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Abstract 

The objective of present paper is to provide closed-form solutions for the size-dependent 
flexural wave propagation speed and natural frequencies of micro-beams made of function-
ally graded materials. For this aim, the modified couple stress theory (MCST) together with 
the Rayleigh's beam model is considered and the size-dependent equation of motion which 
accounts for the effects of rotary inertia, axial residual and couple stress components as well 
as through-thickness variation of the material properties is derived using the Hamilton's prin-
ciple. Utilizing the derived equation of motion, closed-form exact expressions for flexural 
wave propagation speed of the system as well as its natural frequencies are presented. A de-
tailed parametric study is also conducted to emphasis on the effects of couple stress compo-
nents, rotary inertia and through-thickness variation of the material properties on both flex-
ural wave propagation speed and natural frequencies of the system. The results show that ac-
counting for couple stress components results in increasing both natural frequencies and flex-
ural wave propagation speed, while the rotary inertia reduces both of them. It is found that 
the effects of couple stress components and rotary inertia on the wave propagation speed in-
creases with an increase of the wave source frequency. Furthermore, it is observed that higher 
natural frequencies of the system will be affected more than the lower ones if the couple 
stress components and rotary inertia effects are taken into account.   

Keywords: Modified couple stress theory; Rayleigh's beam model; Functionally graded ma-
terials; Vibrational analysis.  
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1. Introduction 

Structures at micron and sub-micron scales are frequently used nowadays. Resonant micro-
sensors as one of the largest category of micro-systems are extensively utilized in different applica-
tions such as signal filtering, and chemical and mass sensing [1]. The building blocks of these sen-
sors are mechanical micro-structures which can be modelled as micro-beams whose vibrational 
characteristics are employed as the sensing method [2]. Therefore, extracting the vibrational charac-
teristics of micro-beams is essential and quiet useful in designing such sensors. 

Recently, variety of experiments showed that the material mechanical behavior in small scales 
is size-dependent [3, 4]. Size-dependent behavior is an intrinsic property of certain materials, which 
emerges when the characteristic size, e.g. the diameter or the thickness is comparable to the material 
length scale parameter which can be determined experimentally [3-5]. 

The classical continuum mechanics cannot predict the size-dependent behavior of materials 
which occurs in micron and sub-micron scale structures. In 1960s Toupin [6], Koiter [7] and 
Mindlin [8] proposed the classical couple stress elasticity theory based on the Cosserat continuum 
mechanics [9]. Based on this theory, beside the classical stress tensor, the couple stress components 
should be included to describe the manner of media. In comparison to the classical continuum me-
chanics, the couple stress theory has two additional parameters (high-order material length scales) 
other than two classical Lame's constants in constitutive equations for isotropic elastic materials. 
Recently, a modified version of this theory has been elaborated by Yang et al., in which constitutive 
equations involve only one additional internal material length scale parameter besides two classical 
material constants [10].  

The modified couple stress theory (MCST) has been successfully utilized to predict mechani-
cal behavior of micro-structures in recent years. Park and Gao [11] showed that the bending rigidity 
predicted by the MCST is larger than that calculated by the classical theory (CT) and the difference 
between the deflections predicted by these two models is significant when the beam thickness is 
small. Kong et al. [12] investigated the size effect on natural frequencies of the Euler-Bernoulli mi-
cro-beams. Ke et al. [13] studied the thermal effect on the free vibration and buckling of micro-
beams using the MCST and Timoshenko beam theory through the differential quadrature method 
(DQM).  

To achieve all material and economical requirements for micro-structures, functionally graded 
materials (FGMs) are extensively employed in the past years [14, 15]. Therefore, many researchers 
are motivated to develop size-dependent mechanical models for functionally graded (FG) structures 
at micron and sub-micron scales using the MCST. Asghari et al. [16] presented some closed-form 
solutions for static bending and free vibration analysis of size-dependent FG micro-beams using the 
Euler-Bernoulli beam model. Reddy [17] developed size-dependent non-linear Euler-Bernoulli and 
Timoshenko beam theories for micro-beams made of FGM with two material phases based on the 
MCST. He also presented some analytic solutions as well as finite element models for investigating 
free vibration, bending, buckling and post-buckling responses in such systems. Ke et al. [18] inves-
tigated non-linear free vibration of FG Timoshenko micro-beams using the MCST through iterative 
DQM.  

