 .930 .868 .689
20 1,0,1,0,...,0,1,0 .846 .794 .532 .930 .873 .694
25 5,0,0,...,0,0,0 .884 .802 .544 .949 .879 .710
25 0,5,0,...,0,0,0 .884 .807 .544 .949 .880 .709
25 0,...,0,5,0,...,0 .886 .812 .542 .950 .884 .707
25 0,0,0,...,0,5,0 .862 .812 .502 .936 .884 .669
25 0,0,0,...,0,0,5 .869 .803 .507 .942 .878 .691
25 1,1,...,1,...,1,1 .869 .805 .520 .942 .879 .688

3. Monte Carlo Study

For T1 and T2 testes, the null hypothesis will be rejected, when the test statistics are more
than the corresponding critical values at a designed significance level α. Because the null
distribution of the test statistics T1 and T2 are not available, we proceed the Mont Carlo
simulation to determine critical values of the test statistics. A total of 100,000 random
samples were generated from the standard exponential distribution by Balakrishnan and
Sandhu algorithm (see, Balakrishnan and Sandhu, 1995) and then progressively Type-II
censored samples are generated for n = 10, 20, and 30 and some different m and schemes
(R1, R2, ..., Rm). For each sample, the test statistics T1 and T2 as defined in (2) and (3),
respectively, were calculated. The values were then used to determine the critical values
T1,0.95 and T1,0.90, and T2,0.95 and T2,0.90. For power study, we consider the alternatives
according to the type of hazard function as follows:

(a) For T1, Monotone decreasing hazard: Gamma: G(0.5, 1) and Weibull: W(0.5, 1)
and Lognormal: LN(0, 2).

(b) For T2, Monotone increasing hazard: Gamma: G(2, 1), Weibull: W(2, 1) and Beta:
B(2, 1).

(c) For T2, Non-monotone hazard: Lognormal: LN(0, 1), Lognormal: LN(0, 1.2) and
Loglogistic: LL(0.5, 1).

We use 100,000 Monte Carlo simulations for n = 10, 20, and 30 to estimate the
power of our proposed tests. The simulation results for different censoring schemes are
summarized in Tables 1–3 and Figs. 1–3.

Balakrishnan et al. (2007) constructed a goodness-of-fit test statistic for exponentiality
based on Kullback-Leibler information with progressively Type-II censored data and com-
pared its powers against several alternatives under different progressive censoring schemes.
Comparing with their proposed test, for the alternatives with monotone decreasing hazard
function; and non-monotone hazard function, T1 and T2 tests, respectively, have very higher
powers (Tables 1 and 3). But, by Table 2, for the alternatives with monotone increasing
hazard function, the power differences between T2 test and their proposed test are not so
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Figure 1. Comparing different schemes for monotone decreasing hazard alternatives for the T1 test
at 5% significance levels when n = 30 and m = 15 and 25.
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Figure 2. Comparing different schemes for monotone increasing hazard alternatives for the T2 test
at 5% significance levels when n = 30 and m = 15 and 25.

remarkable. Also, for T1 test, from Table 1 and Fig. 1, we conclude that when the sur-
viving units are withdrawn only from the middle, the power is higher. But, from Tables
2–3 and Figs. 2–3, we observe that the powers of T2 test do not depend on different
schemes.
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Figure 3. Comparing different schemes for non-monotone hazard alternatives for the T2 test at 5%
significance levels when n = 30 and m = 15 and 25.

Table 4
Progressively censored sample generated from the times to breakdown data on insulating

fluids tested at 34 kilovolts, given by Viveros and Balakrishnan (1994)

i 1 2 3 4 5 6 7 8

xi:8:19 0.19 0.78 0.96 1.31 2.078 4.85 6.50 7.35
Ri 0 0 3 0 3 0 0 5

4. Illustrative Example

In this section, we present an example to illustrate the use of the test statistics T1 and T2

for testing the validity of the exponential distribution for an observed progressively Type-II
censored sample.

Nelson (1982) reported data on times to breakdown of an insulating fluid in an accel-
erated test conducted at various test voltages. Let us consider this progressively Type-II
censored sample of size m = 8 generated from the n = 19 observations recorded at 34
kilovolts, as given in Table 4.

The computed test statistics are T1 = 0.0074 and T2 = 0.1836, and the p-values are
then computed as 0.615 and 0.458, respectively, which provide very strong evidence that
the observed progressively Type-II censored sample is from an exponential distribution.

5. Conclusions

In this article, we have considered inference for the exponential distribution when the data
is progressively Type-II censored. We have constructed two goodness-of-fit tests T1 and T2

based on the CRE and CE, respectively. Comparing with the test proposed by Balakrishnan
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et al. (2007), for the alternatives with monotone decreasing hazard function; and non-
monotone hazard function, T1 and T2 tests, respectively, have higher powers. Also, for the
alternatives with monotone increasing hazard function, the power differences between T2

and their proposed test are not so remarkable. Although this article focuses on exponential
lifetime distribution, similar inferential procedures can be developed for other lifetime
distributions such as the Weibull, Pareto, and Burr Type-XII distributions, etc.
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