


# Differential Physiological and Morphological Responses of Persian and Hybrid Petunia (*Petunia hybrida cv.* Sonja Pink) in Vegetative and Reproductive Growth Stagesunder Drought Stress

# <sup>1</sup>Mina Zarghami Moghadam, <sup>2</sup>Mahmud Shour, <sup>2</sup>Ali Ganjali, <sup>2</sup>Nasrin Moshtaghi

<sup>1</sup>PhD, Ferdowsi University of Mashhad-Horticulture department-International Branch
 <sup>2</sup>Associate professor of Horticulture department, Ferdowsi University of Mashhad.
 <sup>3</sup>Associate professor of Faculty of Science, Ferdowsi University of Mashhad.
 <sup>4</sup>Assistant professor of Agronomy department, Ferdowsi University of Mashhad.

# ARTICLE INFO

ABSTRACT

Article history: Received 28 September 2015 Accepted 30 October 2015 Available online 24 November 2015

**Keywords:** Environmental stress, water shortage, bedding plants, stress responses Although low water use landscaping is becoming common in arid regions, little is known about drought tolerance and drought responses ofmany ornamental plants, especially herbaceous perennials. Petunia is a common flowering ornamental plant, largely produced for home-consumption and gardening. A factorial experiment based on a completely randomized design with irrigation at 3 levels (100, 70 and 40% FC) and Petunia hybrid (Persian and Petunia hybrida cv. Sonja Pink)in vegetative and reproductive growth stageswas conducted with 4 replicates. Results showed significant differences among measured traits. Obviously a great difference is demonstrated between Persian petunia and Petunia hybrida cv. Sonja Pink in almost all characteristics. Nearly all measured traits are affected by watering regimes. Interactions effects were also outstanding especially in shoot and root dry weights and flower characteristics. Drought stress decreased leaf area, plant height, and roots and shoots fresh and dry weight and root length significantly in both petunias.Highest and lowest values are mainly observed in well water (100% FC) and stress (40% FC) treatments, respectively. Flower number and lateral branches were reduced from 71.87 and 8.5 to 13 and 1, respectively. But main branches and flower diameter were less affected. It generally seems according to the results of this experiment, that petunia is asemi tolerant plant with moderatedrought resistance.

#### © 2015 AENSI Publisher All rights reserved.

**To Cite This Article:** Mina Zarghami Moghadam, Mahmud Shour, Ali Ganjali, Nasrin Moshtaghi, Differential Physiological and Morphological Responsesof Persian and Hybrid Petunia (*Petunia hybrida* cv. Sonja Pink) in Vegetative and Reproductive Growth Stagesunder Drought Stress. *Adv. Environ. Biol.*, *9*(23), *316-321*, *2015* 

## INTRODUCTION

Landscape irrigation represents a major portion of the potable water used in arid and semi-arid regions. Throughout the aridIntermountain West, for example, 30–70% of all potable water isused to irrigate urban landscapes [6]. Water stress may arise as a result of two conditions, either due to excess of water or water deficit. Physiological effects of drought on plants are the reduction in vegetative growth; in particular shoot growth. While drought-tolerance mechanisms may allow plants tosurvive during drought, they do not insure the plants will have high visual quality. Growth reductions, for example, mayreduce the visual appeal of plants in the landscape. Even plantsthat have some degree of drought tolerance may still experience reductions in flower number, size and/or quality [8,10], wilting, and/or leaf burnwhen exposed to drought. Drought-adapted plants either totally avoid (i.e. completing their life cycle when water is not limiting) or tolerate drought. Drought avoiding species such as annuals may be minimally useful in low water use landscapes because they lose their visual appeal because of above-ground die back. In contrast, drought tolerant plants by maintaining normal above-groundappearance, despite being water stressed, are more likely to bevaluable in low-water landscapes where irrigation is infrequent.

While crop tolerance to salinity and drought has been givenconsiderable attention, fewer studies have dealt specifically with ornamental plants. A number of growth controlling strategies using different approaches have been studied in recent years [4,7], especially involving the application of plant growth regulators [2]. One of the

Corresponding Author: Mina Zarghami Moghadam, PhD, Ferdowsi University of Mashhad-Horticulture department-International Branch E-mail: Zarghami\_m@yahoo.com

consequences of exposing plant to drier regimesin terms of plant growth is the production of smaller leaves and shorter internode sections and reductions in flower number, sizeand/or quality [12,8]. Differences in sensitivity todrought between different species and/or cultivars [16,9,14] and even between growthstages have been demonstrated for many plants [15,13].

