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In this paper, the Melnikov analysis is extended to develop a practical model of gear system to control 
and eliminate the chaotic behavior. To this end, a nonlinear dynamic model of a spur gear pair with 
backlash, time-varying stiffness and static transmission error is established. Based on the Melnikov 
analysis the global homoclinic bifurcation and transition to chaos in this model are predicted. Then non-
feedback control method is used to eliminate the chaos by applying an additional control excitation. 
The regions of the parameter space for the control excitation are obtained analytically. The accuracy of 
the theoretical predictions and also the performance of the proposed control system are verified by the 
comparison with the numerical simulations. The simulation results show effectiveness of the proposed 
control system and present some useful information to analyze and control the gear dynamical systems.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Gears are widely used in mechanical systems and are known 
as one of the important sources of noise and vibration. There are 
many studies on nonlinear dynamics of gear systems and some 
complicated phenomena such as bifurcation and chaos have been 
observed. Chaotic behavior is a very interesting nonlinear phe-
nomenon, and it has been detected on some system parameters 
of a gear system. For instance, Kahraman and Blankenship [1,2]
performed some experiments on a spur gear pair and observed 
several nonlinear phenomena such as sub- and super-harmonic 
resonances and chaotic behaviors. The Incremental Harmonic Bal-
ance method was applied by Raghothama et al. [3] to investigate 
periodic responses and bifurcations in a nonlinear geared rotor-
bearing system. Also, the chaotic response was studied by using 
numerical integration and the Lyapunov exponent.

Wang et al. [4] analyzed a nonlinear model of gear system 
associated with friction, backlash and time-varying stiffness. The 
existence of periodic responses, bifurcation and chaotic motions in 
system were studied numerically. In [5], Farshidianfar et al. in-
vestigated a dynamic model of gear system in which backlash, 
time-varying stiffness, external excitation and static transmission 
error were considered. The possibility of existence of homoclinic 
bifurcation and transition to chaos were studied using Melnikov 
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analysis and numerical simulation method. The results reveal that 
the system exhibits bifurcation and chaotic motions on some pa-
rameters regions. Chang-Jian [6] considered dynamic responses of 
a gear pair system supported by journal bearings. The possibility of 
existence of periodic, sub-harmonic and chaotic response for some 
parameters regions were studied using numerical integration.

From the above mentioned references it can be observed that 
bifurcation and chaos have been widely found in gear dynamic 
responses. In order to design and develop an optimal gear trans-
mission system, it is important to predict and control these non-
linear phenomena. Though the previous studies investigated the 
existence of bifurcation and chaos in gear systems, no heed is paid 
to the control and elimination of these phenomena.

Chaos control, as an important topic in nonlinear science, has 
been widely investigated in many science and engineering fields. 
Hence, feedback and non-feedback control methods have been re-
alized for the control of chaotic systems. Feedback control methods 
are used to control the chaos by stabilizing a determined un-
stable periodic orbit which is embedded in a chaotic attractor 
[7–9], while non-feedback control methods eliminate the chaotic 
behaviors by applying an additional periodic excitation force or by 
perturbing a system parameter with small harmonic [10–15]. To 
control the unstable periodic orbits by feedback methods, the OGY 
controlling approach being the most representative was introduced 
by Ott, Grebogi and Yorke [7]. The feedback control methods do 
not require the information of the system equations, but one must 
determine the unstable periodic orbits and requires performing
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several calculations to create the control signal. Hence these meth-
ods have some difficulties in practical experiments. In such cases, 
the non-feedback methods might be more useful and can be eas-
ily realized in practical systems. This method requires information 
of the system equations to create control excitation and does not 
require continuous tracking of the system state. There are numer-
ous investigations of controlling the chaotic behaviors by applying 
an additional excitation force or by perturbing a system param-
eter. For example, Chaon [10] studied suppression of chaos for 
biharmonically driven dissipative systems. General results concern-
ing suppression of chaos were derived for damped, nonlinear and 
low-dimensional oscillators subjected to two weak harmonic exci-
tations by using Melnikov method. Wang et al. [13] investigated 
control of the homoclinic and heteroclinic bifurcations in Duff-
ing equation with two weak forcing excitations by using Melnikov 
analysis and showed that the chaotic behaviors can be inhibited 
to periodic orbits. The Melnikov analysis is one of the few ana-
lytical methods to study the homoclinic and heteroclinic bifurca-
tions which provides an estimate in the parameter space for the 
occurrence of chaos in nonlinear system [16]. This method has 
been widely developed for the analysis of certain dynamical sys-
tems [17–24]. In [17] the Melnikov analysis was used to study 
the chaotic behavior in a nonlinear damped three-well φ6-Van der 
Pol oscillator under external and parametric excitations. Ravichan-
dran et al. [18] studied the homoclinic bifurcation and transition 
to the chaos in a nonlinear Duffing oscillator subjected to an am-
plitude modulated force. Threshold condition for the occurrence 
of horseshoe chaos was obtained by means of Melnikov method. 
This analytical method has been extended to study dynamics of 
the complicated nonlinear systems. Awrejcewicz et al. [19] stud-
ied the stick-slip chaos in a four-dimensional self-excited system 
with Coulomb-like friction. Also, in [20] the Melnikov–Gruendler 
method was used to predict the stick-slip chaos in double self-
excited oscillators. Litak et al. [21] applied the Melnikov method 
to examine global homoclinic bifurcation and a possible transition 
to chaos in a double well potential of the Van der Pol system 
subjected simultaneously to parametric periodic forcing and self-
excitation via negative damping term.

