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A next-to-leading order QCD calculation of non-singlet spin structure function, gNS
1 is presented within the

valon representation of hadrons. In the valon model, it is assumed that a nucleon is composed of three dressed
valence quarks: the valons. Each valon has its own internal structure, the valence quark with its associated sea
quarks and gluons. The results are in good agreement with all available data from SMC, E143, HERMES, and
with the newly released data from COMPASS experiments. It appears that the small-x tail of gNS

1 can be described
by a single Regge-type exchange. The relevant parameter of this exchange is given. Finally we show that the
polarized proton structure function has a scaling behavior at small x. The relevant parameters of this behavior
are given, too.
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I. INTRODUCTION

Deep inelastic scattering (DIS) of leptons from the nucleon
has served as an important tool for the investigation of the
nucleon substructure and is one of the key areas for testing
the quantum chromodynamics (QCD). Spin is a fundamental
property of the nucleon and the spin structure of the nucleon
has been the subject of heated debates over the past 20 years.
The key question is how the spin of the nucleon is distributed
among its constituent partons. That is, the determination
and understanding of the shape of quarks and gluon spin
distribution functions, δqf (x,Q2), have became an important
issue.

We utilized the valon model [1] to study the polarized
nucleon structure. In the valon model, it is assumed that a
nucleon is composed of three dressed valence quarks: the
valons. Each valon has its own internal structure, the valence
quark with its associated sea quarks and gluons which can be
probed at high enough Q2. At low Q2, a valon behaves as a
valence quark. The valons play a role in scattering problems as
the constituents do in bound-state problems. It is assumed that
the valons stand at a level in between hadrons and partons and
that the valon distributions are independent of the probe or Q2.
In this representation a valon is viewed as a cluster of its own
partons. The evolution of the parton distributions in a hadron
is effected through the evolution of the valon structure, as the
higher resolution of a probe reveals the parton content of the
valon. This model has yielded excellent results for unpolarized
structure functions [1–6]. It has also been applied to the polar-
ized nucleon structure function [7,8] with interesting results.

In this paper we concentrate on the non-singlet part
of the polarized nucleon structure function because of its
simplicity and thus its transparency. In addition, there are more
accurate data which are extended to a fairly small-x region:
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x < 0.01. That makes the comparison with theory more
meaningful. Recently COMPASS Collaboration released data
on gNS

1 to test the Bjorken sum rule with more accuracy [9].
Therefore, we have further attempted to show the application
of using this model for studying the nucleon structure
functions.

This paper is organized as follows. In Sec. II a brief general
outline is presented on the calculation of the polarized nucleon
structure function in the valon model. Then we calculate
the non-singlet spin structure function in Sec. III. Finally,
Sec. IV is devoted to study the Regge behavior of gNS

1 at
small x and scaling behavior of g

p

1 . Then, we will finish with
conclusions.

II. VALON MODEL AND POLARIZED HADRON
STRUCTURE FUNCTION

The connection between the bound-state problem at the
hadronic scale that occurs only at low Q2 and deep inelastic
scattering at high Q2 can be investigated by introducing the
valons. Each valon is a dressed valence quark (i.e., each being a
valence quark with its associated sea quarks and gluons which
can be resolved only at high Q2). At low Q2 the valon behaves
as a CQ because its internal structure cannot be resolved. Thus
the valon distribution in a hadron is the wave-function square
of the CQs, whose structure functions are described by PQCD
at high Q2 [2].

The valon model is essentially a two components model.
See Fig. 1 for a schematic of the valon model. In this
framework, the structure function F2(x,Q2) of a hadron is a
convolution of the valon distribution Gh

valon(y) and the structure
function of the valon, F valon

2 (z,Q2),

Fh
2 (x,Q2) =

∑
valon

∫ 1

x

dyGh
valon(y)F valon

2

(
x

y
,Q2

)
. (1)
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FIG. 1. (Color online) The schematic picture of the valon model.

