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Exponentiality Test Based on the Progressive Type 11
Censoring via Cumulative Entropy

S. BARATPOUR AND A. HABIBI RAD

Department of Statistics, Ferdowsi University of Mashhad, Mashhad, Iran

In this article, we use cumulative residual Kullback-Leibler information (CRKL) and
cumulative Kullback-Leibler information (CKL) to construct two goodness-of-fit test
statistics for testing exponentiality with progressively Type-1I censored data. The power
of the proposed tests are compared with the power of goodness-of-fit test for exponen-
tiality introduced by Balakrishnan et al. (2007). We show that when the hazard function
of the alternative is monotone decreasing, the test based on CRKL has higher power
and when the hazard function of the alternative is non-monotone, the test based on CKL
has higher power. But, when it is monotone increasing the power difference between
test based on CKL and their proposed test is not so remarkable. The use of the proposed
tests is shown in an illustrative example.

Keywords Cumulative residual entropy; Exponential distribution; Kullback-Leibler
divergence; Maximum entropy; Power study.

Mathematics Subject Classification 62G10; 62E10; 94A17; 65C05.

1. Introduction

In the context of probability theory, entropy describes the amount of uncertainty associated
with a random variable. Entropy as a baseline concept in the field of information theory, was
introduced by Shannon (1948). For a non-negative absolutely continuous random variable
X, Shannon entropy called differential entropy, is defined as

H(X)=— / ” F()In f(x)dx,
0

where “In” means natural logarithm and f(x) is the probability density function (pdf)
of X. Recent years have witnessed a growing interest in utilizing information-theoretic
measures for distributional disparities as a tool for statistical inference in a variety of fields.
For testing problems, the earliest work dates back to Vasicek (1976) which used Shannon
maximum entropy to construct a goodness-of-fit test for normality. Vasicek approach has
much affected the development of entropy-based tests of fit for several parametric models;
for example, see Grzegorzewski and Wieczorkowski (1999), Taufer (2002), and Alizadeh
Noughabi and Arghami (2011). In probability theory and information theory, the Kullback-
Leibler (KL) divergence [Kullback and Leibler (1951) and Kullback (1959, 1987)] is a
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non-symmetric measure of the difference between two distributions F'(x) and G(x) which
is defined as follows:

&dx,

KL(F : G) = /Do f(x)In
—00 g(x)

where f(x) and g(x) are pdfs of distributions F(x) and G(x), respectively. Tests of fit based
on KL information have been developed; see Ebrahimi et al. (1992), Choi et al. (2004), and
Gurevich and Davidson (2008).

Another type of entropy, the cumulative residual entropy (CRE) was introduced by Rao
et al. (2004) in order to provide a way to accommodate random variables that do not have
a defined density function. This measure dose not have limitations of the use of Shannon
entropy in measuring the randomness of certain systems (see also Rao, 2005) and is based
on the complementary cumulative distribution function (ccdf), F(x) = 1 — F(x), which
in the reliability is called survival function. This measure is defined for the non-negative
random variables as follows:

CRE(X) = — /oo F(x)In F(x)dx.
0

Asadi and Zohrevand (2007) proposed a dynamic form of CRE and obtain some of its
properties (also see Navarro et al., 2010). Sunoj and Linu (2012) introduced a generalized
measure of dynamic form of CRE, namely cumulative residual Renyis entropy, and studied
its properties. Baratpour (2010) characterized the first order statistics based on the CRE.

Baratpour and Habibi Rad (2011) defined a new measure of distance between two non-
negative and continuous distributions based on CRE, called cumulative residual Kullback-
Leibler (CRKL) divergence and construct a goodness-of-fit test for exponentiality. They
proved that CRKL is non-negative and equality holds if and only if F(x) = G(x), a.e. This
measure is defined as follows:

e _ F(x)
CRKL(F : G) = / F(x)In & dx — [E(X) — E(Y)],
0

(x)

where F(x) and G(x) are ccdf of X and Y, respectively.

