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By extending the idea of LSMR method, we present an iterative method to solve the general coupled matrix equations
Y1 AuXi By =C,i=1,2,..., p, (including the generalized (coupled) Lyapunov and Sylvester matrix equations as special cases)

over some constrained matrix groups (X;, X5, .., X,), such as symmetric, generalized bisymmetric, and (R, S)-symmetric matrix

groups. By this iterative method, for any initial matrix group (X (10>, X;O), el Xéo)), asolution group (X f . X ; ey X; ) can be obtained
within finite iteration steps in absence of round-off errors, and the minimum Frobenius norm solution or the minimum Frobenius
norm least-squares solution group can be derived when an appropriate initial iterative matrix group is chosen. In addition, the
optimal approximation solution group to a given matrix group (X,, X,,. .. ,Yq) in the Frobenius norm can be obtained by finding
the least Frobenius norm solution group of new general coupled matrix equations. Finally, numerical examples are given to illustrate

the effectiveness of the presented method.

1. Introduction

In control and system theory [1-7], we often encounter
Lyapunov and Sylvester matrix equations which have been
playing a fundamental role. Due to the important roles of
the matrix equations, the studies on the matrix equations
have been addressed in a large body of papers [8-27]. By
using the hierarchical identification principle [9-11, 28-32], a
gradient-based iterative (GI) method was presented to solve
the solutions and the least-squares solutions of the general
coupled matrix equations. In [19, 33], Zhou et al. deduced
the optimal parameter of the GI method for solving the
solutions and the weighted least-squares solutions of the
general coupled matrix equations. Dehghan and Hajarian
[34-36] introduced several iterative methods to solve various
linear matrix equations.

In [12, 17], Huang et al. presented finite iterative algo-
rithms for solving generalized coupled Sylvester systems.

Li and Huang [37] proposed a matrix LSQR iterative method
to solve the constrained solutions of the generalized cou-
pled Sylvester matrix equations. Hajarian [38] presented the
generalized QMRCGSTAB algorithm for solving Sylvester-
transpose matrix equations. Recently, Lin and Simoncini
[39] established minimal residual methods for large scale
Lyapunov equations. They explored the numerical solution of
this class of linear matrix equations when a minimal residual
(MR) condition is used during the projection step.

In this paper, we construct a matrix iterative method
based on the LSMR algorithm [40] to solve the constrained
solutions of the following problems.

Compatible matrix equations are as follows

q
Y ApXyBy =C;, i=12,...,p. )
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Least-squares problem is as follows:
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Matrix nearness problem is as follows:
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where Ay, By, C;,i=1,2,...,p,k=1,2,...,q, are constant
matrices with suitable dimensions, X;, k = 1,2,...,q, are
unknown matrices to be solved, X, k = 1,2,..., 4, are given
matrices, and S is the solution set of (1) or problem (2).

This paper is organized as follows. In Section 2, we
will briefly review the LSMR algorithm for solving linear
systems of equations. In Section 3, we propose the matrix
LSMR iterative algorithms for solving the problems (1)-(2). In
Section 4, we solve the problem (3) by finding the minimum
Frobenius norm solution group of the corresponding new
general coupled matrix equations. In Section 5, numerical
examples are given to illustrate the efficiency of the proposed
iterative method. Finally, we make some concluding remarks
in Section 6.

The notations used in this paper can be summarized as
follows. tr(A) represents the trace of the matrix A. For A, B €
R™", notation A ® B is Kronecker product and (A, B) =
tr(BT A) is the inner product with the Frobenius norm [|A| =
V(A, Ay = \/tr(AT A). The use of vec(A) represents the vector
operator defined as

vec (A) = (alT al .- aT)T, (4)

where gy is the kth column of A. The generalized bisymmetric
matrices, the (R, S)-symmetric matrices, and the symmetric
orthogonal matrices can be defined as follows.

Definition 1 (see [41]). A matrix P € R™" is said to be a
symmetric orthogonal matrix (P € SOR™™), if P* = P and
PP=1,.