In present paper, based on the Melnikov analysis, the non-
feedback control method is used to control and eliminate the chaos 
in gear systems. The paper is organized as follows. In Section 2, a 
generalized nonlinear model of a spur gear pair is formulated. Also, 
the Melnikov analysis for defining the existence of the homoclinic 
bifurcation and chaos is extended. In Section 3, the control model 
is introduced and the analytical estimates for the control excita-
tion are obtained. Section 4 presents some numerical simulations 
to validate the theoretical predictions and also to investigate the 
efficiency of the proposed system to control the homoclinic bifur-
cation and consequently chaos in nonlinear gear systems. Finally, 
in Section 5, the conclusions are presented.

2. Description of the model and Melnikov analysis

2.1. Dynamic model formulation

The dynamic model of a spur gear system, investigated in this 
paper, is shown in Fig. 1 [1–5]. The gear mesh is modeled as a pair 
of rigid disk connected through a time-varying mesh stiffness k(t), 
and a constant mesh damping c set along the line of action. In this 
model, the backlash function fh , is used to represent gear clear-
ances (2b), so the equations of torsional motion can be expressed 
as [5]:

m
d2 x̃

dt2
+ c

dx̃

dt
+ k(t) fh(x̃) = F̂m + F̂e(t) (1)

where
Fig. 1. A spur gear pair model.

fh(x̃) =
{

x̃ − (1 − α)b b < x̃
αx̃ −b ≤ x̃ ≤ b
x̃ + (1 − α)b b < −x̃

, m = Ia Ib

Ibr2
a + Iar2

b

,

F̂m = m

(
Tara

Ia
+ Tbrb

Ib

)
, F̂e(t) = −m

d2e(t)

dt2

In these equations, Ia and Ib and also ra and rb , represent the 
mass moment of inertia and the base circle radius of the gears 
(a) and (b). Ta and Tb are the external torques acting on the 
gears. Additionally, x̃(t) represents the difference value between 
the dynamic and static transmission errors and can be written as 
x̃ = raθa − rbθb −e, where θa and θb are the torsional displacements 
of the gears. The static transmission error e(t) is also applied at 
the gear mesh interface to represent any manufacturing errors and 
teeth deformations from perfect involute form. The static trans-
mission error is a periodic function, its fundamental frequency is 
the meshing frequency [25]. Moreover, the mesh stiffness of the 
gear is a periodic function depending on the number and posi-
tion of the teeth in contact. So, the static transmission error and 
the mesh stiffness can be expressed as a harmonic function with 
e(t) = e(t + 2π/ωe) = e cos(ωet + φe) and k(t) = k(t + 2π/ωk) =
km + kp cos(ωkt + φk), respectively. By defining

x = x̃/b, ωn = √
km/m, τ = ωnt, Ωk = ωk/ωn,

Ωe = ωe/ωn, μ̃ = c/2mωn, k̃p = kp/mω2
n,

F̃m = F̂m/bkm, F̃e = e/b

The dimensionless form of Eq. (1) can be written as

d2x

dτ 2
+ 2μ̃

dx

dτ
+ (

1 + k̃p cos(Ωkτ + φk)
)

fh(x)