In a similar way the parton distribution functions in a hadron
can be obtained by

q(x,Q2) =
∑
valon

∫ 1

x

dyGh
valon(y)qvalon

(
x

y
,Q2

)
, (2)

where Gh
valon(y) is the valon distribution inside the hadron.

It means the probability of finding a valon with momentum
fraction of y in the hadron. The description of the Gh

valon(y) is
given in [1,2].

In the polarized case, the helicity distributions of various
partons in a hadron in the framework of this model are given by

δqh
i (x,Q2) =

∑ ∫ 1

x

dy

y
δGh

valon(y)δqvalon
i

(
x

y
,Q2

)
, (3)

where δGh
valon(y) is the helicity distribution of the valon in the

hosting hadron (the probability of finding the polarized valon
inside the polarized hadron). It is related to unpolarized valon
distribution by

δGj (y) = δFj (y)Gj (y)

= Njy
αj (1 − y)βj (1 + ajy

0.5 + bjy + cjy
1.5 + djy

2).

(4)

Gj (y) are the unpolarized valon distributions, where j

refers to U- and D-type valons. [Regrettably, Eq. (4) was
erroneous in Ref. [7] in which δGj (y) was replaced by
δFj (y).] Polarized valon distributions are determined by a
phenomenological argument for a number of hadrons [7,8].
We summarized the parameters for Eq. (2.4) in Table I.

TABLE I. Numerical values of the parameters in Eq. (4).

Valon Nj αj βj aj bj cj dj

(j )

U 3.44 0.33 3.58 −2.47 5.07 −1.859 2.780
D −0.568 −0.374 4.142 −2.844 11.695 −10.096 14.47

We come back to Eq. (3): δqvalon
i (z = x/y,Q2) is the

polarized parton distribution in the valon. Polarized par-
ton distributions inside the valon are evaluated according
to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
evolution equation subject to physically sensible initial
conditions.

δqNS±(n,Q2) =
[

1 + αs(Q2) − αs

(
Q2

0

)
2π

(−2

β0

)

×
(

δP(1)n
NS± − β1

2β0
δP(0)n

qq

) ]

× L−( 2
β0

)
δP (0)n

qq δqNS±(
n,Q2

0

)
, (5)

(
δqS(n,Q2)

δg(n,Q2)

)
=

(
L−( 2

β0
)δP̂ (0)n + αs(Q2)

2π
ÛL

−( 2
β0

)δP̂ (0)n

−αs

(
Q2

0

)
2π

L
−( 2

β0
)δP̂ (0)n

Û

) (
δqS

(
n,Q2

0

)
δg

(
n,Q2

0

)
)

.

(6)

The detail of Eqs. (5) and (6) are given in [15]. As presented
in [7] and [8], we have calculated the polarized nucleon
structure function in the valon model. We have worked in the
MS scheme with �QCD = 0.22 GeV and Q2

0 = 0.283 GeV2.
The initial motivation for this value of Q2

0 comes from the
phenomenological consideration that requires us to choose the
initial input densities as δ(z − 1) at Q2

0. The valon structure
function has the property that it becomes δ(z − 1) as Q2

is extrapolated to Q2
0 (beyond the region of validity). This

mathematical boundary condition means that the internal
structure of the valon cannot be resolved at Q2

0 in next to
leading order (NLO) approximation. It also means that at the
initial scale of Q2

0, the nucleon can be considered as a bound
state of three valence quarks that carry all the momentum and
the spin of the nucleon. As Q2 is increased other partons can
be resolved at the nucleon. It is also interesting to note that
this value of Q2 is very close to the transition region reported
by the CLAS Collaboration. Measurement of the first moment
of the proton structure function at CLAS shows that there is
a transition region around Q2 = 0.3 GeV2 [10]. Therefore the
initial input densities to solve the DGLAP equations inside the
valon are

δqNS
(
z,Q2

0

) = δqS
(
z,Q2

0

) = δ(z − 1), (7)