Although many researchers have dealt with the mechanical behavior of micro-beams, the re-
search effort devoted to wave propagation analysis of these structures are very limited. The objec-
tive of present work is to extract the size-dependent flexural wave propagation speed as well as the 
natural frequencies of FG micro-beams on the basis of the MCST. To do so, size-dependent FG 
Rayleigh's beam model is developed using the Hamilton's principle and flexural wave propagation 
speed of the system as well as its natural frequencies are extracted through closed-form exact ex-
pressions. A detailed parametric study is also conducted to show the effects of couple stress compo-
nents, rotary inertia and through-thickness variation of the material properties on both wave propa-
gation speed and natural frequencies of the system. 
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2. The MCST formulation for FG Rayleigh's micro-beams 

According to the MCST presented by Yang et al. [10] in 2002, both strain tensor (conjugated 
with stress tensor) and curvature tensor (conjugated with couple stress tensor) are included in the 
strain energy density. Based on this theory, the strain energy U in a deformed isotropic linear elas-
tic material occupying region   is given by 

  1
: : d

2
U


   m

  
    (1) 

where 

 , 

 , m


and 

  are the Cauchy stress, strain, deviatoric part of couple stress and symmetric 

curvature tensors, respectively. These tensors for cases with small slopes and deflections can be 
written as 

      T T21 1
tr 2 , , 2 ,

2 2
l                  I u u m

     
         (2) 

where / / /x y zx y z         e e e , u  is the displacement vector,   and   are Lame's con-

stants (  is also known as shear modulus), l is the internal material length scale parameter, I


 is the 

identity tensor and   is the rotation vector obtained as  1/ 2 curl u . 

According to the basic hypothesis of the Rayleigh's beam model which accounts for the effect 
of inertia due to both axial and transverse displacements of the beam [19], the displacement field 
( , )u w  of an arbitrary point on the micro-beam can be expressed as  

  / , ,u z w x w w x t       (3) 

where w is the transverse displacement of a point on the mid-plane of the micro-beam (i.e. z = 0). 
Figure 1 shows a schematic of a micro-beam made of a non-homogenous FGM with two dis-

tinct material phases. The thickness, length and width of the micro-beam are h, L and b, respec-
tively. It is assumed that the properties of the beam vary continuously through its thickness accord-
ing to the power-law [17] as 

        1 1 2 1 1
2

VF , VF
2

m
m z h

z z z
h

             
 (4) 

where  1VF z  is the volume fraction of the material phase 1, m is the power-law index and 

 z can be considered as any property of the beam such as its Young modulus (  E z ), shear 

modulus (  z ), density (  z ) and material length scale parameter (  l z ). Also, parameters 

with sub-scripts 1 and 2 are referred to the properties of the material used in the bottom and top 
surfaces of the beam, respectively. It is noteworthy that, by setting m = 0, the present formulation 
would be simplified for homogeneous micro-beams made of material phase 2. Also the volume 
fraction of material phase 2 can be written as    2 1VF 1 VFz z   [17]. 

 
Figure 1. Schematic of a FG micro-beam. 
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The strain energy expression for the displacement field introduced in Eq. (3) takes the form 

      
2

2

2

2eq 0eq

1 1
2

2 2

L

x x xy xyV

w
U m dV EI Al dx

x
   

            
   (5) 

where  eq
EI  and  2

eq
Al  are 

            2 2 2
eq eq

1
,

2 1A A
EI z E z dA Al l z E z dA


 

   (6) 

in which   is the Poisson's ratio of the beam assumed to be constant for the FGM [17]. Also, A 
refers to the cross sectional area of the micro-beam. 

The kinetic energy of the micro-beam takes the form 

      
2 2 2

eq eq0

2 2

0

1 1 1

2 2 2

L L

V

u w w w
T z dV I dx A dx

t t x t t
  

                                         
  

 
 (7) 

where  eq
A  and  eq

I  are 

        2
eq eq

,
A A

A z dA I z z dA       (8) 

Due to the mismatch of both thermal expansion coefficient and crystal lattice period between 
substrate and micro-beam film which is un-avoidable in surface micro-machining techniques, a re-
sultant axial force rN bh  is applied to the micro-beam [20], where r  represents the axial re-

sidual stress. The external virtual work done by the axial residual force N can be expressed as [19] 

 ext 0

L w w
W N dx

x x
  

 
   (9) 

