
Sonochemically Synthesized LaPO₄ Nanopowder and Its Catalytic Activity

 $\label{eq:control_power_power} \mbox{Mehrdad POURAYOUBI}^{a*}, \mbox{$\frac{Zohreh\ SHOBEIRI}{DIVJAKOVIC}^{b}$}, \mbox{Marko\ RODIC}^{b} \mbox{ and\ Vladimir}$

^a Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran ^b Department of Physics, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia

pourayoubi@um.ac.ir, z.shobeiri@gmail.com

Up to now, some procedures have been developed for the synthesis of LaPO₄ salt, in the nanoscale, and we report here the preparation of LaPO₄ nanoparticles under ultrasonic irradiation by using La(NO₃)₃.6H₂O and NaH₂PO₄.2H₂O in water/ethylene glycol. The morphology and average particle size were studied by SEM-EDX and XRD. The SEM image showed uniformity in morphology of the prepared LaPO₄ (Fig. 1), and the existence of lanthanum, phosphorous, and oxygen atoms were confirmed by SEM-EDX analysis. XRD pattern of sample is in agreement with monoclinic system of the LaPO₄ in $P2_1/n$ space group (JCPDS 32-0493). The average grain size, of 41 nm, was calculated by using Scherrer equation. The synthetic lanthanum phosphate was used as a new heterogeneous and highly useful nano-catalyst for the synthesis of 3-(4-nitrophenyl)-1-phenyl-3-(phenylthio)propan-1-one from the conjugate addition of thiophenol to p-nitrochalcone. The product was characterized by single-crystal X-ray determination (Fig. 2), IR, 1 HNMR, 13 CNMR, elemental analysis and mass spectrometry. The low solubility of LaPO₄ salt in water and its high thermal stability $^{[2]}$ make it as a good candidate in catalytic applications. $^{[3]}$ Moreover, due to the presence of PO₄ $^{3-}$, the La $^{3+}$ ion is oxophilic enough to form a strong coordinate bond with the oxygen atom in a carbonyl compound. This is a suitable characteristic to activate C_{β} in the α,β -unsaturated ketones giving the sufficiently electrophilic property required in the conjugate addition considered in this work

Acknowledgements

The authors gratefully acknowledge the support of this work by the Ferdowsi University of Mashhad.

Fig. 1.

References:

(a) F. Gu, G. Guo, Z. Wang, H. Guo, Colloids Surf. A: Physicochem. Eng. Aspects 2006, 280, 103; (b)
B. Damien, A. Fabienne, C. Thibault, S. Dimitri, B.-A. Didier, Solid State Sci. 2007, 9, 432; (c) C. Yu,
M. Yu, C. Li, X. Liu, J. Yang, P. Yang, J. Lin, J. Solid State Chem. 2009, 182, 339.

Fig. 2.

- [2] P. V. Ananthapadmanabhan, K. P. Sreekumar, T. K. Thiyagarajan, R. U. Satpute, K. Krishnan, N. K. Kulkarni, T. R. G. Kutty, *Mater. Chem. Phys.* 2009, 113, 417.
- [3] H. Onoda, H. Nariai, A. Moriwaki, H. Maki, I. Motooka, J. Mater. Chem. 2002, 12, 1754.