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A B S T R A C T  
 

 

Nowadays, electrical discharge machining (EDM) has become one of the most extensively used non-
traditional material removal processes. Its unique feature of using thermal energy to machine hard-to-
machine electrically conductive materials is its distinctive advantage in the manufacturing of moulds, 
dies and aerospace components. However, EDM is a costly process and hence proper selection of its 
process parameters is essential to reduce production cost and improve product quality. In this study the 
effect of input EDM process parameters on AISI2312 hot worked steel, widely used in mold 
manufacturing, is modeled and optimized. The proposed approach is based on statistical analysis on 
the experimental data. The input parameters are peak current (I), pulse on time (Ton), pulse off time 
(Toff), duty factor (η) and voltage (V). Material removal rate (MRR), tool wear rate (TWR), and 
surface roughness (SR) are the most important performance characteristics of the EDM process. The 
experimental data are gathered using Taguchi L36 design matrix. Taguchi robust design technique was 
applied to obtain the signal to noise ratio (S/N ratio) for the quality characteristics being investigated. 
In order to establish the relations between the input and the output parameters, various regression 
functions have been fitted on the evaluated S/Ns data based on output characteristics. The significance 
of the process parameters on the quality characteristics of the EDM process was also evaluated 
quantitatively using the analysis of variance (ANOVA) method. Then, statistical analyses and 
validation experiments have been carried out to select the best and most fitted models. In the last 
section of this research, simulated annealing (SA) algorithm has been employed for optimization of the 
performance characteristics. Using the proposed optimization procedure, proper levels of input 
parameters for any desirable group of process outputs can be identified. A set of verification tests is 
also performed to verify the accuracy of optimization procedure in determining the optimal levels of 
machining parameters. The results indicate that the proposed modeling technique and simulated 
annealing algorithm are quite efficient in modeling and optimization of EDM process parameters. 
 
 

doi: 10.5829/idosi.ije.2015.28.01a.20 
 

 
1. INTRODUCTION1 
 
AISI2312 is one of the most difficult-to-cut hotworked 
alloys. Formation of complex shapes (of this material) 
along with reasonable speed and surface finish is very 
difficult by traditional machining processes. Electrical 
discharge machining (EDM) is one of the most suitable 
non-conventional material removal processes to shape 
this alloy. EDM is a thermo-electric process in which 
material is removed from the workpiece by erosion 
effect of series of electric discharges (sparks) between 
                                                        
1*Corresponding Author’s Email: masoud_azadi88@yahoo.com (M. 
Azadi Moghaddam) 

tool and workpiece immersed in a dielectric liquid. Its 
unique feature of using thermal energy to machine 
electrically conductive parts has been its distinctive 
advantage in the manufacture of molds, dies, aerospace 
and surgical components. The EDM process has a very 
strong stochastic nature due to the complicated 
discharge mechanism making it difficult to optimize the 
process [1]. The process performance can be improved 
by selecting the optimal combination of process 
parameters. Optimization of process parameters of 
EDM is a multi-objective optimization task as, in 
practice, the performance measures (material removal 
rate, tool wear rate and surface roughness) are 
conflicting in nature. Though much work has been 
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reported in literature to improve the process 
performance, proper selection of process parameters 
still remains a challenge.   

 
 

2. LITERATURE REVIEW 
 
From exhaustive literature review, it is found that there 
are few controllable parameters such as peak current (I), 
voltage (V), pulse on time (Ton), pulse off time (Toff) 
and duty factor (η) [2-4]. These parameters, in turn, 
determine the process output characteristic, among 
which, material removal rate (MRR), tool wear rate 
(TWR), and surface roughness (SR) are the most 
important ones. Figure 1, illustrates the input and output 
parameters for EDM process [1, 5]. 

Review of the research work reveals that much 
work has been done on various aspects of EDM process. 
These studies have mostly emphasized on the modeling 
and optimization of process parameters for different 
materials. 