δg
(
z,Q2

0

) = 0. (8)

Thus their moments are

δqNS
(
n,Q2

0

) = δqS
(
n,Q2

0

) =
∫ 1

0
zn−1δ(z − 1)dz = 1, (9)

δg
(
n,Q2

0

) = 0. (10)

In the valon model, the hadron structure is obtained by
the convolution of the valon structure and its distribution
inside the hadron. Having specified the various components
that contribute to the spin of a valon, we now turn to the
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FIG. 2. Polarized valon distributions for U and D valons inside
the proton.

polarized hadron structure, which is obtained by a convolution
integral as follows:

gh
1 (x,Q2) =

∑
valon

∫ 1

x

dy

y
δGh

valon(y)gvalon
1

(
x

y
,Q2

)
. (11)

The valon structure is generated by perturbative dressing
in QCD. In such processes with massless quarks, helicity
is conserved and, therefore, the hard gluons cannot induce

sea quark polarization perturbatively. According to this de-
scription, it turns out that sea polarization is consistent
with zero [7]. This finding is supported by the HERMES
experiment and by released data from the COMPASS exper-
iment [11–14]. Therefore we have no sea polarization in our
model.

Using the initial conditions in Eqs. (9) and (10), the
calculation of the polarized parton distribution functions
(PPDFs) inside the valon follow from the standard DGLAP
evolution equations. The algorithm for calculation of the
PPDFs inside the proton can be decomposed in the following
three steps:

(i) Calculating PPDFs in the valon by using the DGLAP
equations.

(ii) With a phenomenological approach, one can find the
helicity distributions for the valons, as in Fig. 2.
These functions are Q2 independent. Since we find
the valon helicity distributions, one can use them
to calculate the polarized nucleon structure up to
Q2 = 107 GeV2.

(iii) By using the convolution integral [Eqs. (3) and (11)],
one finds PPDFs in the nucleon and polarized structure
function.

There is excellent agreement between the model predictions
with the experimental data for spin structure functions. A
sample is given in Fig. 3.

III. NON-SINGLET SPIN STRUCTURE FUNCTION

The non-singlet polarized parton distribution function is
defined as �qNS(x, t) = (�u − �d)(x, t), with t = ln Q2

�2 .
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FIG. 3. (Color online) (a) Polarized proton structure function xg
p

1 at Q2 = 5 GeV2 ( χ2

N
= 1.7). (b) Polarized deuteron structure function

xgd
1 at Q2 = 3 GeV2 ( χ2

N
= 1.33). The results from model [7] are compared with the experimental data [9,11,13,16–18]. The data from Ref. [9]

are newly released data from COMPASS.
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FIG. 4. (Color online) The non-singlet polarized parton distribu-
tion function in the valon model in comparison with other global
fits [19–22].

The DGLAP equation for �qNS(x, t) is

d

dt
�qNS =

∫ 1

x

dy

y
P

(
x

y

)
�qNS(y, t), (12)

where P (z = x/y) is the NLO spin-dependent splitting func-
tion [15]. As mentioned earlier, in our calculations �qsea � 0;

therefore, �qNS becomes (�uV − �dV )(x, t) which is shown
in Fig. 4 in comparison with other global fits. The non-singlet
spin structure function is defined as

gNS
1 ≡ g

p

1 − gn
1 = 2

[
g

p

1 − gd
1 /(1 − 1.5ωD)

]
, (13)

where ωD = 0.058 accounts for the D-state admixture in the
deuteron wave function.

The gNS
1 data are consistent with the quark model and the

perturbative QCD predictions in the valence region x > 0.2
[23].