Di Crescenzo and Longobardi (2009) introduced and studied the cumulative entropy
(CE) which is suitable to measure information when uncertainty is related to the past, a
dual concept of CRE which relates to uncertainty on the future lifetime of a system. For
the non-negative and continuous random variables X with distribution function F(x), CE
is defined as

CE(X) = —/ F(x)In F(x)dx.
0
Park et al. (2012) considered another extension to the cumulative distribution, called cu-
mulative KL information (CKL) which is defined as

F(x)
G(x)

oo
CKL(F:G):/ F(x)In dx — [E(Y) — E(X)].
0
By noting that Inx < x — 1, x > 0 and equality holds if and only if x = 1, we conclude
that CKL(F : G) > 0 and equality holds if and only if F = G, a.e.
In many life-testing and reliability studies, the experimenter may be unable to obtain
complete information on failure times for all experimental units. There are also situations
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wherein the removal of units prior to failure is preplanned in order to reduce the cost and
time associated with testing. For these and other reasons, progressive censoring has been
discussed by Nelson (1982).

A progressively Type-1I censored data arises in the following manner. » units are placed
on a life-testing experiment and when the first failure occurs, R; of the n — 1 surviving units
are withdrawn from the experiment. When the next failure occurs, R, of the n — 2 — R;
surviving units are withdrawn from the experiment, and so on. Finally, at the time of the m-th

failure, all the remaining R,, = n—m— R —- - - — R,,_ surviving units are withdrawn from
the experiment. It is clear that when we set m = n and all R; = 0, we obtain the complete
sample situation; when we set Ry = --- = R,,_; = 0 and R,, = n —m, we obtain the Type-

IT censored sample. Progressive censoring and its applications have been discussed by a
number of authors including Viveros and Balakrishnan (1994), Balasooria and Balakrishnan
(2000), Ng et al. (2002), and Balakrishnan (2007). A book-length account is available in
Balakrishnan and Aggarwala (2000). The goodness-of-fit test based on progressively Type-
II censored sample is widely used as a tool for testing distributional hypotheses. Some key
references are Marohn (2002), Balakrishnan et al. (2002, 2004), and Wang (2008). Also,
entropy/Kullback-Leibler information with progressively Type-II censored order statistics
was investigated by Cramer and Bagh (2011).

The goal of this article is to propose CE tests of fit for the exponential distribution with
progressively Type-II censored data. Two test statistics are derived from CRKL and CKL,
and the powers of them are studied. The article is organized as follows: In Section 2, based
on the CRKL and CKL and using progressively Type-II censored data, two test statistics
are constructed. In Section 3, we obtain the power of the proposed tests by Mont Carlo
simulation. We show that when the alternative has monotone decreasing hazard function,
the test based on CRKL has good power and when the alternative has monotone increasing
or non-monotone hazard function, the test based on CKL has high power. The use of the
proposed tests is illustrated in Section 4.

2. The Test Procedure

In this section, we construct two test statistics for testing exponentiality versus some
alternatives. These test statistics are based on CRKL and CKL which are EDF test statistics.
The EDF tests are in term of some distance measures between the empirical distribution
function F,(x) and Fj(x), where 6 denotes a consistent estimator of 6 under H. Large
values of this measure will lead to the rejection of Hj.

Let X1 < Xoumn < ... < Xmum:n be a progressively Type-II right censored sample
with progressive censoring scheme R = (Ry, R, ..., R;;) from a continuous distribution
function F(x) and Fo(x) = 1 — exp(—3), x > 0,6 > 0, denotes exponential distribution
function, where 6 is the unknown parameter. The aim of this article is testing the hypothesis

Hy: F(x) = Fo(x),vs.H, : F(x) # Fp(x),

based on the X}, < X2min < ... < Xpm:n and using CRKL and CKL information. We use
the empirical distribution function F,.,(x) for the estimation of distribution function F(x).
The empirical distribution function F,,.,(x) is given by
Fpn(x) =0, X <Xiunn
= Oimny  Ximn <X < Xiflumm, | = I,..m—1