Seung-Han Yanga et al. [6], proposed an 
optimization methodology for the selection of best 
process parameters in EDM using artificial neural 
networks (ANN) and simulated annealing (SA) 
algorithm. An integrated artificial neural network model 
is constructed based on experimental data. A reliable 
function generated from counter-propagation neural 
network, was employed to simultaneously maximize the 
material removal rate as well as minimize the surface 
roughness using simulated annealing algorithm. 

Raoa and Rangajanardha et al. [7], developed a 
hybrid model using artificial neural networks and 
genetic algorithm (GA) to optimize the surface 
roughness in electric discharge machining.  

 
 
 

 
Figure 1. Important input and output parameters for EDM 
process [1]

 

Mohana et al. [8]developed a hybrid model to 
minimize the surface roughness in EDM using artificial 
neural networks and genetic algorithm. 

Kansal et al. [9], studied the effect of silicon 
powder mixing into the dielectric fluid of EDM for 
machining AISI D2 dies steel. The confirmation runs 
showed that the setting of peak current at a high level, 
pulse-on time at a medium level, pulse-off time at a low 
level, powder concentration at a high level, and gain at a 
low level would result in optimum MRR.  

To the best of our knowledge, there is no published 
work to statistically study and optimize the effect of 
machining parameters of EDM process on the most 
important output characteristics namely, MRR, TWR 
and SR for machining of AISI2312 hot worked steel 
parts. Therefore, the present study has two objectives 1. 
To establish the relationship between the input and 
output parameters of EDM process, and 2. To derive the 
optimal parameter levels for maximum MRR and 
minimum SR and TWR using statistical analysis of the 
experimental data and simulated annealing (SA) 
algorithm. Finally, the article concludes with the 
verification of the proposed approach and a summary of 
the major findings. 

 
  
  

3. EXPERIMENTAL DETAILS  
 
3. 1. Workpiece Material           Hot worked alloys are 
among the hardest materials to shape because of their 
strength and chemical reactivity with tool materials. 
AISI2312 hot worked steel is a popular alloy used in 
various industries such as aerospace and plastic 
injection molding. Despite its unique properties, the 
usage of this alloy is limited due to the high processing 
costs, which arise because of the processing difficulties 
such as its poor machinability. This study applied 
AISI2312 hot worked steel parts since only a few 
researchers have done the studies regarding this material 
using EDM. The EDM operation is performed on 
AISI2312 hot worked steel parts having 10-mm thick 
and 40×20-mm dimension. 
 
3. 2. Die-sinking Machine        In the present study, an 
Azerakhsh-304H die-sinking machine has been used to 
perform the experiments (Cross Travel 300×250, 7kw, 
Iran).  
 
3. 3. Electrode and Dielectric             A total of 36 
cylindrical shaped electrodes of 20-mm diameter made 
from commercially pure copper (99% purity and 8.98 
g/cm3 density) were used as tools. The electrodes were 
replaced after each experiment. The dielectric for all 
experiments was pure kerosene. 
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3. 4. EDM Parameter Setting                   A challenging 
task in EDM is the selection of optimum machining 
parameter combinations for obtaining higher accuracy 
due to process variables and complicated process 
mechanisms. In design of experiments (DOE), the 
number of required experiments (and hence the 
experiment cost) increases as the number of parameters 
and/or their corresponding levels increase. That is why 
it is recommended that the parameters with less likely 
pronounced effects on the process outputs be evaluated 
at fewer levels. In addition, the limitations of test 
equipment may also dictate a certain number of levels 
for some of the process parameters. The die-sinking 
EDM machine used for the experiments had only two 
settings for pulse of time - Toff (10 and 75 μs). 

For this research, a large number of experiments 
were done to find the relatively appropriate machine 
tool settings as shown in Table 1. As shown, pulse off 
time is considered at two levels, while all other process 
variables have three levels.  

According to the process variables and their 
corresponding levels (Table 1), two sets available using 
the Taguchi technique (L8 and L36). For this study, the 
L36 has been selected.  
 
3. 5. Sample Preparation and Experimental 
Procedure             All specimens were cleaned in an 
alcohol bath and then dried using a drier.  
 