= F̃m + F̃eΩ
2
e cos(Ωeτ + φe) (2)

where

fh(x) =
{ x − (1 − α) 1 < x

αx −1 ≤ x ≤ 1
x + (1 − α) 1 < −x

The backlash function is a stepwise linear function and a 3-order 
approximation polynomial is suggested to express it. For the par-
ticular case of α = 0, the approximated function can be expressed 
as, fh(x) = −0.1667x + 0.1667x3. Thus, the equation of motion is 
given by:

d2x

dτ 2
+ 2μ̃

dx

dτ
+ (

1 + k̃p cos(Ωkτ + φk)
)(−0.1667x + 0.1667x3)

= F̃m + F̃eΩ
2
e cos(Ωeτ + φe) (3)

In the following, the prediction and control of chaotic behavior for 
this equation will be investigated.
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2.2. Melnikov analysis and chaos prediction

Study of global homoclinic bifurcation that provides the esti-
mate for the occurrence of chaotic behavior in some nonlinear 
systems is well done by the Melnikov analysis. The occurrence of 
transverse intersection of the perturbed stable and unstable man-
ifolds of the homoclinic orbits are called homoclinic bifurcation 
and defined as a criterion for prediction of onset of the chaos. 
The Melnikov method measures the distance between the stable 
and unstable manifolds of the perturbed system in the Poincare 
section, and provides an analytical estimate for the occurrence of 
homoclinic bifurcation and hence transition to chaos [16].

In order to apply the Melnikov analysis, the average force, the 
excitation term, the mesh stiffness and also the damping term are 
considered as small perturbations to the Hamiltonian system. Thus, 
considering ε as a small parameter and scaling F̃m = ε fm , F̃e =
ε fe , k̃p = εkp and μ̃ = εμ, the generalized Eq. (3) can be rewritten 
in the vector form as:

Ẋ = Wo(X) + εW p(X, τ ) (4)

where X = (x, y = dx/dτ ) is the state vector, Wo and W p repre-
sents the vector field and the perturbed vector, and are given by

Wo(X) = (
y,ax − cx3)

W p(X, τ ) = (0,−2μẋ + kp cos(Ωkτ + φk)
(
ax − cx3) + fm

+ Ω2
e fe cos(Ωeτ + φe) (5)

where a = c = 0.1667. For the unperturbed system, when ε = 0, 
the system is a planar Hamiltonian system with a Hamiltonian 
function as H(x, y) = 1

2 y2 − a
2 x2 + c

4 x4. For ε = 0 this system has 
two centers at (±√

(a/c), 0) and a hyperbolic saddle at (0, 0). The 
saddle point is connected to itself by two homoclinic orbits with 
the expressions

Xh = (
xh(τ̄ ), yh(τ̄ )

)
=

(
±

√
2a

c
sech

(√
a(τ̄ )

)
,∓

√
2

c
a sech

(√
a(τ̄ )

)
tanh

(√
a(τ̄ )

))
(6)

where τ − τ0 = τ̄ . The Hamiltonian function and also the stable 
and unstable manifolds of the homoclinic orbits (W ±

s and W ±
u ), for 

the unperturbed system are shown in Fig. 2. The Melnikov function 
of system (5) is given as follows [5]:

M(τ0) =
+∞∫

−∞
yh(τ )

(−2μyh(τ ) + kp cos
(
Ωk(τ + τ0) + φk

)

× (
axh(τ ) − cxh(τ )3) + fm

+ Ω2
e fe cos

(
Ωe(τ + τ0) + φe

))
dτ

⇒ M(τ0) =
+∞∫

−∞

(
∓

√
2

c
a sech(

√
aτ ) tanh(

√
aτ )

)

×
(

−2μ

(
∓

√
2

c
a sech(

√
aτ ) tanh(

√
aτ )

)

+ kp cos
(
Ωk(τ + τ0) + φk

)(
a

(
±

√
2a

c
sech(

√
aτ )

)

− c

(
±

√
2a

c
sech(

√
aτ )

)3)
+ fm

+ feΩ
2
e cos

(
Ωe(τ + τ0) + φe

))
dτ (7)
Fig. 2. Hamiltonian function and also the stable and unstable manifolds of the ho-
moclinic orbits.