Petunia is a common flowering ornamental plant, largely produced for home-consumption and gardening. In Iran it is also used as a main landscape flower for mild to warm seasons.

In conclusion to this point of view, the main aim of this study was to identify and compare different physiological and morphological responses of Persian and hybrid Petunia (*Petunia hybrida cv.* Sonja Pink) to drought stress invegetative and reproductive growth stages.

### MATERIAL AND METHODS

This study was conducted in two individual experiments in vegetative and reproductive growth stages.2 petunia cultivars namely Persian and Sonja Pinkwere selected for a factorial experiment based on a completely randomized design with irrigation at 3 levels (100, 70 and 40% FC) with 4 replicates in vegetative and reproductive growth stages. Drought stress was imposed using %FC treatments.

### Experiment 1: Vegetative Growth Stage:

Leaf surface was determined using a Li-3100 area meter (LI, Lincoln, Nebraska, USA). To measure RWC, fresh weight (FW) of two excised leaves per plant were weighed and placed in plastic bags in the dark with their petioles plunged in distilled water overnight to allow them to reach full turgor and, hence, to determine their turgid weight (TW). These leaves were then dried at 70  $\degree$ C for 24 h and their dry weight (DW) was recorded. Then RWC was calculated using the following equation:

% LRWC= (FW-DW)/ (TW-DW)  $\times$  100

Electrolyte leakage was calculated by following the standard method of Pinhero and Fletcher [5].

Leaf chlorophyll related SPAD units were determined using a SPAD-502 Chlorophyll Meter (Konica, Minolta, Tokyo) on 2 different leaves of each plant, and the mean value was calculated.

Root and shoot length was measured after picking up plants at the end of experiment period using a ruler. Leaf and branch numbers were also counted and recorded.

Roots, leaves, and stems of examined plants were weighted after picking up from experimental plots. They were then dried (70  $^{\circ}$ C for 48 h), and dry weights were recorded.

Chlorophyll content was determined using Dere et al. [1]. 200 mg of fresh leaves was homogenized and extracted with 10 ml methanol 99% (v/v %). After this process absorbance was read at 666 and 653 nm chlorophyll a and b wavelength. Calculation equations used are as below:

CHL a= 15.65 A666 – 7.340 A653 CHL b= 27.05 A 653- 11.21 A666

CHL t = CHL a + CHL b

 $\operatorname{CHL} \mathfrak{l} = \operatorname{CHL} \mathfrak{a} + \operatorname{CHL} \mathfrak{b}$ 

# Experiment 2: Reproductive growth stage:

All the measured traits for vegetative growth stage are repeated in this experiment and some other traits such as main branch, lateral branch, flower number, flower diameter and flower tube length are also measured and recorded.

### Results:

Results showed significant differences among measured traits. Obviously a great difference is demonstrated between Persian petunia and *Petunia hybrid cv*. Sonja Pink in almost all characteristics. Nearly all measured traits are affected by watering regimes.

## Experiment 1: Vegetative growth stage:

Physiological and biochemical traits of petunia cultivars and drought stress levels in vegetative growth stage are shown in Table 1. According to the results, Persian petunia showed higher values in relative water content (67.46%), electrolyte leakage (30.73%) and carotenoid content (4.72 mg/g FW) compared to *Petunia hybrid cv.* Sonja Pink. Whereas it showed lower values in membrane stability index (0.7%), chlorophyll a, b and total (20.51, 8.84 and 29.36 mg/g FW respectively) content.