 
4. EVALUATION OF PERFORMANCE MEASURES  
 
4. 1. Material Removal Rate (MRR)        During the 
erosions, the machining time is measured and noted (45 
minutes). The eroded volume is evaluated after the 
erosion set of the workpiece. MRR in g/hr can be 
calculated (Equation (1)). 

machining of time
  workpiecefrom removed volume

=MRR  (1) 

 
4. 2. Tool wear rate (TWR)     The TWR, usually 
expressed as a percentage, and is defined by the ratio of 
the tool wear weight (TWW) to the workpiece removal 
weight (WRW) which is obtained using Equation (2). 
To measure the MRR and TWR, an A&D electronic 
balance with 0.01gr accuracy was used. 

100(%) ×=
WRW
TWWTWR  (2)

 

 
4. 3. Surface Roughness (SR)           The SR value of 
the machined product is also one of the most important 
quality characteristics. The parameter Ra is used in this 
study. The average roughness (Ra) is the area between 
the roughness profile and its mean line, or the integral 
of the absolute value of the roughness profile height 

over the evaluation. Therefore, the Ra is specified by 
Equation (3) [1, 10]: 

In this equation, Ra is the arithmetic average 
deviation from the mean line, L the sampling length, 
and Y the ordinate of the profile curve [1]. After 
machining, the surface finish of each sample was 
measured with an automatic digital Surtronic (3+) SR 
tester. 

( ) dxxY
L

Ra
L

∫=
0

1  (3)
 

 
 
5. SIGNAL TO NOISE RATIO ANALYSIS 

 

 
To help determine the best process design, signal-to-
noise (S/N) ratio is used in Taguchi methods as an index 
of robustness. In the Taguchi method, the term ‘signal’ 
represents the desirable value (mean) for the output 
characteristic and the term ‘noise’ represents the 
undesirable value for the output characteristic (Figure  
2). 

Noise factors cause variability and deterioration of 
performance from the ideal function and lead to 
variability in the quality characteristic. Generally, there 
are a number of noise factors existing in the EDM 
process, such as, machining time, electrode 
consumption, electrode shape and size, and aging 
working oil, etc. Very clearly, they have close mutual 
interaction, leading to somewhat uncertain control over 
the gap conditions. For the simplification of 
experimentation, every experimental trial uses the 
totally new electrode with the same sizes [10-12].  

 
 

TABLE 1. Process variables and their corresponding levels 
No Symbol Factor Unit Range L1 L2 L3 

1 A TOFF μs 10 – 75 10 75 - 

2 B TON μs 25-200 25 100 200 

3 C I A 2.5-7.5 2.5 5 7.5 

4 D V V 50-60 50 55 60 

5 E η s 0.4-1.6 0.4 1 1.6 

  
 

 Figure 2. Schematic of an engineered system
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TABLE 2. The process characteristics and their corresponding 
signal to noise ratio (S/N)  

No TWR SR MRR 
S/N for 
TWR 

S/N for 
SR 

S/N for 
MRR 

1 11.4 3.9 0.0078 -21.159 -11.821 -42.158 

2 2.6 7.1 0.0676 -8.404 -17.025 -23.401 

3 0.6 13.5 0.1487 4.467 -22.606 -16.554 

4 9.0 3.2 0.0073 -19.172 -10.103 -42.734 

5 3.3 6.9 0.0462 -10.541 -16.777 -26.707 

6 0. 4 12.7 0.1520 7.158 -22.076 -16.363 

. . . . . . . 

. . . . . . . 

. .  . . . . . 

31 42.0 4.9 0.0349 -32.473  -13.803 -29.143 

32 2.3 6.3 0.0098 -7.131  -15.986 -40.175 

33 0.7 8.8 0.0947 3.046  -18.889 -20.473 

34 47.0 4.9 0.0189 -33.453  -13.803 -34.471 

35 1.6 5.5 0.0142 -3.876  -14.807 -36.954 

36 0.2 9.8 0.1140 14.202  -19.824 -18.862 

 
 

 
Based on the process under consideration, the S/N 

ratio calculation may be decided as “the Lower the 
Better, (LB)” for output characteristics which the lower 
values are desired such as TWR and SR and “the Higher 
the Better, (HB)” for output characteristics which the 
higher values are desired such as MRR, are given in the 
following Equations [12]. 
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where nis the number of iteration in a trial, in this case, 
n=1 and yj the jth measured value in a run. 
The results of S/N ratios for the process parameters are 
shown in Table 2. 
 