After integration, the Melnikov function is obtained as

M±(τ0) = −8

3

μ(a)2

c
√

a
+

(
a

c
− 1

6c

(
4a + Ω2

k

))
kpΩ2

k π

× csch

(
πΩk

2
√

a

)
sin(Ωkτ0 + φk)

±
√

2

c
feΩ

3
e π sech

(
πΩe

2
√

a

)
sin(Ωeτ0 + φe) (8)

Using the Melnikov theorem if M(τ0) has a simple zero, then the 
manifolds intersect transversally. Transverse intersection of these 
manifolds provide an estimate in the parameter space for the oc-
currence of homoclinic bifurcation and hence transition to chaos. 
Design and proper choice of system parameters is the basic idea 
for suppression or elimination of the chaotic behavior [5]. It should 
be noted that there are limitations on the design and choice of 
some system parameters. Therefore, the values of control param-
eters are available only to a specific region and based on engi-
neering justification. In such conditions the methods of controlling 
chaos are proposed.

3. Control system description

In this section, based on Melnikov theory, a practical non-
feedback controller is suggested such that one can control and 
eliminate the chaotic responses of a gear system. To this end, 
the gear body and corresponding shaft are connected via several 
actuators for one set of gear–shaft coupling to apply an addi-
tional control excitation to the driver gear, as shown in Fig. 3 (see 
also [26]). These actuators can transmit the mean torque and si-
multaneously generate additional excitation U p(t) to control the 
chaos. The additional control excitation is considered as harmonic 
with U p(t) = U p cos(ωpt + φp), and the Melnikov analysis is ex-
tended to obtain an analytical estimate of the suitable parameter 
spaces for this control excitation term [10–15]. The dynamic equa-
tion of this model, including the U p(t), is obtained as [5]:

m
d2x̃

dt2
+ c

dx̃

dt
+ k(t) fh(x̃) = F̂m + F̂e(t) + F̂ p cos(ωpt + φp) (9)

where F̂ p = m(ra/Ia)U p . By defining the dimensionless excitation 
frequency and amplitude as Ωp = ωp/ωn, F̃ p = F̂ p/bkm and also 
considering the dimensionless parameters, defined in Eq. (2), the 
following equation is yielded.

d2x

dτ 2
+ 2μ̃

dx

dτ
+ (

1 + k̃p cos(Ωkτ + φk)
)

fh(x)

= F̃m + F̃eΩ
2
e cos(Ωeτ + φe) + F̃ p cos(Ωpτ + φp) (10)
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Fig. 3. The gear control model including the additional excitation term.

The results of previous section are applied for system equa-
tion (10). Also, suppose that the amplitude of excitation term is 
a weak perturbations as F̃ p = ε f p , then the Melnikov function for 
this model is obtained as:

M(τ0) =
+∞∫

−∞

(
∓

√
2

c
a sech(

√
aτ ) tanh(

√
aτ )

)

×
(

−2μ

(
∓

√
2

c
a sech(

√
aτ ) tanh(

√
aτ )

)

+ kp cos
(
Ωk(τ + τ0) + φk

)(
a

(
±

√
2a

c
sech(

√
aτ )

)

− c

(
±

√
2a

c
sech(

√
aτ )

)3)
+ fm

+ feΩ
2
e cos

(
Ωe(τ + τ0) + φe

)
+ f p cos

(
Ωp(τ + τ0) + φp

))
dτ (11)

The fundamental frequency of the static transmission error and the 
mesh stiffness is the meshing frequency. Therefore, the dimension-
less frequencies Ωk and Ωe are equal and can be considered as 
Ωk = Ωe = Ω . Also, there is a phase difference between the static 
transmission error and the mesh stiffness as φk = φe + π . Hence, 
the Melnikov function (11) can be simplifies to

M±(τ0) = A + (B ± E) sin(Ωτ0 + φe) ± P sin(Ωpτ0 + φp) (12)

with

A = −8

3

μ(a)2

c
√

a
,

B =
(

1

6c

(
4a + Ω2) − a

c

)
kpΩ2π csch

(
πΩ

2
√

a

)
,

E =
√

2

c
feΩ

3π sech

(
πΩ

2
√

a

)
,

P =
√

2

c
f pΩpπ sech

(
πΩp

2
√

a

)

