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Abstract—Most registration algorithms for medical images 
may suffer from slow convergence and sensitivity to 
initialization. In this paper, we propose an efficient gradient-
based algorithm for rigid intensity-based registration of 
medical images. It takes advantage of gradient-descend 
approach for maximizing the correlation coefficient 
similarity measure. Furthermore, we automatically adjust 
the optimization rate of algorithm for weak local minima 
avoidance and convergence acceleration. Experimental 
results demonstrated superior performance of the proposed 
algorithm compared to Powell’s method (as a non-gradient 
algorithm) in terms of CPU time and solution quality for two 
sets of medical images. 

Keywords- Medical Image Registration; Correlation 
Coefficient; Rigid Transformation; Gradient-Based 
Optimization. 

I. INTRODUCTION

Image registration is the process of aligning images to 
relate corresponding features. The images might be 
acquired with different imaging modals (e.g. MRI and CT) 
or the same modal at different times. Medical image 
registration plays an important role in disease diagnosis, 
treatment planning, and image-guided radiotherapy and 
surgery [1]. 

Two images or two sets of images are involved in a 
registration algorithm: the source/moving image 
g(x): R and the fixed/reference image f(x): R where 
x  represents a position in the n-dimensional domain .
The registration process is treated as an optimization 
algorithm which obtains the best transformation model T
by maximizing the similarity between the fixed image (i.e.
f(x) ) and aligned moving image (i.e. g(T(x)) ). Therefore, 
a typical registration algorithm consists of four 
components: transformation model, similarity measure, 
optimization framework, and interpolation method. 

Transformation models of registration algorithms can 
be divided into two separate categories: rigid and non-
rigid models. A rigid model can be entirely formulated by 
a few parameters since it is obtained by combination of a 
few primary transformations such as translation, rotation, 
scaling, and skew. In contrast, a non-rigid transformation 
is defined by the set of 2D/3D functions of a vector field 
[2]. Generally speaking, rigid transformation models are 
proper for global alignment while local registration is 

achieved only by using non-rigid models. Hereafter, we 
focus on the first category because the proposed 
registration algorithm works only with rigid 
transformation models. 

Rigid registration algorithms can be separated into 
feature-based and intensity-based categories. Each feature-
based registration algorithm primarily extracts some 
special robust features from every image. Then, by using 
corresponding features in the fixed and moving images, the 
optimal parameters of the transformation model are 
approximated. Feature-based registration algorithms 
usually require user interaction for significant sensitivity to 
noise, intensity variations, and imaging modality [3]. 
However, intensity-based registration algorithms optimize 
parameters of the transformation model by maximizing the 
similarity between intensities of pixels of the fixed and 
moving images [4]. Thus, they may provide better results 
especially for multimodal medical images because of 
robustness against noise, artifact, and intensity 
inhomogeneity. 

Every intensity-based rigid registration algorithm takes 
advantage of an optimization algorithm to adjust the 
transformation parameters by maximizing (minimizing) a 
special similarity measure (cost function). A number of 
researchers preferred to use a non-gradient optimization 
algorithm, such as Powell's method [5], in the registration 
framework [6-8]. Non-gradient optimization algorithms 
provide a unique registration approach for all possible 
similarity measures. For example, Powell’s method 
maximizes the similarity measure by using a bi-directional 
search along each transformation parameter. However, 
every registration algorithm with a non-gradient 
optimization method usually suffers from slow 
convergence and sensitivity to initialization (initial values 
of the transformation parameters). In contrast, although 
gradient-based optimization methods require analytical 
computation of derivatives of the similarity measure, they 
are more efficient and insensitive to initialization [9, 10].

Until now, researchers used a number of similarity 
measures (objective functions) with registration 
applications including least mean square errors, cross 
correlation, ratio image uniformity, mutual information 
(MI), and normalized mutual information (NMI) [7, 8]. It 
was shown that although cross correlation measure 
provides suitable solutions for registration of monomodal 



medical images, MI and NMI are preferred for multimodal 
medical images [11].

In this paper, an efficient gradient-based method is 
suggested for medical image registration. It employs the 
gradient-descend method to maximize the correlation-
coefficient (CC) similarity measure. Furthermore, the 
optimization rate is effectively adjusted during algorithm 
convergence for local minima avoidance and registration 
acceleration. Experimental results demonstrated the 
superiority of the proposed algorithm over Powell's 
method in terms of CPU time and solution quality for two 
sets of medical images. 