 
 
6. MATHEMATICAL MODELING  
 
Regression models can be used to predict the behavior 
of input variables (independent variables) and S/N 
values associated with each test response results [13]. 
The last three columns of Table 2 are the S/N ratio 
outputs for each test setting. These data can be used to 
develop mathematical models. Any of the above S/N 
ratios is a function of process parameters, which are 

expressed by linear, curvilinear or logarithmic 
functions; as stated in Equations (6) to (8), respectively. 
Y1 = b0 + b1S +  b2V +  b3F + b4D+ b5A  (6) 

Y2 = b0 +b1S +b2V +b3F +b4D +b5A +b11SS + b22VV 

+b33FF +b44DD+b55AA +b12SV +b13SF +b14SD 

+b15SA +b23VF +b24VD +b25VA +b34FD +b35FA 

+b45DA 

(7) 

Y3 = b0 Sb1  Vb2  Fb3  Db4Ab5 (8) 

In the above formula, b0, b1, …b5 are the regression 
coefficients to be estimated. In this study, based on the 
S/N data given in Table 2, the regression model is 
developed using MINITAB software.  

The choice of the model depends on the nature of 
initial data and the required accuracy. Using regression 
technique, in MINITAB Software, three types of 
mathematical functions (linear, curvilinear and 
logarithmic) have been fitted to the experimental data 
[14-16]. Models representing the relationship between 
process parameters and output characteristics can be 
stated in Equations (9) to (17). Stepwise elimination 
process was used to modify the initial proposed models. 
For instance, as can be seen in Equation (13), 
independent variable A was eliminated because of its 
insignificant effect on SR in the curvilinear model. 

Adequacy of models were checked by analysis of 
variance (ANOVA) technique within the confidence 
limit of 95% [17, 18]. Results are shown in Table 3. 
Given the required confidence limit (Pr), the correlation 
factor (R2) and the adjusted correlation factor (R2

-adj) 
for these models, it is evidence that curvilinear model is 
superior to the other two; thus, these models are 
considered as the best representative of the authentic 
EDM process throughout this paper.  
 
6. 1. Linear Model 

S/N (MRR)  =  - 84.0 - 0.0386 A + 0.0482 B + 2.86 C + 
0.633 D +  0.870 E (9) 

S/N (SR)  =   - 8.98 + 0.00879 A - 0.0358 B - 0.844 C + 
0.0086 D - 0.113 E (10) 

TWR =   - 38.3 - 0.0402 A +  0.172 B - 1.48 C + 0.297 D 
+  0.372 E (11) 

 
6. 2. Curvilinear Model 

S/N (MRR)  =  -389.336 - 0.0240008 A +  0.0765327 B 
+  8.40539 C + 11.5007 D - 2.06607 E - 0.000273424 
BB - 0.628644 CC - 0.0988255 DD + 0.00684932 BC 

(12) 
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S/N (SR)  =   -6.7214 - 0.046117 B - 1.79636 C + 
0.000149017 BB + 0.146804 CC - 0.00476137BC (13) 

S/N (TWR)  =  -12.5099 +  0.150794 B - 4.32222 C - 
0.000479414 BB + 0.0262243BC (14) 

 
6. 3. Logarithmic Model 

S/N (MRR)  = e -10.300A-0.143B 0.477C 1.541D 4.040E 0.216 (15) 

S/N (SR)  = e 0.023A -0.033B 0.348C 0.449D-0.068E 0.035 (16) 

TWR= e 6.240A 0.149B -1.640C 0.751D -1.850E -0.117 (17) 

In the next step the proposed models were validated 
using new set of experiments (Table 4). Table 5 
illustrates the mean error of the new six experiments for 
the output characteristics. According to the results, the 
curvilinear model is the best model among the proposed 
models for the three process characteristics. 
 