Comparing Eq. (12) with the Melnikov function given by Eq. (8), 
it is concluded that the control excitation term ±

√
2
c f pΩpπ ×

sech(
πΩp

2
√

a
) sin(Ωpτ0 + φp) adds to the Melnikov function. Accord-

ing to the Melnikov function (8), in the absence of control excita-
tion, transverse intersections of the stable and unstable manifolds 
W ±

s and W ±
u occurs for certain parameter values which satisfy the 

relation

|A| < |B ± E|
⇒

∣∣∣∣−8 μ(a)2

√
∣∣∣∣ <

∣∣∣∣
(

1 (
4a + Ω2) − a

)
kpΩ2π csch

(
πΩ√

)

3 c a 6c c 2 a
±
√

2

c
feΩ

3π sech

(
πΩ

2
√

a

)∣∣∣∣ (13)

Now, the additional excitation is added on the chaotic system. In 
this case, a necessary condition for M± to be same sign for all τ0
is [10]:

|P | > |B ± E| − |A| = Pmin

∣∣∣∣
√

2

c
f pΩpπ sech

(
πΩp

2
√

a

)∣∣∣∣
>

∣∣∣∣
(

1

6c

(
4a + Ω2) − a

c

)
kpΩ2π csch

(
πΩ

2
√

a

)

±
√

2

c
feΩ

3π sech

(
πΩ

2
√

a

)∣∣∣∣ −
∣∣∣∣−8

3

μ(a)2

c
√

a

∣∣∣∣ (14)

The optimal values of excitation phase (φp = φoptimum), which cor-
responds to the widest amplitude ranges for the chaos elimination, 
are obtained for the situation in which the maximum (maximum 
for A < 0 and minimum for A > 0) of A + (B ± E) sin(Ωτ0 + φe)

and ∓Pmin sin(Ωpτ0 + φoptimum) occur at the same τ0. (B + E) and 
P (for M−: (B − E) and (−P )) will be considered to be same sign. 
It is clear that changing this sign is the equivalent of shifting the 
phase as φe → φ̃e + π . Also, in this gear dynamic model, the di-
mensionless excitation frequency Ωp is assumed as Ωp = Ωe = Ω . 
Thus, φoptimum = π + φe is obtained for the optimal value of exci-
tation phase. Moreover, for this optimal excitation phase the upper 
threshold value of excitation amplitude can be obtained as

Pmax =
∣∣∣∣
(

1

6c

(
4a + Ω2) − a

c

)
kpΩ2π csch

(
πΩ

2
√

a

)

±
√

2

c
feΩ

3π sech

(
πΩ

2
√

a

)∣∣∣∣ +
∣∣∣∣−8

3

μ(a)2

c
√

a

∣∣∣∣ (15)

Also, the Melnikov functions indicated that the excitation phase 
can be changed in suitable interval as [φoptimum −
φmax, φoptimum +

φmax]. Where, 
φmax is the maximum deviation of excitation 
phase from φoptimum . The maximum deviation of excitation phase 

φmax can be obtained based on the nearest zeros of A + (B ±
E) sin(Ωτ0 + φe) and ±P sin(Ωpτ0 + φoptimum), and are given by:


φmax = Ωp
(
τ 2

0 − τ 1
0

) = arcsin
A

(B ± E)
(16)

Where, τ 1
0 and τ 2

0 presents the nearest zeros of ±P sin(Ωpτ0 +
φoptimum) and A + (B ± E) sin(Ωτ0 + φe), respectively. For an 
arbitrary deviation of 
φ (0 < 
φ < 
φmax) from φoptimum
one can easily obtain the allowed amplitude value of Pmax
(< Pmax at φoptimum), and Pmin (> Pmin at φoptimum), for which M±
to be same sign. Therefore, there exist suitable intervals of excita-
tion amplitude and phase for elimination of chaos in this dynamic 
model.