The Hamilton principle for an elastic body states ext( ) 0f

i

t

t
T U W dt      [21]. By sub-

stitution of Eqs. (5), (7) and (9) into the Hamilton's principle, the equation of motion is obtained as  

        
2 4 4 2

2
2 2 2 4 2eq eq eq eq

0
w w w w

A I EI Al N
t x t x x

                
 (10) 

The corresponding boundary conditions are also determined as  

      
3 3

2
3 2eq eqeq

0 or 0 at 0,
w w

w EI Al I x L
x x t

  
               

  (11a) 

    
2

2
2eq eq

0 or 0 at 0,
w w

EI Al x L
x x

 
             

 (11b) 

It is to be noted that, for extracting the wave propagation speed and natural frequencies of the sys-
tem, no initial conditions are required.  

Eq. (10) and its corresponding boundary conditions represent the size-dependent governing 
equation of motion for a FG Rayleigh's micro-beam based on the MCST. This equation will be util-
ized in the next two sections for extracting the size-depended flexural wave propagation speed and 
natural frequencies in FG Rayleigh's micro-beams. 
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3. Extracting the flexural wave propagation speed 

For extracting the flexural wave propagation characteristics, the harmonic wave function for 
transverse deflection  ,w x t  can be expressed as [22] 

  , exp 2
x t

w x t W i
T




        
 (12) 

where T denotes the period of the wave which is equal to that of the wave source and   is the 

wavelength. Also 1i   . Upon substitution from Eq. (12) into Eq. (10), the wavelength can be 
obtained as 

 
   

                 

2
eq eq

22 2 2 2
eq eq eq eq eq

2
2

2 2 4 2

EI Al

I f N I f N A f EI Al


 

      

   
       

 (13) 

where f is the frequency of the wave source measured in Hz. The flexural wave propagation speed 
can also be extracted as pC f  . According to Eq. (13), both wavelength and wave propagation 

speed depend to the frequency of the wave source. It is noteworthy that by neglecting the effects of 
size, through-thickness variation of material properties and axial residual force, Eq. (13) would be 
simplified to that of simple classic Rayleigh's beam model [22].  

4. Obtaining the natural frequencies 

By assuming      , expn nw x t x i t  , the eigenvalue problem associated with Eq. (10) 

will be obtained as 

        
4 2 2

2 2 2
4 2 2eq eq eqeq

0n n n
n n nEI Al I A N

x x x

                   
 (14) 

where n and n  denote the nth natural frequency and its associated mode-shape of the micro-

beam, respectively. The solution of Eq. (14), can be expressed as  

    
4

1

expn i i
i

x C s x


  (15) 

where 1s , 2s , 3s  and 4s  are the roots of the characteristic equation associated with Eq. (14). Also 

the constants 1C , 2C , 3C  and 4C as well as the natural frequencies of the system can be determined 

from the boundary conditions. Herein for the sake of brevity, we only investigate the simply sup-
ported boundary conditions. For this case, the nth natural frequency of the system can be easily ob-
tained as 

 
       

     

4 22
eq eq

2

eq eq

/ /

/
n

n L EI Al N n L

A I n L

  


  

    


 (16) 

 
As it is seen from Eq. (16), by neglecting the effects of size, through-thickness variation of material 
properties and axial residual force, this expression would be simplified to that of simple classic 
Rayleigh's beam model [19]. 
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5. Results and discussion 

Herein, using the derived equations in the previous sections, some numerical case studies are 
presented to delineate the effects of size, rotary inertia and through-thickness variation of the mate-
rial properties on both flexural wave propagation speed and natural frequencies of the system. It is 
assumed that the micro-beam is made of FG poly-SiAg structure where silver (Ag) and silicon (Si) 
are used as material phase 1 and material phase 2, respectively. The material properties of both sili-
con and silver are listed in Table 1. Also, it is assumed that there exists no axial residual stress in 
the micro-beam and the geometric properties of the system are set to: 100 μmL  , 10 μmb   and 

1μmh  . 

Table 1. Material properties of silver and silicon. 