 

TABLE 3. ANOVA results for S/N ratio models 

Model Variable R2 R2 (adj) F value Pr>F 

Linear 

MRR 88.0% 86.0% 44.10 <0.0001 

SR 87.2% 85.0% 40.81 <0.0001 

TWR 85.7% 83.4% 36.82 <0.0001 

Curvilinear 

MRR 97.2% 96.3% 101.1 <0.0001 

SR 95.2% 94.0% 79.46 <0.0001 

TWR 93.9%  92.8% 91.80 <0.0001 

Logarithmic 

MRR 93.5% 92.4% 86.44 <0.0001 

SR 90.9% 89.3% 59.68 <0.0001 

TWR 85.6% 83.2% 35.56 <0.0001 

 
 
TABLE 4. New process variables for model validation 

V (V) η (s.) I (A) Ton (µm) Toff  (µm) NO 

55 1.3 12 150 75 1 

55 1 18 50 75 2 

55 0.7 24 100 75 3 

55 1 24 150 75 4 

55 0.7 18 150 75 5 

55 0.7 12 50 75 6 

Figure 3, demonstrates the interaction effect of peak 
current and pulse on time on TWR (three out of the five 
parameters remained constant). As illustrated, within the 
range of 25-to-200 μs, by increasing the pulse on time 
the TWR decreases. Similarly by increasing the peak 
current, within the range of 2.5-to-7.5A, the TWR 
increases. Figure 4 demonstrates the interaction effect of 
peak current and pulse on time on SR. As illustrated, by 
increasing the peak current and pulse on time the SR 
increases. Figure 5 demonstrates the interaction effect of 
peak current and pulse on time on MRR. As illustrated, 
by increasing the peak current and pulse on time the 
MRR increases. 

 
 

TABLE 5. Results of validation experiments 
Error (%)  Machining parameters Curvilinear  Logarithmic  Linear  

6.34 8.66 9.96 MRR 
3.54 4.97 5.82 SR 
4.25 5.62 6.38 TWR 

 
 

 
Figure 3. Interaction plot for TWR 

 
 

 
Figure 4. Interaction plot for SR

  
 

 
Figure 5. Interaction plot for MRR
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7. ANALYSIS OF VARIANCE (ANOVA) 
 
The ANOVA is used to find the most influential 
parameters to the process factor-level response. In this 
investigation, the experimental data are analyzed using 
the F-test and the contribution rate [13, 16]. ANOVA 
has been performed on the above model to assess their 
adequacy, within the confidence limit of 95%. ANOVA 
results indicate that the model is adequate within the 
specified confidence limit. The calculated determination 
coefficient (R2) for this model is 95.2%. Result of 
ANOVA is shown in Table 3. 

According to ANOVA procedure, large F–value 
indicates that the variation of the process parameter 
makes a big change on the performance characteristics. 
In this study, a confidence level of 95% is selected to 
evaluate parameters significances. Therefore, F–values 
of machining parameters are compared with the 
appropriate values from confidence Table, Fα,v1,v2; 
where α is risk, v1 and v2 are degrees of freedom 
associated with numerator and denominator which are 
illustrated in Table 6, 7 and 8 [14-19]. 
ANOVA results may provide the percent contributions of 
each parameter [20].  

SqureofSumTotal
MSDOFSSP errorii

i
)((%) ×−

=
 

(18) 

In the above formula, according to the ANOVA results 
(Table 5), Pi is contribution percentage, SSi sum of 
square, DOFi degree of freedom of i th factor, and MSerror 
mean sum of square of error [20]. 

The percent contributions of the EDM parameters 
on MRR, SR and TWR are shown in Figures 6, 7 and 8 
respectively.  

According to Figure 6, peak current is the major 
factor affecting the MRR with 54% contribution. It is 
followed by pulse on time and voltage with 18.8 and 
10.5% respectively.  The remaining (4%) effects are due 
to noise factors or uncontrollable parameters. 