In Fig. 5(a), the x dependence of xgNS
1 is shown in

comparison with data from HERMES, E143, SMC, and
also with the newly released data from COMPASS [9].
The results are in very good agreement with experimental
data for the entire measured range of x. In Fig. 5(b) the
evolution of the Bjorken integral, derived from Fig. 5(a),∫ 1
xmin[ 1

x
(xgNS

1 )]dx = ∫ 1
xmin(gNS

1 )dx as a function of xmin, is
shown for the model compared with the recent HERMES and
COMPASS Collaboration data [9,11]. Note that about 50%
of the sum rule comes from x values below about 0.12 and
that about 10–20 % comes from values of x less than about
0.01. It shows that gNS

1 receives a considerable contribution
from the small-x region. Thus, it seems that investigation of
the small-x region of the structure function is important. In
the following section we will consider gNS

1 at this region. In
Table II we compared the integral over different x ranges at
different scales of Q2, as determined from the valon model
with the experimental results from COMPASS, HERMES,
E143, E154, E155, SMC, and JLAB also with the recent results
from NN Collaborations [9,10,16–18,24–27]. We have used
data from JLAB for Q2 > 0.5 GeV2 to make sure that the
nonperturbative effects are small.
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FIG. 5. (Color online) (a) xgNS
1 at Q2 = 5 GeV2 compared with the experimental data and the results from global fits [19–21] ( χ2

N
= 1.25).

(b) The integral of gNS
1 over the range 0.02 < x < 0.9 measured by HERMES and COMPASS Collaborations as a function of the low-x limit

of integration, xmin, evaluated at Q2 = 10 GeV2 in comparison with our results.
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TABLE II. Comparison of the integral over different x ranges at different scales of Q2, as determined from the valon model, with the
experimental results from COMPASS, HERMES, E143, E154, E155, SMC, and JLAB also with the results from NN Collaborations.

Experiment x range Q2 	NS
1 This analysis

COMPASS 0.004 < x < 0.7 3 0.175 ± 0.009 ± 0.015 0.1421
HERMES 0.021 < x < 0.9 5 0.1479 ± 0.0169 0.1381
E143 0.03 < x < 0.8 2 0.149 ± 0.016 0.1276
E143 0.03 < x < 0.8 3 0.164 ± 0.023 0.1301
E143 0.03 < x < 0.8 5 0.141 ± 0.013 0.1327
E154 0.03 < x < 0.8 5 0.168 ± 0.010 0.1327
E155 0.03 < x < 0.8 5 0.176 ± 0.008 0.1327
SMC 0 < x < 1 10 0.198 ± 0.023 0.1626
SMC 0 < x < 1 5 0.174 ± 0.024 ± 0.012 0.1569
JLAB 0.001 < x < 0.8 0.592 0.1027 ± 0.0228 ± 0.0052 0.123
JLAB 0.001 < x < 0.8 0.707 0.0945 ± 0.0201 ± 0.0151 0.1298
JLAB 0.001 < x < 0.8 0.844 0.1021 ± 0.0193 ± 0.0174 0.134
JLAB 0.001 < x < 0.8 1.20 0.1307 ± 0.0192 ± 0.0145 0.1323
JLAB 0.001 < x < 0.8 1.44 0.1522 ± 0.0186 ± 0.0089 0.1433
JLAB 0.001 < x < 0.8 1.71 0.1605 ± 0.0182 ± 0.0069 0.1318
JLAB 0.001 < x < 0.8 2.05 0.1678 ± 0.0177 ± 0.0056 0.1475
JLAB 0.001 < x < 0.8 2.44 0.1666 ± 0.0167 ± 0.0045 0.1492
JLAB 0.001 < x < 0.8 2.92 0.1789 ± 0.0106 ± 0.0035 0.1511
NN Collaboration 0.021 < x < 0.9 5 0.1315 ± 0.0144 0.1381