= Omm:n, X Z Xiumns
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Table 1

Power of the T test for monotone decreasing hazard alternatives at 5% and 10% significance
levels for several progressively censored schemes when the sample sizes are n = 10, 20,

and 30
5% significance level 10% significance level
schemes
n m (Ry, -+, Ry)  G.5) W(0.5) LN@2) G(0.5 W05 LNQ2
100 5 5,0,0,0,0 328 422 222 457 .550 309
5 0,5,0,0,0 .348 449 231 493 .589 324
5 0,0,5,0,0 344 446 235 459 .548 328
5 0,0,0,5,0 .246 327 .206 337 410 .288
5 0,0,0,0,5 276 362 212 384 472 .296
5 1,1,1,1,1 293 382 221 .396 480 308
7 3,0,0,0,0,0,0 325 462 331 464 .595 439
7 0,3,0,0,0,0,0 345 480 339 478 .615 446
7 0,0,0,3,0,0,0 .348 496 355 480 .619 453
7 0,0,0,0,0,3,0 241 352 .289 335 447 378
7 0,0,0,0,0,0,3 308 449 330 443 .584 440
7 1,0,0,1,0,0,1 331 479 337 468 .606 444
20 10 10,0,0....,0,0,0 422 567 334 572 .699 440
10 0,10,0....,0,0,0 459 598 342 .608 728 453
10 0....,0,10,0....,0 472 641 367 .637 760 470
10 00.0...,0,10,0 234 331 253 327 423 339
10 0,0.0....,0,0,10 363 502 325 .501 .631 431
10 1,1,1,..,1,1,1 376 .505 325 .507 .637 429
15 5,0,0....,0,0,0 428 .649 .536 579 771 .644
15 0,5,0,...,0,0,0 434 .655 537 .586 776 .645
15 0,.,05,0....,0 466 .694 .560 .618 .806 .666
15 0,0,0,...,0,5,0 246 401 .386 359 514 487
15 0,0,0....,0,0,5 403 .627 527 .545 749 .640
15 L1,...,1,..,1,1 358 570 487 .509 713 .609
18 2,0,0....,0,0,0 425 692 .641 582 .809 736
18 0,2,0....,0,0,0 431 .699 .640 .585 .806 738
18 0,.,0,2,0,..,0 444 705 .648 599 .822 745
18 0,0,0,...,0,2,0 302 .529 531 443 .674 .656
18 0,0,0,...,0,0,2 410 .687 .629 562 792 732
18 1,0,0....,0,0,1 413 .683 .637 571 798 733
30 15 15,0,0....,0,0,0 502 .663 420 .641 783 534
15 0,15,0....,0,0,0 521 .687 434 677 .808 535
15 0...,0,15,0...,0 .595 747 459 723 .841 .565
15 00.,0...0,15,0 227 336 281 323 436 371
15 0,0,0....,0,0,15 426 587 405 564 716 517
15 LL1,1,...,1,1,1 434 .600 408 .583 728 519
20  10,0.,0....,0,0,0 .503 722 .583 .652 .835 .692
20  0,10.0....,0,0,0 S12 737 .586 .669 .843 .694
20 0....,0,10,0....,0 573 793 .625 721 .885 722
20  0,0.0....,0,10,0 .233 383 .376 .340 497 475

(Continued on next page)
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Table 1
Power of the T} test for monotone decreasing hazard alternatives at 5% and 10% significance
levels for several progressively censored schemes when the sample sizes are n = 10, 20,
and 30 (Continued)

5% significance level 10% significance level
schemes

n m (R, --,Ry) G005 W(@O5 LN@2) G005 W(@O5 LNQ2)