Material  (GPa)E   3(kg/m )   ( m)l   
1. Silver (Ag) 83 0.37 10490 6.233 [23] 
2. Silicon (Si) 169 0.33 2331 0.592 [24] 

5.1 Flexural wave propagation speed 

Figure 2 shows the effects of rotary inertia and couple stress components on flexural wave 
propagation speed in a micro-beam made of silicon. According to Figure 2(a), in which the couple 
stress components are neglected, ignoring the rotary inertia effect increases the values of the wave 
propagation speed and produces very in-accurate results especially for cases with high-frequency of 
the wave source. It is to be noted that, if the effect of rotary inertia has been taken into account, by 
increasing the frequency of the wave source, the values of the wave propagation speed (i.e. Cp) may 
lead to the speed of the sound in the medium (i.e. 0 /C E  ). However, this value leads to infin-

ity if the rotary inertia effect is neglected; which is physically un-acceptable [22]. Therefore, it is 
essential to account for the effect of rotary inertia especially for high-frequency excited systems.  

The effect of couple stress components is also investigated in Figure 2(b). Based on the re-
sults of this figure, neglecting the effect of couple stress components decreases the wave propaga-
tion speed. The error of ignoring this effect for wave source frequencies less than 109 Hz is about 
21%, while this error may increase up to the values about 37% for high-frequency excited systems. 
It is to be mentioned here that, due to the wide range of wave propagation speed and frequencies of 
the wave source, we have chosen to use the logarithmic scales for Figures 2(a) and 2(b) just for the 
sake of improving the quality of presentation.  
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Figure 2. Effects of rotary inertia and couple stress components on the flexural wave propagation speed. 
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Table 2 investigates the effect of through-thickness variation of the material properties on the 
wave propagation speed using both CT and MCST. It is to be noted that the value of the wave 
source frequency is also set to 1 MHz for producing the results of this table. As it is seen from this 
table, by increasing the values of the power-law index, the CT results are decreased, while the 
MCST findings are increased. This is due to the fact that, by increasing the value of the power-law 
index, the properties of the FGM become more and more similar to those of silver which will be 
stiffer than silicon in such dimensions. Because the large material length scale parameter of the sil-
ver plays a more crucial role than its Young modulus in the dimensions of present micro-beam. This 
is the concept of size-dependent behavior at micron and sub-micron scales which must be taken into 
account for designing micro-structures. 

Table 2. Flexural wave propagation speed (m/sec) obtained by both CT and MCST versus power-law index. 
Theory silicon (m = 0) m = 0.1 m = 1 m = 10 silver (m = ∞) 
CT 124.2542   113.5363    89.6626    76.1817    71.4168 
MCST 157.1371   194.4342   243.9851   257.8768 258.3494 

5.2 Natural frequencies  
Figure 3 displays the effects of rotary inertia and couple stress components on the first 

hundred natural frequencies of present silicon micro-beam. According to the results of this figure, 
these effects play more crucial roles on higher natural frequencies than the lower ones. Therefore, it 
is more essential to account for these effects for high-frequency excited systems. 
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Figure 2. Effects of rotary inertia and couple stress components on the first hundred natural frequencies of 

present simply supported silicon micro-beam. 

Table 3 represents the effect of through-thickness variation of the material properties on the 
fundamental frequency of preset simply supported micro-beam using both CT and MCST. As it is 
seen from this table, by increasing the values of the power-law index, the results of FG micro-beam 
become more and more similar to those of micro-beam made of silver. Furthermore, the difference 
between CT and MCST results is also increased by increasing the values of the power-law index. 
This is due to the fact that, the effect of couple stress components increases with an increase of the 
value of the internal material length scale parameter [11, 12]. 

Table 3. Fundamental natural frequency (kHz) obtained by both CT and MCST versus power-law index. 
Theory silicon (m = 0) m = 0.1 m = 1 m = 10 silver (m = ∞) 
CT 386.0028    322.2947    201.0175    145.1232    127.5448 
MCST 617.3171             945.1193 1488.1986 1662.4864 1668.5824 
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6. Conclusions 

Extracting the size-dependent flexural wave propagation speed and natural frequencies of FG 
Rayleigh's micro-beams was the main goal of the present paper. For this object, the MCST together 
with the Rayleigh's beam model were employed and the governing equation of motion was derived 
through the Hamilton's principle. Using the derived equation of motion, the flexural wave propaga-
tion speed as well as natural frequencies of the system was determined through closed-form exact 
expressions. A detailed parametric study was also conducted to show the effects of couple stress 
components, rotary inertia and through-thickness variation of the material properties on both wave 
propagation speed and natural frequencies of the system. The results showed that neglecting the 
effects of couple stress components and rotary inertia decreases the bending rigidity and inertia of 
the system, respectively. Also, it was found that accounting for these effects at micron and sub-
micron scales would be more essential for the case of high-frequency excited systems.  
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