The reminder of this paper is organized as follows. In 
section II, we give an overview of rigid transformations.
Principles of the proposed algorithm are provided in 
section III. Experimental results are presented in section 
IV and finally, section V is devoted to conclusion remarks. 

II. RIGID TRANSFORMATIONS

A 3D linear transformation can be represented by 
multiplication of a matrix of size 4 4 to the pixel 
coordinates in the homogeneous space as follows: 
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Where ˆ ˆ ˆ ˆ[ , , ]Tx y zx . In more detail, the 3D coordinates 
of a pixel can be represented in the 4D homogeneous space 
by setting the 4th dimension value to one. 

All well-known linear transformations are obtained by 
combining the basic geometric transformations including 
translation, rotation, scaling, skew, and perspective. For 
example, rigid-body transformation is given by combining 
a translation and 3 rotation transformations as follows: 
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Where  and  (tx, ty, and tz) indicate the rotation angles 
around (translation parameters along) the x, y and z axes,
respectively. Another example is affine transformation 
which consists of all basic geometric transformations 
except perspective. It can be formulated by: 
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Where x, y and z denote the scaling parameters along x,
y and z axes, respectively; and sxy, szy and sxz are skew 
parameters. 

III. PROPOSED ALGORITHM PRINCIPLES

In the proposed scheme, we employ gradient descent, 
which is a first-order optimization algorithm, for easy 
implementation and convergence guarantee. 

A. Optimization algorithm 
Let's the vector p includes all transformation 

parameters. For example, for the affine transformation of 
Eqn. (3), we can write: 

[ ]Taffine x y z x y z xy xz yzt t t s s sp

According to the gradient descend algorithm, a local 
maximum of the similarity measure c can be obtained by 
solving the following numerical equation: 

1k k cp p

Where  represents the optimization rate and  denotes the 
gradient operator (i.e. c c p ). 

However, gradient descend suffers from slow 
convergence and getting caught in weak local minima. 
Although second-order optimization algorithms such as 
Newton and Levenberg-Marquardt may provide better 
solutions, they require the second-order derivatives for 
implementation and may diverge away from nearby local 
optima. 

On the other hand, we can improve the performance of 
the gradient descend algorithm by appropriate regulation 
of . Yam and Chow's algorithm [12] proposed an 
effective method for adjusting the learning rate of feed-
forward neural networks. This method modifies the 
learning rate in accordance with the correlation between 
two consecutive gradient vectors. In this case, three 
different conditions may be occurred: 

1) When the correlation coefficient is near to one, there is 
almost no change in the directions of gradient vectors. 
Thus, the convergence rate ) can be increased. 

2) Once the correlation coefficient is near to minus one, the 
gradient vectors are almost in the opposite direction.
Hence,  should be reduced to lessen oscillations of 
parameters values during convergence. 

3) When there is no correlation between two consecutive 
gradient vectors,  remains constant. 

They showed that with the above regulation process, 
the number of iterations of gradient-descend was a little 
larger than that of Levenberg-Marquardt while its 
computational burden is significantly better. 

B. Similarity measure 
We choose the correlation coefficient (CC) as the 

similarity measure of the proposed registration algorithm. 
Suppose that n sample pixels (i.e. xi , i=1,2,…,n) have 
been chosen from the domain of g(x). By definition, the 
correlation coefficient between the fixed image and 
moving image is given by: 
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Where g and f represent the average intensities of the 
moving and fixed images as follows: 
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Furthermore, ˆg  and ˆ f  are related to the standard 
deviations of intensities of the moving and fixed images, 
given by: 
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The CC value is always in the range [-1,1]. Obviously, by 
increasing similarity between intensity distributions of the 
fixed and moving images, CC approaches to 1 and vice 
versa. 

According to Eqn. (5), CCc  should be computed for 
to implementation of the gradient descend algorithm. Thus, 
we can write: 
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The first term of the above equation can be further 
simplified as follows: 
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 and the Jacobean matrix J is 

given by: 

ˆT
J

x x
p p

     (11) 

For example, the Jacobean matrix of the affine 
transformation (Eqn. 3) can be computed as follows: 
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In the same manner, the second term of Eqn. (9) can be 
simplified as follows: 
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Finally, by inserting Eqns. (10) and (13) in Eqn. (9), CCc
can be computed as follows: 
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Where the weighting coefficient wCC(xi,T) is given by: 
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TABLE I. COMPARING THE SPATIAL ACCURACY OF THE PROPOSED 
GRADIENT-BASED ALGORITHM AND POWELL’S METHOD FOR THREE 
PAIRS OF 3D CT IMAGES OF THE HUMAN CHEST. THE BEST RESULTS 

HAVE BEEN INDICATED BY BOLD-FACE TEXT. 