IV. REGGE BEHAVIOR OF gNS
1 AND FULL g p

1 AT SMALL x

In all the results from experimental data for unpolarized
and polarized structure functions, it is seen that these structure
functions increase when x decreases and Q2 increases for
fixed values of x and Q2, respectively. The small-x behavior
of spin-dependent structure functions reflects the high-energy
behavior of the polarized virtual Compton scattering total
cross section with increasing total CM energy squared W 2

since W 2 = Q2( 1
x

− 1). When W 2 � Q2, x is small and
W 2 ≈ Q2/x and then at this region the structure functions
have scaling behavior. This is, by definition, the Regge limit
and so the Regge pole exchange picture is therefore quite
appropriate for the theoretical description of this behavior [28].
The small-x or high-energy behavior of the spin structure
function is an important issue for the extrapolation of data
needed to test spin sum rules for the first moment of g1. The
small-x measurements, besides reducing the error on the first
moment, would provide valuable information about Regge and
QCD dynamics at small x where the shape of g1 is particularly
sensitive to the different theoretical input.

In the case of the unpolarized structure function F2, it is
believed that a Regge trajectory combined with a soft and a
hard Pomeron can accurately represent the experimental data
[29]. It is interesting to investigate this issue in the polarized
case.

The Regge pole model gives the following small-x behavior
of the structure functions gi

1(x,Q2) [28]

gi
1(x,Q2) = γi(Q

2)x−αi , (14)

where gi
1(x,Q2) denote either a singlet [gs

1(x,Q2) =
g

p

1 (x,Q2) + gn
1 (x,Q2)] or non-singlet [gNS

1 (x,Q2) =
g

p

1 (x,Q2) − gn
1 (x,Q2)] combination of structure functions.

Therefore we expect to describe the small-x behavior of gNS
1

and g
p

1 structure functions with one and two Regge exponents,
respectively. It appears that the present gNS

1 data for available
small x in the interval 0.0001 < x < 0.01 can be described
with a single Regge-type exchange as

gNS
1 ≡ g

p

1 − gn
1 � AxαRegge . (15)

The Regge intercept that governs the small-x physics has
smooth Q2 dependence, in which case one would see gNS

1
rising like xα where −0.5 � α � 0 also at low Q2 and in
the measured “small-x” region [30]. This value varies from
−0.13 to −0.3 when Q2 is moved from Q2 = 2 GeV2 to
Q2 = 10 GeV2 in the valon model. According to the results of
Ref. [31], asymptotic scaling of gNS

1 depends on one variable
Q2/x2 only, instead of two variables x and Q2 with the
constant intercept equal to 0.42:

gNS
1 � (Q2/x2)�NS/2 � Q�NSx−�NS , �NS = 0.42. (16)

However, it is valid for a very small-x only. The appli-
cability region of that analysis is x � 10−6. Figure 6 shows
the non-singlet spin structure function at Q2 = 5 GeV2 for
the small-x region. In Fig. 7, we fit the non-singlet spin
structure function at small x (0.0001 < x < 0.01) and find
the associated αRegge:

gNS
1 = AxαRegge , A = 0.173, αRegge = −0.323. (17)

A. Scaling behavior of g p
1 at small x

Having analyzed the small-x behavior of gNS
1 , it is inter-

esting to see how g
p

1 behaves as x → 0. Because the valon
model has very good agreement with existent small-x data,
it is a good candidate to show the small-x behavior of g

p

1 at
small x. Actually the results for this scaling behavior should
be compared with small-x data for g

p

1 .

035205-5



FATEMEH TAGHAVI-SHAHRI AND FIROOZ ARASH PHYSICAL REVIEW C 82, 035205 (2010)

x
10-4 10-3 10-2 10-1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
COMPASS2009
HERMES2006
SMC
SMC(Low x -Low Q2)
E143
MODEL

Q2=5 GeV2

xg1

NS

FIG. 6. (Color online) Small-x behavior of xgNS
1 at Q2 = 5 GeV2

calculated by using the valon model in comparison with the
experimental data.