Moreover, pulse on time is the major factor 
affecting the SR (Figure 7) with 59.25% contribution, 
followed by peak current with 26.65% effect. The 
remaining parameters have little effects on this output. 
The main process parameter affecting tool wear rate is 
pulse on time with 80% contribution (Figure 8). 

  
TABLE 6. Result of ANOVA for Material Removal Rate 

Machining parameters Degree of freedom (Dof) Sum of square (SSj) Adjusted (MSj) F-Value Contribution Percentage (%) 

A 1 56.76     16.810 6.895*   2.34 

B 1 428.92     35.195 14.435*  18.80 

C 1 1227.77    203.516 83.471*   54.00 

D 1 240.79     52.439    21.508*   10.50 

E 1 35.83     36.870    15.122*   1.45 

BB 1 33.42     33.415    13.705*   1.36 

CC 1 123.50    123.498    50.652*   5.33 

DD 1 35.15     46.875    19.225*   1.44 

BC 1 26.88     26.880    11.025*   1.81 

Error 26 63.39     2.438 - - 

Total 35 2272.39 - -  - 

*Significant Parameters,        F0.05,1,26 = 4.23 

 
 

TABLE 7. Result of ANOVA for Tool Wear Rate 
Machining parameters Degree of freedom (Dof) Sum of square (SSj) Adjusted (MSj) F-Value Contribution Percentage (%) 

B 1 5479.63 146.49     9.537*   80.00 

C 1 329.12 853.36    55.557*   4.54 

BB 1 102.73 102.73     6.688*   1.27 

BC 1 530.11 530.11    34.512*   7.45 

Error 27 476.16    15.36 - - 

Total 35 6917.75 - -  - 

*Significant Parameters,        F0.05,1,26 = 4.23 



M. Azadi Moghaddam and F. Kolahan / IJE TRANSACTIONS A: Basics  Vol. 28, No. 1, (January  2015)  154-163                            160 
  

TABLE 8. Result of ANOVA for Surface Roughness 
Machining parameters Degree of freedom (Dof) Sum of square (SSj) Adjusted (MSj) F-Value Contribution Percentage (%) 

B 1 236.984    12.3943   17.3869*   59.25 
C 1 106.886     9.1071   12.7756*   26.65 

BB 1 9.925     9.9252   13.9232*   2.32 
CC 1 6.735     6.7348    9.4477*   2.50 
BC 1 14.633    14.6330   20.5274*   3.50 

Error 26 38.242 1.4708 - - 
Total 35 398.771 - -  - 

*Significant Parameters,        F0.05,1,26 = 4.23 
 

 

 
Figure 6. The effect of machining parameters on the MRR 

 
 

 
Figure 7. The effect of machining parameters on the SR 

 
 

 

 Figure 8. The effect of machining parameters on the TWR
  

 

 
Figure 9. Simulated annealing algorithm convergence 
curve  for  TWR

 

8. SIMULATED ANNEALING ALGORITHM 
 
For real and large size optimization problems, the 
traditional optimization methods are often inefficient 
and time consuming. With the advent of computer 
technology and computational capabilities in the last 
few decades, the applications of heuristic algorithms are 
widespread. These techniques are usually based on the 
physical or natural phenomena. In 1953, Metropolis 
proposed a procedure used to simulate the cooling of a 
solid for reaching a new energy state. The annealing 
process, used in metal working, involves heating the 
metal to a high temperature and then letting it gradually 
cools down to reach a minimum stable energy state. If 
the metal is cooled too fast, it won't reach the minimum 
energy state. Later Kirkpatrick and his colleagues used 
this concept to develop a search algorithm called 
simulated annealing (SA) [21]. Among different 
heuristic algorithms, SA is one of the most powerful 
optimization methods that simulates the cooling process 
of a molten metal. The general stages of the SA 
algorithm for the job scheduling on parallel machines 
are as follows: 

1. Begin: Initialize the temperature parameter T0 
and the cooling schedule; r (0 < r < 1) and the 
termination criterion (e.g. number of iterations k = 1… 
K). Generate and evaluate an initial candidate solution 
(perhaps at random); call this the current solution, c. 