Drought stress also imposed significant reduction in some measured traits. Relative water content and membrane stability index reduced by 20%. Electrolyte leakage, chlorophyll and carotenoid content increased along with stress severity (Table 1).

|            | RWC (%) | MSI   | EL (%) | CHLa<br>(mg/gFW) | CHLb<br>(mg/gFW) | CHLt<br>(mg/gFW) | Carotenoid<br>(mg/gFW) |
|------------|---------|-------|--------|------------------|------------------|------------------|------------------------|
| Cultivar   |         |       |        |                  | (1119/51 (1))    | (119/91 (1))     |                        |
| Persian    | 67.46a  | 0.69a | 30.73a | 14.87b           | 6.72b            | 21.6b            | 4.72a                  |
| Sonja Pink | 62.53b  | 0.7a  | 29.13a | 20.51a           | 8.84a            | 29.36a           | 1.12b                  |
| Drought    |         |       |        |                  |                  |                  |                        |
| 100%FC     | 66.98b  | 0.76a | 23.39c | 15.77b           | 7.33b            | 23.11b           | 2.66a                  |
| 70% FC     | 73.62a  | 0.71b | 28.49b | 16.03b           | 6.7b             | 22.73b           | 2.8a                   |
| 40% FC     | 54.37c  | 0.62c | 37.38a | 21.28a           | 9.31a            | 30.6a            | 3.3a                   |

Table 1: Physiological and biochemical traits of petunia cultivars and drought stress levels in vegetative growth stage

Figures with different letters in each column are significantly different at P≤5%.

Morphological indexes were shown to be noticeably different between two studied cultivars. Persian petunia was observed higher in leaf area (133.57 cm<sup>2</sup>), root fresh (2.95 grams) and dry weight (0.14 grams) and shoot fresh (10.62 grams) and dry (0.64 grams) weight, leaf number (24.55), total root length (101859 cm) and branch number (4.44) in comparison to *Petunia hybrida cv*. Sonja Pink (Table 2).Drought stress caused a reduction on allmorphological indexes measured. Plant had no branches in 40 % FC.

 Table 2: Morphological traits of petunia cultivars and drought stress levels in vegetative growth stage

|                | $LA (cm^2)$      | RFW (g  | g) SFW (g) | RDW (     | g) SDW (g   | g) L. No    | PL (cm | ) RL (cm) | RS       | RD (mm | ) B. No. |
|----------------|------------------|---------|------------|-----------|-------------|-------------|--------|-----------|----------|--------|----------|
| Cultivar       |                  |         |            |           |             |             |        |           |          |        |          |
| Persian        | 133.57a          | 2.95a   | 10.62a     | 0.14a     | 0.65a       | 24.55a      | 2.81a  | 101859a   | 5076.36a | 0.49b  | 4.44a    |
| Sonja Pink     | 45.22b           | 1.71b   | 4.16b      | 0.07b     | 0.25b       | 15.77b      | 2.64a  | 10463a    | 6230a    | 0.53a  | 3.33b    |
| Drought        |                  |         |            |           |             |             |        |           |          |        |          |
| 100%FC         | 142.09a          | 3.13a   | 11.06a     | 0.13a     | 0.64a       | 28.67a      | 3.33a  | 132275a   | 6691.67a | 0.518a | 6.50a    |
| 70% FC         | 105.81b          | 2.89a   | 9.18b      | 0.13a     | 0.55a       | 21.83b      | 2.86b  | 12302.70a | 6932.93a | 0.513a | 5.17b    |
| 40% FC         | 20.28c           | 0.97b   | 1.93c      | 0.06b     | 0.16b       | 10.00c      | 1.98c  | 6498.50b  | 33350b   | 0.511a | 0.00c    |
| Eigunge with a | lifforont lottor | in aaah |            | ionificon | the difform | nt at D<50/ |        |           |          |        |          |

Figures with different letters in each column are significantly different at  $P \le 5\%$ .

Among interaction effects, shoot fresh weight, leaf area and branch number are the traits most affected. According to these highest values of shoot fresh weight and leaf area is observed in Petunia hybrid cv. Sonja Pink and well water while the lowest are shown in Persian petunia and severe drought stress. Highest branch number is observed in Persian petunia (Fig. 1). From the results of this investigation, it can be concluded that the Persian petunia is moderately suited for commercial cultivation in water-deficit areas.