20  0,0,0,...,0,0,10 455 .680 .558 599 793 .673
20 1,0,1,0....,0,1,0 432 .667 .550 597 786 .663
25 5,0,0....,0,0,0 .503 779 720 .666 877 .805
25 0,5,0....,0,0,0 .507 785 716 .663 .881 .808
25 0,...,0,5,0,...,0 534 812 728 .691 901 .820
25 0,0,0....,0,5,0 277 498 523 419 .648 .638
25 0,0,0....,0,0,5 469 759 .700 .621 .853 192
25 1,1,..,1,...,1,1 435 713 .670 597 .832 174

where &,y = E(U;n) is the expected value of the ith Type-II progressively censored
order statistics from the Uniform (0, 1) distribution, given by Balakrishnan and Sandhu
(1995), and

m

imin 1+ Ruji+ .+ Ry

j=m—i+1
Then, censored CRKL can be written as

Kmzm:n 1 - Fm:n(x)
CRKL(F ., : Fy) = (= PP In ==
j exp(—3)

—f S a —Fm;n(x>)dx+f " exp(- 2y

m—1
= Z(l = i) IN(1 = o) (X 12men — Xismen)
i=0
m—1
- Z(l — Uipen)Xip tmen — Xizmen) — 0 (€XP(—Xizmem) — 1)
i=0
m—1
+% Z(l = Qi) (xi2+1:m:n - xizzmzn) . M

i=0
Substituting 6 by its maximum likelihood estimation

m

o 1
0=— R; 1 iimmn
- ;( + Daxi.
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Power of the T, test for monotone increasing hazard alternatives at 5% and 10% significance
levels for several progressively censored schemes when the sample sizes are n = 10, 20,

and 30
5% significance level 10% significance level
schemes
n m (Ry, -+, Rp) G(2) W(2) B(2,1) G2) W(Q B(2,1)
10 5 5,0,0,0,0 .265 .398 496 436 .585 .674
5 0,5,0,0,0 .265 .398 492 431 .582 .668
5 0,0,5,0,0 264 403 494 433 587 .673
5 0,0,0,5,0 267 407 507 436 596 .681
5 0,0,0,0,5 272 408 515 438 .599 .692
5 1,1,1,1,1 267 404 513 434 592 .680
7 3,0,0,0,0,0,0 375 .560 .679 544 721 .806
7 0,3,0,0,0,0,0 .369 558 677 547 716 .803
7 0,0,0,3,0,0,0 376 564 .687 552 726 .807
7 0,0,0,0,0,3,0 374 5722 707 .553 731 .821
7 0,0,0,0,0,0,3 .376 579 709 .555 738 .826
7 1,0,0,1,0,0,1 375 575 .698 551 728 .817
20 10 10,0,0....,0,0,0 544 705 769 .698 .820 .865
10 0,10,0....,0,0,0 544 705 .768 .697 818 .862
10  0,..0,10,0.,...,0 .556 721 791 .709 .831 .875
10 0,0,0,...,0,10,0 .564 738 815 715 .843 .893
10 0,0,0,...,0,0,10 .567 735 815 714 .842 .893
10 1,1,1,..,1,1,1 .559 734 .805 712 .838 .887
15 5,0,0....,0,0,0 .657 .816 .875 783 .888 926
15 0,5,0,...,0,0,0 .658 815 .873 783 .887 924
15 0....,0,5,0,...,0 .666 .824 .879 790 .893 931
15 0,0,0,...,0,5,0 .684 .844 .904 797 .905 943
15 0,0,0....,0,0,5 .677 .840 .903 792 901 942
15 L1,...,1,...,1,1 .676 .833 .893 796 .898 .938
18 2,0,0,...,0,0,0 702 .847 905 .809 912 .944
18 0,2,0,...,0,0,0 703 .847 904 .809 912 944
18 0....,0,2,0,...,0 710 .852 .906 .813 915 .946
18 0,0,0,...,0,2,0 715 .865 920 .821 919 952
18 0,0,0,...,0,0,2 717 .861 919 817 916 952
18 1,0,0....,0,0,1 707 .855 912 .816 913 951
30 15 15,0,0....,0,0,0 .691 .814 .859 .806 .889 917
15 0,15,0,...,0,0,0 .692 815 .857 .805 .889 915
15 0....,0,15,0....,0 .708 .832 .874 .819 901 928
15 0,0,0,...,0,15,0 720 .852 903 .828 914 944
15 0,0,0,...,0,0,15 17 .850 .900 .825 912 942
15 1,1,1,1,...,1,1,1 17 .845 .893 .826 910 938
20 10,0,0....,0,0,0 754 .862 902 .847 921 .946
20 0,10,0,...,0,0,0 753 .867 .906 .847 .920 945
20 0,..,0,10,0,...,0 .769 .879 918 .857 .929 952
20 0,0,0,...,0,10,0 779 .896 936 .863 938 .968