2. Generate a new neighboring solution, m, by 
making a small change in the current permutation of 
jobs and evaluate this new solution 

3. Accept this new solution as the current solution if:  

3-a) The objective value of new solution, f (m), is 
better than of the current solution, f (c). 

 3-b) The value of acceptance probability function 
given by (exp (f (m) – f (c)) / Tk ) is greater than a 
uniformly generated random number “rand”; where 0 < 
rand < 1. 

4. Check the termination criterion and update the 
temperature parameter (i.e., T k = r ×T k-1) and return to 
Step 2. 

The main advantages of SA are its flexibility, its 
fewer tuning parameters, and its ability to escape local 
optima and to approach global optimality [20]. The 
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algorithm is quite versatile since it does not rely on any 
restrictive properties of the mathematical formulation of 
the problem and hence can be adapted to a wide range 
of problems. In addition, for any heuristic optimization 
procedure, the algorithm parameters should be tuned to 
enhance its performance. Therefore, the ease of tuning a 
given algorithm is an important feature in selecting a 
proper solution technique. In SA, there are only two 
major tuning parameters -the initial temperature and 
cooling schedule. As a result, SA can easily be "tuned" 
with minimum trial runs [21].Simulated annealing can 
avoid local optima by occasionally taking downward 
steps. That is, a non-improving neighbor may be 
accepted as the new current solution. To do so, the 
initial temperature, T, starts out large and is gradually 
reduced as search progresses (see Step 4). The result is 
that early in the search, the current solution "bounces 
around" the search landscape with little inhibition 
against moving to the solutions of lower fitness. As the 
number of iterations increases, the bounces become 
lower in amplitude and worse neighbors are accepted 
with lower probabilities and only when they are not 
much worse than the current solution. Thus, at the start 
of SA most worsening moves are accepted, but at the 
end only improving ones are likely to be accepted. This, 
to a large extent, helps the algorithm jump out of local 
optima. The details of this technique and its various 
applications are well documented in related literature 
[21]. Final optimization results are summarized in Table 
7. Figure 9 shows the simulated annealing algorithm 
convergence for minimization of TWR. 
 
 
9. RUNNING CONFIRMATION EXPERIMENTS 
 
To evaluate the adequacy of the proposed approach and 
statistical analysis, a set of verification test has been 
carried out based on the predicted values.  

 
 

TABLE 9. Optimization results of the proposed SA algorithm 
and confirmation experiments  

 Optimal condition 

 Prediction Experiment Difference Error (%) 

MRR 0.82 0.78 0.04 4.8 

TWR 0.18 0.17 0.1 5.5 

SR 2.5 2.6 0.1 4 

Parameter setting for MRR 
(Toff = 10 µs,  Ton =195  µs, I = 7.49 A,  η =0.4 S, V = 50.01V) 

Parameter setting for TWR 
(Toff =  10.01µs,  Ton =113.93  µs, I =2.6 A,  η =1.01  S, V =60 V) 

Parameter setting for SR 
(Toff =10.04  µs,  Ton =25.01  µs, I =2.5 A,  η =0.4  S, V =55.08 V) 

The optimal levels of the process parameters are 
predicted based on S/N value given in Table 2. Table 9 
shows the comparison between the predicted and 
experimental results using optimal process parameters. 
As indicated, the differences between predicted and 
actual process outputs are less than 6%. Given the 
nature of EDM process and its many variables, these 
results are quite acceptable and prove that the 
experimental results are correlated with the estimated 
values. 
 
 
10. CONCLUDING REMARKS 

 
This study is focused on modeling, and optimization of 
EDM process on AISI 2312 hotworked steel parts. The 
following can be concluded from the present study. 

The S/N model for MRR, SR and TWR were 
developed from the experimental data. Then, statistical 
analyses have been carried out to select the best and 
most fitted models. Next, simulated annealing (SA) 
algorithm has been employed for optimizations of 
process parameters. The predicted and measured values 
are fairly close, which indicates that the developed 
model can be effectively used to predict the MRR, SR 
and TWR for EDM process. 