Benchmark 
Images

Proposed Method Powell’s Method

(Average ± STD) (Average ± STD)

1st Pair 2.6951±1.4438 3.9451 ±2.3772
2nd Pair 3.2207±1.9780 3.8197 ±2.4299

3rd Pair 4.5396±2.9831 6.3778 ±3.8745

Total 3.4851 ±2.3573 4.7142 ±3.1975



TABLE II. COMPARING THE COEFFICIENTS OF THE DESIRED AFFINE TRANSFORMATION WITH THOSE OBTAINED BY THE PROPOSED ALGORITHM AND 
POWELL'S METHOD FOR THREE PAIRS OF 3D CT IMAGES OF THE HUMAN CHEST.

Benchmark 
Images Desired Affine Transformation Proposed Method Powell’s Method

1st Pair

0.9848 0.1736 0 11
0.1736 0.9848 0 11
0 0 1 11
0 0 0 1

0.9853 0.1722 0 10.7644
0.1737 0.9833 0.0002 11.2033
0 0 1 10.9941
0 0 0 1

0.9847 0.1729 0 12.7193
0.1739 0.9847 0 8.9450
0 0 0.9980 10.8792
0 0 0 1

2nd Pair

0.9903 0.1392 0 11.0000
0.1392 0.9903 0 4.0640
0 0 1 3.0270
0 0 0 1

0.9900 0.1393 0.0004 10.8504
0.1401 0.9898 0.0004 4.1817

0.0003 0.0005 1.0004 2.9893
0 0 0 1

0.9916 0.1392 0 11.4670
0.1392 0.9906 0 2.5385
0 0 1 3.0430
0 0 0 1

3rd Pair

1.2483 0.0068 0.0651 14.4531
0 0.9945 0.1450 5.1250

0.0523 0.1044 0.9932 7.9219
0 0 0 1.0000

1.2423 0.0045 0.0455 15.7727
0.0021 0.9924 0.1374 4.5883

0.0558 0.1385 0.9961 6.4662
0 0 0 1

0.7983 0.0019 0.0548 11.2824
0.0052 0.9870 0.1379 5.5177

0.0430 0.1372 0.9930 6.8176
0 0 0 1

As shown, Eqn. (14) includes three separate terms. The 
weighting scalar wCC computes the intensity difference 
between each pair of corresponding pixels in the fixed and 
moving images. The gradient vector ( )g Tx  encodes 
intensity variations along each axis. Finally, the Jacobean 
matrix J relates spatially intensity variations to the 
transformation parameters.  

In other words, wCC is dependent to the similarity 
measure while J is completely indicated by the rigid 
transformation. For example, if we want to extend Eqn. 
(14) for rigid-body transformation (i.e.

[ 1 1 1 1 1 1]Trigid body x y zt t tp ), it will 
be sufficient to recomputed the Jacobean matrix as 
follows: 

6 6 6 6
rigid-body affine

6 6 6 6

J J
1 0
0 0

   (16) 

Where 16 6 indicates an identity matrix of size 6 6.  

IV. RESULTS

All experiments were performed in the MATLAB 
environment by using a LAPTOP with Intel Core i5 
2.40GHz CPU and 4 GB main memory. We compared the 
performance of the proposed algorithm with Powell's 
method (implemented in the well-known frequently-used 
SPM toolkit for registration of 3D magnetic resonance 
brain images [13]) for two sets of benchmark images.

Expert landmark correspondences have become a 
widely adopted reference for evaluating medical image 
registration (MIR) spatial accuracy. 

The expert-determined landmark features used to 
evaluate spatial accuracy in this study is the reference 
DIR-Lab1 dataset [14]. The ongoing DIR-Lab web project 
consists of ten breath-hold computed tomography (BH-
CT) image sets acquired from the National heart lung 
blood institute study archive. Each available image dataset 
has associated with a coordinates list of anatomical 

                                                          
1 http://www.dir-lab.com

landmarks that have been manually identified and 
registered by an expert in thoracic imaging. The point sets 
serve as a reference for evaluating the spatial accuracy of 
registration within the lung for each case. 