(Continued on next page)
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Table 2
Power of the T, test for monotone increasing hazard alternatives at 5% and 10% significance
levels for several progressively censored schemes when the sample sizes are n = 10, 20,
and 30 (Continued)

5% significance level 10% significance level
schemes

n m (Ry, -+, Rp) G(2) W(Q2) B(2,1) G(2) W(Q2) B(2,1)

20 0,0,0....,0,0,10 175 .892 936 .860 935 963
20 1,0,1,0....,0,1,0 774 .886 923 .861 933 .958
25 5,0,0....,0,0,0 794 .894 931 873 .938 961
25 0,5,0....,0,0,0 791 .896 931 .873 .938 .960
25 0....,0,5,0,...,0 .802 .902 936 .878 942 .964
25 0,0.0....,0,5,0 813 915 951 .884 .949 972
25 0,0,0....,0,0,5 .809 912 950 .881 .947 971
25 L1,..1,..11 .806 .908 .943 .881 .945 .968

in (1) and dividing to fox’"‘"“” 1 — F,,.,(x)dx, the test statistic is as follows:
B ~
Ti=A+——-0C—-1, ()
26

where
271:701(1 - ai:m:n) 11’1(1 - ai:m:n)(xi+1:in:n - xi:m:n)

—1
er'r;() (1 - ai:m:n)(xi+1:m1n - xi:m:n)

—1
_ Ztr‘n=0 (1-— ai?m?”)(xi2+]:m:n B xiz:m:n)

- m—1 ’
Zi:O (I = o) Xigtomn = Ximen)

A=

’

exp(_ Xmén:n )

71 .
Z,m:() (I = Qimen)Xiptimen — Xismen)

Similarly, based on the CKL, the test statistic is as follows
Th=D—E+0F+1, (3)
where

—1
Z:'n=1 jimn 1n(“i:m:11)(xi+1:m:n - xi:m:n)
1
Z:'n:() (I = i) K 1:mn — Xizmn)
S i [y In(1 — exp(—3))dx

E — Xi:
Z;’;_()l(l - ai:m:n)(xi+1:m:n - xi:m:n)

D =

’

’

exp(—tmmn) — |

er‘n:_()l(l — Uioen)Xi g Lomen — xi:m:n).

Itis obvious that 77 and 75 are scale invariant and are appropriate for goodness-of-fit testing.
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Table 3

Power of the T, test for non-monotone hazard alternatives at 5% and 10% significance
levels for several progressively censored schemes when the sample sizes are n = 10, 20,