4. Numerical simulation

To validate the accuracy of the proposed analytical predictions 
and also to investigate the efficiency of the proposed control sys-
tem, the numerical simulation is done. As mentioned in Section 3, 
Eq. (8) presents the Melnikov function of system in the absence 
of chaos elimination excitation. Using this equation and choosing 
fe as the control parameter, the threshold values for transverse 
intersection of the stable and unstable manifolds and hence the 
occurrence of the homoclinic bifurcation are predicted as:
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For W +:

fe(1) =
((

a

c
− 1

6c

(
4a + Ω2))kpΩ2π csch

(
πΩ

2
√

a

)

+
∣∣∣∣−8

3

μ(a)2

c
√

a

∣∣∣∣
)/(√

2

c
Ω3π sech

(
πΩ

2
√

a

))
(17a)

or:

fe(2) =
((

a

c
− 1

6c

(
4a + Ω2))kpΩ2π csch

(
πΩ

2
√

a

)

−
∣∣∣∣−8

3

μ(a)2

c
√

a

∣∣∣∣
)/(√

2

c
Ω3π sech

(
πΩ

2
√

a

))
(17b)

For W −:

fe(3) =
((

−a

c
+ 1

6c

(
4a + Ω2))kpΩ2π csch

(
πΩ

2
√

a

)

−
∣∣∣∣−8

3

μ(a)2

c
√

a

∣∣∣∣
)/(√

2

c
Ω3π sech

(
πΩ

2
√

a

))
(17c)

or:

fe(4) =
((

−a

c
+ 1

6c

(
4a + Ω2))kpΩ2π csch

(
πΩ

2
√

a

)

+
∣∣∣∣−8

3

μ(a)2

c
√

a

∣∣∣∣
)/(√

2

c
Ω3π sech

(
πΩ

2
√

a

))
(17d)

Thus, in this system the chaos may appear for certain parameter 
values which satisfy the relation

for W +: fe > fe(1) or fe < fe(2) and

for W −: fe < fe(3) or fe > fe(4) (18)

The Melnikov critical values of fe ( fe1, fe2, fe3 and fe4) for homo-
clinic bifurcation as functions of frequency Ω , at μ = 7 and kp = 5
are shown in Fig. 4. In the parameter regions above the threshold 
curve fe1 and below the threshold curve fe2, M+ change its sign. 
As a result, in these regions transverse intersection of the stable 
and unstable manifolds W +

s and W +
u occurs, so existence of chaos 

is expected. Also, in the regions below the threshold curve fe3, and 
above the threshold curve fe4, M− changes its sign, transverse in-
tersection of the manifolds W −

s and W −
u occur.

To demonstrate the accuracy of the analytical predictions, the 
numerical simulation of Eq. (3) is done. Fig. 5 shows the bi-
furcation diagram with varying the internal excitation term F̃e

( F̃e = ε fe) from −0.35 to 0.35. The values of the other param-
eters are assumed as Ω = 0.5, fm = 1, μ = 7, kp = 5, ε = 0.01
and initial conditions as x = 0.01 and ẋ = 0.01. It can be seen that 
the period doubling bifurcation and also transition to chaos oc-
curs at F̃e < −0.2, and F̃e > 0.21. Using Eq. (18) (see also Fig. 4) 
the critical parameter values of fe for transverse intersection of 
the homoclinic orbits, and specially when Ω = 0.5, are obtained 
at fe1 = 19.83, fe2 = −19.33, fe3 = −19.83, and fe4 = 19.33. So, 
the numerical results are in good agreement with the theoretical 
predictions and confirm the analysis.

To analyze controlling the chaotic responses, the system at fe =
25, Ω = 0.5, fm = 1, μ = 7, and kp = 5 is considered. It can be 
observed that these parameters correspond to the point situated 
above the threshold values fe1 and fe4, and thus, chaotic motion 
occurs (see Figs. 4 and 5).

To apply the above control approach, a suitable control exci-
tation U p(t) is added to the chaotic system. At fe = 25, using 
Eqs. (14) and (15), the lower and upper threshold values of ex-
citation amplitude are obtained as:
Fig. 4. Threshold curves for homoclinic bifurcation in the ( fe − Ω) plane at μ = 7
and kp = 5.