We show that the polarized proton structure function has
this scaling behavior for 1.2 < Q2(GeV2) < 100 at small-x
(10−5 < x < 10−2),

g
p

1 (x,Q2) =
2∑

i=1

aifi(Q
2)xεi , (18)

where ai and εi are constants and the functions fi(Q2) have
this simple general form,

f2(Q2) =
(

Q4

1 + Q4
0

)Di

, f1(Q2) = f2(Q2)g(Q2), (19)

1 10 4 2 10 4 5 10 4 0.001 0.002 0.005

1.0

2.0

3.0

1.5

x

g 1N
S

FIG. 7. (Color online) Small-x behavior of gNS
1 at Q2 = 5 GeV2

calculated by using the valon model and using the best fit to calculate
the Regge exponent. Data points are from the model and the goodness
of fit is χ 2 = 0.99.

TABLE III. Global fit parameters ob-
tained by fitting Eq. (18) with the data
extracted from the valon model at small x.

Parameters Values

ε1 0.196
ε2 0.094
a1 0.0215
a2 0.0513
D1 0.759
D2 0.434
g0 17.538
g1 −11.809
g2 2.652
g3 −0.200
Q0 1.300
χ 2 (goodness of fit) 0.996

where

g(Q2) = g0 + g1 log(Q2) + g2 log(Q2)2 + g3 log(Q2)3.

(20)

The results for parametrization of g
p

1 are summarized in
Table III. (We should note that if we try to do a fit with only
one Regge exponent and only with the first term in Eq. (18), we
give a fit with χ2 = 0.99. So, it is clear that we can describe
the polarized proton structure function with two exponents,
χ2 = 0.996, which is better than one exponent.)

In Fig. 8 we show the small-x behavior of xg
p

1 at Q2 =
5 GeV2 calculated by using the valon model and using the

x
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-0.002
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0.002
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0.006

0.008 COMPASS2009
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SMC-low x
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low x fit
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p

FIG. 8. (Color online) Small-x behavior of xg
p

1 at Q2 = 5 GeV2

calculated by using the valon model and using the best fit to calculate
the scaling exponents at small x. The experimental data selected for
various Q2 at the small-x region.

035205-6



NON-SINGLET SPIN STRUCTURE FUNCTION IN THE . . . PHYSICAL REVIEW C 82, 035205 (2010)

best fit to calculate the scaling exponents, εi . As a result, we
concluded that only by using two scaling exponents can we
describe the small-x behavior of g

p

1 (x,Q2) well. This behavior
has also been seen in the small-x tail of the F

p

2 (x,Q2) structure
function [28]. The question has been raised [32,33] whether
the observed rise on gNS

1 (x,Q2) follows from a one or two
Pomeron exchange (a polarized analog of the one or two
Pomerons question). However, after looking at g

p

1 (x,Q2), it
indeed requires two Pomerons!

V. CONCLUSION

In this paper we calculated the non-singlet spin structure
function, gNS

1 , of the nucleon in the valon model. The results
of these calculations are in excellent agreement with all exper-
imental data for the entire measured range of x. We also study
the small-x behavior of non-singlet spin structure function and
the Regge behavior of gNS

1 to calculate the Regge exponent,
αRegge. Finally, we studied the scaling behavior of g

p

1 at small
x. We conclude that only by using two scaling exponents can
we describe the small-x behavior of g

p

1 well. This is very
similar to the existence of two soft and hard Pomerons to
describe the small-x behavior of F2(x,Q2) in the unpolarized

case. It is shown that the valon model can predict the polarized
nucleon structure functions for the entire measured x range
very well. The validity range for using the valon model is
0.5 < Q2 (GeV2) < 107 and 10−6 < x < 1. In this model sea
quarks polarization is consistent with zero (the finding that
was confirmed by very recent experiments at HERMES and
COMPASS), so the polarized hadron structure functions can
build only by the polarized valence and gluon distribution by
finding only one type of polarized valon distribution for each
kind of valons. Between 0.3 < Q2 (GeV2) < 0.5 we should
consider other effects, such as a combination of resonance
physics and vector-meson dominance that are important at
low Q2. Chiral perturbation theory may describe the behavior
of polarized nucleon structure close to threshold. These
issues will be considered in our future work to improve our
model.
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