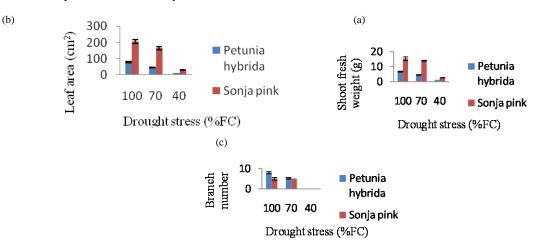



Fig. 1: Interaction effects on measured traits, shoot fresh weight (a), leaf area (b) and branch number (c)

Experiment 2: Reproductive growth stage:

Results show similar properties to vegetative growth stage as for two cultivars in the reproductive stage of growth (Table 3). Persian petunia shows a better look in relative water content (67.16%), electrolyte leakage (30.77%) and chlorophyll b content (18.35 mg/g FW) which is not significant, whereas *Petunia hybrida cv*. Sonja Pink is greater in membrane stability index (0.76%), chlorophyll a and total (28.46 and 46.6 mg/g FW) and carotenoid content (6.11 mg/g FW) (Table 3).Drought stress decreased relative water content and membrane stability index by 30 and 20 % respectively. Chlorophyll content (a, b and total) were observed greater in severe stress (70 and 40 % FC) and chlorophyll a/b ratio is not significantly different at any level.

Morphological indexes were shown to be noticeably different between two studied cultivars except for root diameter (Table 4). Persian petunia was observed higher all traits but only root surface. Drought stress caused a

reduction on the majority of the measurements. Highest root diameter (0.493 mm) and root to shoot dry weight ratio was observed in 70 % FC and 40% FC treatments, respectively (Table 4). Main and lateral branch (5.91 and 5.5) and flower number (48.91) was observed higher in Persian petunia and flower diameter (5.63 cm) and flower tube length (2.82 cm) was higher in *Petunia hybrida cv*. Sonja Pink (Table 5).Drought stress decreased all of the measured traits significantly (Table 5). Lateral branch is the most decreased by 90 % (8.5 to 1) and flower diameter is the least reduction by 25 % (5.76 to 4.34 cm).

| 30.77a<br>23.4b | (mg/gFW)<br>23.56b<br>28.46a | (mg/gFW)<br>18.35a            | (mg/gFW)<br>41.92b                          | (mg/gFW)<br>3.85b          | 1.31b                                                                                                                                        |
|-----------------|------------------------------|-------------------------------|---------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                              |                               |                                             | 3.85b                      | 1.31b                                                                                                                                        |
|                 |                              |                               |                                             | 3.85b                      | 1.31b                                                                                                                                        |
| 23.4b           | 28.46a                       | 10 10-                        |                                             |                            |                                                                                                                                              |
|                 |                              | 18.12a                        | 46.6a                                       | 6.11a                      | 1.59a                                                                                                                                        |
|                 |                              |                               |                                             |                            |                                                                                                                                              |
| 19c             | 22.56b                       | 16.36b                        | 38.93b                                      | 4.18b                      | 1.41a                                                                                                                                        |
| 28.6b           | 28.42a                       | 18.99a                        | 47.41a                                      | 6.01a                      | 1.49a                                                                                                                                        |
| 33.66a          | 27.04a                       | 19.39a                        | 46.43a                                      | 4.74b                      | 1.45a                                                                                                                                        |
|                 | 28.6b<br>33.66a              | 28.6b 28.42a<br>33.66a 27.04a | 28.6b 28.42a 18.99a<br>33.66a 27.04a 19.39a | 28.6b 28.42a 18.99a 47.41a | 28.6b         28.42a         18.99a         47.41a         6.01a           33.66a         27.04a         19.39a         46.43a         4.74b |

| reisian          | /10.95a | 20.46a | 105.04a | 2.75a | 10.4a        | 0.51a  | 54.92a | JUJU9.4a | 7554.00  | 0.401a |
|------------------|---------|--------|---------|-------|--------------|--------|--------|----------|----------|--------|
| Sonja Pink       | 177.66b | 3.28b  | 32.33b  | 0.43b | 3.52b        | 0.12b  | 21.33b | 14801.1b | 32916.3a | 0.469a |
| Drought          | _       |        |         |       |              |        |        |          |          |        |
| 100%FC           | 682.12a | 17.86a | 112.64a | 2.37a | 12.22a       | 0.165c | 38.25a | 45546.9a | 26706.6a | 0.471b |
| 70% FC           | 455.74b | 13.65b | 69.39b  | 1.91b | 6.96b        | 0.221b | 32.12b | 44692a   | 25395a   | 0.493a |
| 40% FC           | 204.06c | 4.67c  | 21.92c  | 0.46c | 1.7c         | 0.271a | 14c    | 16426.8b | 8274.8b  | 0.446b |
| <b>D</b> ' 1.1 1 |         |        |         |       | 1.00 · · · D |        |        |          |          |        |

Figures with different letters in each column are significantly different at P $\leq$ 5%.