and 30
5% significance level 10% significance level
schemes
n m (Ry,-+-,Ry,) LN(1) LL(5) LN(1.2) LN(1) LL(5 LN1.2)
10 5 5,0,0,0,0 251 .306 .145 420 484 265
5 0,5,0,0,0 .250 302 144 418 479 264
5 0,0,5,0,0 250 305 144 419 482 264
5 0,0,0,5,0 251 305 .145 424 483 264
5 0,0,0,0,5 .249 304 .144 421 485 .263
5 1,1,1,1,1 .249 305 144 420 484 263
7 3,0,0,0,0,0,0 314 402 155 501 572 281
7 0,3,0,0,0,0,0 313 398 155 .500 .580 281
7 0,0,0,3,0,0,0 314 403 154 .500 573 282
7 0,0,0,0,0,3,0 311 400 153 494 .584 .280
7 0,0,0,0,0,0,3 309 .398 .153 491 582 279
7 1,0,0,1,0,0,1 317 400 .153 487 .583 281
20 10 10,0,0....,0,0,0 .613 .605 338 781 742 S11
10 0,10,0....,0,0,0 .612 .603 338 .780 743 510
0 o....,0,100.,..,0 .613 .608 334 782 752 515
10 0,0.0....,0,10,0 .604 617 .330 775 752 .503
10 0,0.0....,0,0,10 599 .619 325 769 750 .500
10 1,1,1,..,1,1,1 .613 .614 .330 774 754 .506
15 5,0,0,..,0,0,0 .694 .686 358 .838 .801 .536
15 05,0,..,0,0,0 702 .691 .358 .840 .802 .536
15 0..,05,0,..0 702 .695 .359 .840 .806 528
15 00,0,.,0,5,0 .680 .688 342 .823 .801 S11
15  0,0,0,..,0,0,5 .676 .686 341 .824 .796 515
15  L1,..,1,..1,1 .689 .688 .348 .831 .800 521
18 2,0,0,...,0,0,0 716 709 354 .849 .813 .538
18 0,2,0,..,0,0,0 718 711 354 .850 .813 534
18 0,.,0,2,0...,0 725 711 .348 .854 .813 .530
18 0,0,0,...,0,2,0 702 705 332 .840 .810 .504
18  0,0,0,...,0,0,2 703 704 342 .841 .808 512
18 1,0,0....,0,0,1 714 704 .347 .848 .809 517
30 15 15,0,0....,0,0,0 .828 742 .526 921 .840 .698
15 0,15,0....,0,0,0 .828 740 .526 921 .840 .698
15 0...,0,150,.,0  .834 756 527 925 .852 .699
15 00,0...0,15,0 .814 756 499 915 .852 .678
15 0,0,0....,0,0,15 .809 754 495 911 .850 671
15 1,1,1,1,..,1,1,1 .809 758 Sl 911 .853 .683
20  10,0,0....,0,0,0 .867 779 .549 941 .869 11
20 0,10,0....,0,0,0 .867 785 .549 941 .867 11
20 0o...,0,10,0,....,0  .871 793 .547 943 .875 709
20 0,0.0....,0,10,0 .846 796 .507 .930 .875 .674

(Continued on next page)
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Table 3
Power of the 7, test for non-monotone hazard alternatives at 5% and 10% significance
levels for several progressively censored schemes when the sample sizes are n = 10, 20,
and 30 (Continued)

5% significance level 10% significance level
schemes

n m (R,---,R, LN() LL(5) LN(1.2) LN(I) LL(5) LN(1.2)

20  0,0,0,...,0,0,10 .846 786 510 930 .868 .689
20 1,0,1,0....,0,1,0 .846 794 532 .930 873 .694
25 5,0,0....,0,0,0 .884 .802 544 .949 .879 710
25 0,5,0....,0,0,0 .884 .807 544 .949 .880 709
25 0.,..,0,5,0,..0 .886 812 542 950 .884 707
25 0,0,0....,0,5,0 .862 812 502 936 .884 .669
25 0,0,0....,0,0,5 .869 .803 507 942 .878 .691
25 1,1,..,1,...,1,1 .869 .805 520 942 .879 .688

3. Monte Carlo Study

For T; and 7, testes, the null hypothesis will be rejected, when the test statistics are more
than the corresponding critical values at a designed significance level «. Because the null
distribution of the test statistics 77 and T, are not available, we proceed the Mont Carlo
simulation to determine critical values of the test statistics. A total of 100,000 random
samples were generated from the standard exponential distribution by Balakrishnan and
Sandhu algorithm (see, Balakrishnan and Sandhu, 1995) and then progressively Type-II
censored samples are generated for n = 10, 20, and 30 and some different m and schemes
(R1, Ry, ..., R,;). For each sample, the test statistics 77 and 75 as defined in (2) and (3),
respectively, were calculated. The values were then used to determine the critical values
T109s5 and Ti 090, and T3 95 and T .99. For power study, we consider the alternatives
according to the type of hazard function as follows:

(a) For T}, Monotone decreasing hazard: Gamma: G(0.5, 1) and Weibull: W(0.5, 1)
and Lognormal: LN(O, 2).