Validation of the models via new set of experiments 
illustrated that the curvilinear model is the best and 
most fitted among the proposed models.  

Peak current followed by pulse on time are the most 
significant factors affecting the MRR with 54% and 
18% percent contribution, respectively. 

 Pulse on time followed by peak current are the 
most significant factors affecting the SR with 59.25% 
and 26.65% percent contribution, respectively. 
pulse on time is the most significant factor affecting the 
TWR with 80% percent contribution.  

The study can be extended using other methods like 
response surface methodology, hybrid approaches 
composed of ANN and heuristic algorithms to 
undertake the modeling and optimization for EDM of 
AISI2312 hot worked steel parts and etc.  
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  چکیده
  

  
در این فرآیند به . کاري تبدیل شده است کاري تخلیه الکتریکی به یکی از پرکاربردترین فرآیندهاي پیشرفته ماشین امروزه ماشین

سختی که براي ساخت توان مواد  ، عامل باز دارنده نبوده و می برداري، سختی ماده دلیل استفاده از انرژي گرمایی براي براده
از آنجا که این . کاري کرد را به آسانی ماشین روند  یفضا به کار م-هاي تزریق پلاستیک و قطعات مربوط به صنعت هوا قالب

. باشد و کیفیت قطعات تولیدي مؤثر می  کاري در قیمت تمام شده لذا انتخاب صحیح پارامترهاي ماشین ،باشد بر می فرآیند هزینه
مورد استفاده در صنعت  2312کار  فولاد گرم یالکتریک خلیهکاري ت در ماشین یتنظیم يتاثیر پارامترها ،قدر این تحقی

 یتجرب هاي  و با استناد بر داده يآمار هاي  فرآیند توسط روش سازي  مدل. شده است سازي  و بهینه سازي  سازي، مدل قالب
کاري  و ولتاژ کارهاي روشنی و خاموشی پالس، فاکتور  زمان ته، پارامترهاي ورودي شامل جریان الکتریسی. انجام یافته است

هاي خروجی فرآیند درنظر گرفته  برداري، نرخ خوردگی الکترود و زبري سطح به عنوان مشخصه همچنین نرخ براده. باشند می
انجام   L36با استفاده از طرح تاگوچی  یمورد نیاز در انجام این تحقیق، آزمایشات تجرب هاي  داده منظورگردآوري به. اند  شده

مورد نظر، از روش تاگوچی مقدار سیگنال به نویز مربوط به هر مشخصه خروجی محاسبه  يها  داده اخذپس از . شده است
هاي  مدل ی،توابع رگرسیون يهاي خروجی با بکارگیر شده و سپس جهت ایجاد ارتباط بین پارامترهاي ورودي و مشخصه

به هر مشخصه خروجی فرآیند انتخاب  ربوطهاي آماري ، مدل رگرسیونی اصلح م سپس توسط تحلیل. ردیدگ یریاضی طراح
در بخش آخر این تحقیق، با به کارگیري الگوریتم تبرید تدریجی سطوح مختلف پارامترهاي ورودي براي نیل به خروجی . شد
  بهفرآیند را  یتنظیم يبهترین مجموعه از پارامترها توان  یم يپیشنهاد سازي  بهینه روش اساس بر. شدند تعیین نظر، مد ي  بهینه
نتایج حاصل از . گردید گذاري  صحه ینیز توسط آزمایشات تجرب سازي  نتایج بهینه. مورد نظر تعیین نمود یکسب خروج منظور
 تدریجی تبرید والگوریتم شده مطرح سازي  زمان روش مدل سازي و آزمایشات تجربی نشان داد که به کارگیري هم بهینه
  .سازي پارامترهاي فرآیند تخلیه الکتریکی تبدیل شود هینهب و سازي  مدل براي آمد کار ابزاري به تواند می
  

doi: 10.5829/idosi.ije.2014.28.01a.20 

  
 
 
 
 
 
 
 