**Table 5:** Flower characteristics measured in reproductive growth stage

|            | Main branch | Lateral branch | Flower No. | Flower<br>(cm) | diameter | Flower tube length (cm) |
|------------|-------------|----------------|------------|----------------|----------|-------------------------|
| Cultivar   |             |                |            |                |          |                         |
| Persian    | 5.91a       | 5.5a           | 48.91a     | 4.79b          |          | 2.35b                   |
| Sonja Pink | 4.16b       | 3.67b          | 37b        | 5.63a          |          | 2.82a                   |
| Drought    |             |                |            |                |          |                         |
| 100%FC     | 6.75a       | 8.5a           | 71.87a     | 5.76a          |          | 2.96a                   |
| 70% FC     | 4.37b       | 4.25b          | 44b        | 5.25a          |          | 2.67b                   |
| 40% FC     | 4b          | 1c             | 13c        | 4.34b          |          | 2.13c                   |

Figures with different letters in each column are significantly different at P≤5%.

Among interaction effects, flower number, lateral branch and shoot dry weightare the traits most affected. According to the results recorded, highest values of shoot dry weightand flower number is observed in Petunia hybrid cv. Sonja Pink and well water while the lowest are shown in Persian petunia and severe drought stress (Fig. 2). Highest lateral branch number is observed in Persian petunia.

### Discussion:

A reduction in canopy area as an avoidance mechanism along with chlorophyll deterioration which usually occur in salinity stress, may be the main reason for this slight decrease. Visual symptoms of salt injury, such as burning leaf margin were observed in plants.

Enhanced electrolyte leakage was considered to be a symptom of stress-induced membrane damage and deterioration. There was significant difference in EL between treated plants and different cultivars.

Leaf relative water content (RWC) is an index representing theamount of water in the plant organs and shows the ability of a plant in maintaining water understress conditions [3]. So in a controlled environment for an experiment, themeasured RWC shows the response of a plant and the higher the measured amount, the greaterthe ability of a treatment for keeping water [3]. Results in this experimentshow a gradual linear decrease from 0 to 150 mM and a big collapse from then to 225 mM. Theseresults explain optimum resistance levels in *Trifolium* species to a mild salinity stress and sensitivity sever stress. Our findings agree with Genhua and Denise which RWC of *Ceratostigma plumbagioides* decreased significantly from 78% to 64% as irrigation

salinity increased and donot agree with Nader et al., on *Crithmum maritimum* which shows a very small decreasein root and shoot RWC with increasing salt concentration.

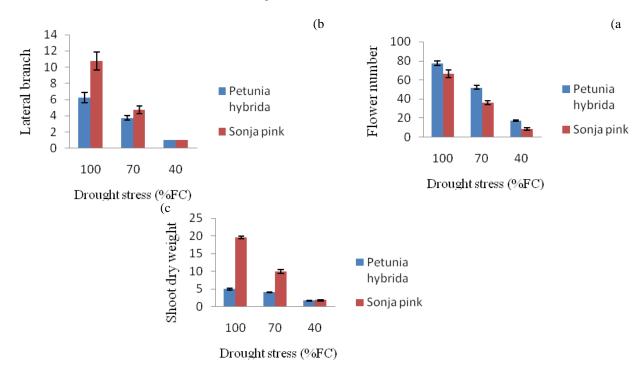



Fig. 2: Interaction effects on measured flowering stem traits, flower number (a), lateral branch (b) and Shoot dry weight (c)

Reduction in Water deficit may influenceflowering by inhibiting vegetative growth [8]. Hence, the reduction in flower characteristics under drought stress is probably due to a reduced vegetative growth of petunia. Water stress has decreased flower visual quality in both cultivars and growth stages. Leaf area under drought and saline stress can be considered as avoidance mechanisms, which minimize water losses when the stomata are closed, which happens to many species under osmotic stress.

This redistribution of dry matter in favor of the roots at the expense of shoots is probably due to the plantsneeding to maintain root surface area under drought conditions inorder to absorb water from the substrate. An advantage for the smaller surface area, as we can observe our experiment, is its contribution in reducing water consumption, since canopy transpiration is a function of the net sunshine energy absorption and lower leaf area will reduce light interception [2].