In the first set of benchmark images, three BH-CT 
image pairs were randomly selected from the DIR-Lab 
database. Then, each pair of images was registered by the 
proposed gradient-based algorithm and Powell’s method.
Finally, the mean and standard deviation (STD) of spatial 
Euclidean distances between the corresponding reference 
and registered landmark points were computed. As shown 
in Table I, for all benchmark images, the proposed 
algorithm outperformed Powell's method in terms of 
average spatial accuracy.  

Furthermore, for each pair of benchmark images, the 
desired affine transformation is further compared with 
results of the proposed algorithm and Powell's method in 
Table II. Clearly, compared to Powell's method, the 
proposed algorithm could better approximate the 
coefficients of the affine transformation matrix. It is 
further illustrated in Table III in which the average 
proportional error of transformation matrix coefficients is 
reported for each pair of benchmark images. As shown, 
compared to Powell's method (with 23.12%), the proposed 
algorithm (with 8.64%), on average, enhanced the 
proportional error by at least 14%.  

Figures 1-3 illustrate the registration results obtained 
by the proposed algorithm and Powell's method for three 
pairs of 3D magnetic resonance images of the human brain 
(i.e. the second set of benchmark images). These images 
were chosen from among the samples of the SPM toolkit 
[13]. As shown, despite initially significant mis-
registrations between fixed and moving images, both of the 
counterpart methods (i.e. the proposed algorithm and 
Powell's method) were globally successful to register all 
the pairs of benchmark images. However, the proposed 
algorithm provided better spatial accuracy.  

Finally, the average CPU time of the proposed 
algorithm was 36.2 seconds which was superior to that of 
Powell's method (with CPU time of 44.4 seconds) by at 
least 8 seconds (i.e. 20%).  



Figure 1. Comparing the results of the proposed algorithm with those of 
Powell's method for the first pair of benchmark images of the human 

brain: (a) three sample slices of the fixed image, (b) three corresponding 
slices of the moving image, (c) results of the proposed algorithm, and (d) 

results of Powell’s method.

Figure 2. Comparing the results of the proposed algorithm with those of 
Powell's method for the second pair of benchmark images of the human 
brain: (a) three sample slices of the fixed image, (b) three corresponding 
slices of the moving image, (c) results of the proposed algorithm, and (d) 

results of Powell’s method.

Figure 3. Comparing the results of the proposed algorithm with those of 
Powell's method for the third pair of benchmark images of the human 

brain: (a) three sample slices of the fixed image, (b) three corresponding 
slices of the moving image, (c) results of the proposed algorithm, and (d) 

results of Powell’s method.

TABLE III. COMPARING THE AVERAGE (± STD) PROPORTIONAL 
ERROR OF THE AFFINE TRANSFORMATION COEFFICIENTS OF THE

PROPOSED ALGORITHM WITH THOSE OF POWELL'S METHOD FOR THREE 
PAIRS OF 3D CT IMAGES OF THE HUMAN CHEST. THE BEST RESULTS 

HAVE BEEN INDICATED BY BOLD-FACE TEXT. 

Benchmark 
Images

Proposed Method Powell’s method

(Mean ± STD) (Mean ± STD)

1st Pair 0.0280±0.0750 0.2436 ±0.6452

2nd Pair 0.0193±0.0460 0.1256 ±0.3910

3rd Pair 0.2120±0.4783 0.3247 ±0.8142

Total 0.0864±0.2890 0.2313 ±0.6325

V. CONCLUSION

We have developed an efficient gradient-based 
algorithm for rigid intensity-based registration of medical 
images by maximizing the correlation coefficient 
similarity measure. For optimization of the transformation 
parameters, the gradient descend method is used. 
Moreover, we used Yam and Chow's method [12] to 
effectively adjust the optimization rate of the proposed 
algorithm for convergence acceleration and weak local 
minima avoidance. 

It was shown that the proposed optimization 
formulation can be used with every rigid transformation 
by appropriately changing the Jacobean matrix.



Experimental results demonstrated the superior 
performance of the proposed algorithm compared to 
Powell's method in terms of both solution quality and CPU 
time for two sets of 3D medical images. 
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