Fig. 5. Bifurcation diagram for control parameter F̃e ( F̃e = ε fe).

for M+: Pmin = 2.008 ⇒ f p(min) = 1.29 and

for M−: Pmin = 2.203 ⇒ f p(min) = 1.42

for M+: Pmax = 17.251 ⇒ f p(max) = 11.08 and

for M−: Pmax = 17.446 ⇒ f p(max) = 11.21 (19)

Thus, the maximum theoretical interval of excitation amplitude for 
both M±(τ0) is now f p = [1.42 11.08]. By using Eq. (16), 
φmax =
0.9132 and 0.8879 are given for the maximum deviation of exci-
tation phase from φoptimum for M+ and M− , respectively. Thus, the 
maximum allowed interval of excitation phase is approximately 
φp = [π + φe − 0.8879 π + φe + 0.8879]. For each value of φp
belonging to such interval, certain suitable amplitude exists. The 
suitable amplitude and phase intervals for the control excitation 
term are shown in Fig. 6. For instance, at φp = φoptimum = π + φe , 
which corresponds to the widest amplitude interval for the control 
excitation, the bifurcation diagram is plotted. Fig. 7 presents the 
bifurcation diagram of system for control parameter F̃ p = ε f p at 
Ω = Ωp = 0.5, fm = 1, μ = 7, kp = 5, φe = 0, ε = 0.01 and φp = π . 
From this figure, the numerically interval of chaos elimination is 
[0.01 0.115] and confirm the theoretical predictions. The bifurca-
tion diagram of system for control parameter φp at Ω = Ωp = 0.5, 
fm = 1, μ = 7, kp = 5, φe = 0, ε = 0.01 and f p = 4, is shown in 
Fig. 8. The theoretical interval of φp is now [2.25 4.03], and the nu-
merical results show the chaos elimination interval as [2.15 4.18].

Also, the bifurcation diagram for control parameter F̃ p = ε f p at 
φp = π + 0.5 and φe = 0 is shown in Fig. 9. According to this fig-
ure, the numerically interval of chaos elimination is [0.012 0.098], 
which is in good agreement with the theoretical predictions. By 
applying the additional control excitation belonging to this inter-
val, chaotic motion can be eliminate. Figs. 10–12 demonstrate con-
trolling the chaotic behavior for the control excitation parameters 
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Fig. 6. The suitable amplitude and phase intervals of control excitation for M+ (blue 
space) and for M− (dotted space). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Bifurcation diagram for control parameter F̃ p at φp = π .

Fig. 8. Bifurcation diagram for control parameter φp at f p = 4.

Fig. 9. Bifurcation diagram for control parameter F̃ p at φp = π + 0.5.

Fig. 10. The Melnikov function for uncontrolled (green) and controlled (blue) sys-
tem. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

Fig. 11. The time response for uncontrolled (green) and controlled (blue) system. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 12. The phase portrait for uncontrolled (green) and controlled (blue) system. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

f p = 8, φp = π + 0.5. Fig. 10 shows the Melnikov function for this 
point. After the additional excitation is added on the system, the 
Melnikov functions do not change sign, thus elimination of chaos 
is expected.

The time history of this point for U p = 0 in the range τ =
[0 800] is given in Fig. 11, while the corresponding phase portrait 
is given in Fig. 12, respectively. The chaotic response of the system 
are clearly visible in these figures (Figs. 11 and 12, green line), 
which are in agreement with the results obtained in Figs. 4 and 5. 
Now, the control excitation is applied at τ ≥ 800. The simulation 
results are illustrated in Figs. 11 and 12 (blue line). In these figures, 
it can be seen that the chaos are vanished and finally a periodic 
responses achieved. Simulation results confirm the theoretical pre-
dictions and show effectiveness of the proposed control system to 
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elimination and control of the homoclinic bifurcation and chaos in 
nonlinear gear systems.

5. Conclusion

This paper has discussed a control system to inhibition the 
chaotic responses of gears system. The Melnikov analytical analy-
sis has been used to derive analytical prediction for the occurrence 
of homoclinic bifurcation and transition to the chaotic behaviors. 
Then chaos control of this gear system has been carried out using 
a non-feedback control strategy by applying an additional control 
excitation. A generalized nonlinear model of a spur gear pair has 
been developed to investigate the required control excitation. The 
accuracy of the theoretical predictions, and also the performance of 
the proposed control system have been validated with the numer-
ical simulations. The results of the analysis indicate the efficiency 
and also feasibility of this control method, and consequently this 
control concept can be proposed as a way of implementing the 
chaos control in gear transmission system.
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