(b) For T,, Monotone increasing hazard: Gamma: G(2, 1), Weibull: W(2, 1) and Beta:
B(2, 1).

(c) For T,, Non-monotone hazard: Lognormal: LN(0, 1), Lognormal: LN(0, 1.2) and
Loglogistic: LL(0.5, 1).

We use 100,000 Monte Carlo simulations for n = 10, 20, and 30 to estimate the
power of our proposed tests. The simulation results for different censoring schemes are
summarized in Tables 1-3 and Figs. 1-3.

Balakrishnan et al. (2007) constructed a goodness-of-fit test statistic for exponentiality
based on Kullback-Leibler information with progressively Type-II censored data and com-
pared its powers against several alternatives under different progressive censoring schemes.
Comparing with their proposed test, for the alternatives with monotone decreasing hazard
function; and non-monotone hazard function, 7} and 7, tests, respectively, have very higher
powers (Tables 1 and 3). But, by Table 2, for the alternatives with monotone increasing
hazard function, the power differences between T, test and their proposed test are not so
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Figure 1. Comparing different schemes for monotone decreasing hazard alternatives for the 7 test
at 5% significance levels when n = 30 and m = 15 and 25.
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Figure 2. Comparing different schemes for monotone increasing hazard alternatives for the 7, test
at 5% significance levels when n = 30 and m = 15 and 25.

remarkable. Also, for 7} test, from Table 1 and Fig. 1, we conclude that when the sur-
viving units are withdrawn only from the middle, the power is higher. But, from Tables
2-3 and Figs. 2-3, we observe that the powers of 7, test do not depend on different
schemes.
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Figure 3. Comparing different schemes for non-monotone hazard alternatives for the 7, test at 5%
significance levels when n = 30 and m = 15 and 25.

Table 4
Progressively censored sample generated from the times to breakdown data on insulating
fluids tested at 34 kilovolts, given by Viveros and Balakrishnan (1994)

i 1 2 3 4 5 6 7 8

Xi:8:19 0.19 0.78 0.96 1.31 2.078 4.85 6.50 7.35
R; 0 0 3 0 3 0 0 5

4. Illustrative Example

In this section, we present an example to illustrate the use of the test statistics 7} and 7,
for testing the validity of the exponential distribution for an observed progressively Type-II
censored sample.

Nelson (1982) reported data on times to breakdown of an insulating fluid in an accel-
erated test conducted at various test voltages. Let us consider this progressively Type-II
censored sample of size m = 8 generated from the n = 19 observations recorded at 34
kilovolts, as given in Table 4.

The computed test statistics are 77 = 0.0074 and 7, = 0.1836, and the p-values are
then computed as 0.615 and 0.458, respectively, which provide very strong evidence that
the observed progressively Type-II censored sample is from an exponential distribution.

5. Conclusions

In this article, we have considered inference for the exponential distribution when the data
is progressively Type-II censored. We have constructed two goodness-of-fit tests 77 and T,
based on the CRE and CE, respectively. Comparing with the test proposed by Balakrishnan
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et al. (2007), for the alternatives with monotone decreasing hazard function; and non-
monotone hazard function, 7} and 75 tests, respectively, have higher powers. Also, for the
alternatives with monotone increasing hazard function, the power differences between 7,
and their proposed test are not so remarkable. Although this article focuses on exponential
lifetime distribution, similar inferential procedures can be developed for other lifetime
distributions such as the Weibull, Pareto, and Burr Type-XII distributions, etc.
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