#### Conclusion:

Drought stress was shown to be significant on different petunia cultivars and also growth stages. Results showed significant differences among measured traits. Obviously a great difference is demonstrated between Persian petunia and *Petunia hybrida cv*. Sonja Pink in almost all characteristics. But these are according to the properties of each cultivar. It generally seems according to the results that petunia is semi tolerant a plant with good drought resistance and SA could act as a useful and beneficial stress alleviator for reducing harmful stress effects.

## REFERENCES

- [1] Dere, S., T. Gunes, R. Sivaci, 1998. Spectrophotometric determination of chlorophyll a, b and total carotenoid contents of some algae species using different solvents. Journal of Botany, 22: 13-17.
- [2] Banon, S., A. Gonzalez, E.A. Cano, J.A. Franco, 2002. Growth, development and color response of potted *Dianthus caryophyllus* cv. Mondriaan to paclobutrazoltreatment. Sci. Hort., 94: 371-377.
- [3] Abbaszadeh, B., E. Ashourabadi Sharifi, M.H. Lebaschi, M.N. Hajibagher Kandy and F. Moghadami, 2008. The effect of drought stress on proline contents, soluble sugars, chlorophyll and relative water contents of balm (*Melissa officinalis* L.). Iranian J. of Med. and Arom. Plants. 23: 504-513.
- [4] Cerny, T., J.E. Faust, D.R. Layne, N.C. Rajapakse, 2003. Influence of photoselectivefilters and growing season on stem growth and flowering of six plant species. J.Am. Soc. Hort. Sci., 128(4): 486-491.

- [5] Pinhero, R.G. and R.A. Fletcher, 1994. PBZ and ancymidol protect corn seedlings from high and low temperature stresses. Plant Physiol., 114: 695-704.
- [6] Kjelgren, R., L. Rupp, D. Kilgren, 2000. Water conservation in urban landscapes. Hort Science, 35: 1037-1043.
- [7] Montgomery, B.L., E. Silva Casey, A.R. Grossman, D.M. Kehoe, 2004. ApIA, a member of a new class of phycobiliproteins lacking a traditional role inphotosynthetic light harvesting. J. Bacteriol., 186(21): 7420-7428.
- [8] Cameron, R.W.F., R.S. Harrison-Murray, M.A. Scott, 1999. The use of controlled water stress to manipulate growth of container-grown Rhododendron cv. Hoppy. J. Hort. Sci. Biotechnol., 74(2): 161-169.
- [9] Clary, J., R. Save, C. Biel, F. De Herralde, 2004. Water relations in competitive interactions of Mediterranean grasses and shrubs. Ann. Appl. Biol., 144: 149-155.
- [10] Williams, M.H., E. Rosenqvist, M. Buchhave, 1999. Response of potted miniature roses (*Rosa hybrida*) to reduced water availability duringproduction. J. Hort. Sci. Biotechnol., 74(3): 301-308.
- [11] Cameron, R.W.F., R.S. Harrison-Murray, M.A. Scott, 1999. The use of controlled water stress to manipulate growth of container-grown Rhododendron cv.Hoppy. J. Hort. Sci. Biotechnol., 74: 161-169.
- [12] Sanchez-Blanco, M.J., P. Rodriguez, M.A. Morales, M.F. Ortuno, A. Torrecillas, 2002. Comparative growth and water relation of *Cistus albidus* and *Cistus monspe-liensis* plants during water deficit conditions and recovery. Plant Sci., 162: 107-113.
- [13] Mingeau, M., C. Perrier, T. Ameglio, 2001. Evidence of drought-sensitive periodsfrom flowering to maturity on highbush blueberry. Sci. Hort., 89: 23-40.
- [14] Save, R., C. Biel, F. De Herralde, 2000. Leaf pubescence, water relations andchlorophyll fluorescence in two subspecies of *Lotus creticus* L. Biol. Plant., 43: 239-244.
- [15] Sionit, N., D.T. Patterson, R.D. Coffin, D.A. Mortenson, 1987. Water relations and growth of the wees, goosegrass (*Eleusine indica*), under drought stress. FieldCrops Res., 17: 163-173.
- [16] Zollinger, N., R. Kjelgren, T. Cerny-Koenig, K. Kopp, R. Koenig, 2006. Droughtresponses of six ornamental herbaceous perennials. Sci. Hort., 109(3): 267-274.