Definition 2 (see [42]). For given symmetric orthogonal
matrices R € R™™, § € R™", we say a matrix X € R™"
is (R, S)-symmetric (X € RSSR™"), if X = RXS.

Definition 3 (see [43]). For a given symmetric orthogonal
matrix P € R™", a matrix X € R™" is said to be a generalized
bisymmetric matrix (X € GBRS™"), if X' = Xand X =
PXP.

2. LSMR Algorithm

In this section, we briefly review some fundamental
properties of the LSMR algorithm [40], which is an iterative
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method for computing a solution x to either of the following
problems.
Compatible linear systems are as follows:

Mx = f. (5)
Least-squares problem is as follows:
min | Mx - f||,, (6)

where M € R™" and f € R™. The LSMR algorithm
uses an algorithm of Golub and Kahan [44], which stated as
procedure Bidiag 4, to reduce M to lower bidiagonal form.
The procedure Bidiag 4 can be described as follows.

Bidiag 4 (starting vector f; reduction to lower bidiagonal
form).

T
By = f, vy =M u,
Birithipr = Mv; — oy,

(7)

o My,

i+1Vir1 = i+1 ﬁi+lvi’

i=12,....

The scalers o; >
Ivill, = 1.

The following properties presented in [7] illustrate that
the procedure Bidiag 4 has finite termination property.

0 and ; > 0 are chosen such that [|lu,]|, =

Property 1. Suppose that k steps of the procedure Bidiag
4 have been taken; then the vectors v,,v,,...,v; and
Uy, Uy, ... Up, Ug,, are the orthonormal basis of the Krylov
subspaces K, (M™ M, v,) and K ,, (MM, u,), respectively.

Property 2. 'The procedure Bidiag 4 will stop at step m if and
only if min{y, A} is m, where y is the grade of v, with respect
to M” M and A is the grade of u; with respect to MM .

By using the procedure Bidiag 4, the LSMR method
constructs an approximation solution of the form x; = V,_y,,
where Vi, = (v, v,,..., V), which solves the least-squares
problem, minykIIMTrkII, where r, = f — Mx; is the residual
for the approximate solution x;.. The main steps of the LSMR
algorithm can be summarized as shown in Algorithm 1.

More details about the LSMR algorithm can be found in
[40].

The stopping criterion may be used as [M7r =
||MT(f Mxll, = |Ck+1| for the compatible linear systems
(5) and for the least-squares problem (6). Other stopping
criteria can also be used and are not listed here. Reader can
see [40] for details. Clearly, the sequence x; € Range (M")
generated by the LSMR algorithm converges to the unique
minimum norm solution of (5) or the unique minimum
norm least-squares solution of problem (6).
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For k = 1,2,..., until convergence Do:

Bt = Mvy — gy

K1 Vi1 = MT”k+1 = Bre1 i

Pr = (&2 + ﬁiﬂ)l/z

G = O/ pi

Sk = Prat/ P

Okr1 = SkOpy

§k+1 = G

Ok = S1pe

Pr = ((Ek—lpk)z + 9ﬁ+1)1/2

C = Cr1 il P

Sk = ekil /Px

gk = Eka B

€k+1 = _ngk _

by = by = Okpe/ (Pt Py Dy

X = X1 t (ck/(Pkﬁk))Ek

hk+i = Vier = Ot/ Py

If |{4,,] is small enough then stop
End Do.

Set By = fraqvy = MTu,, @, =0‘1’Z:0‘1ﬁ1>P0 =Lp=L6G=15=0h =V hy=0,%=0

ALGORITHM 1: LSMR algorithm.

3. A Matrix LSMR Iterative Method

In this section, we will present our matrix iterative method
based on the LSMR algorithm, for solving (1) and problem
(2). For the unknown matrices X; € R™",i = 1,2,...,q,
by using the Kronecker product, (1) and problem (2) are
equivalent to (5) and problem (6), respectively, with

T T T
B1T1®A11 B1T2®A12 . Bqu®A1q
M= B ®Ay Bp®Ay - By ®Ay,
T T T
B, ®A, B,®A, - B, ®A, ®)
vec (X;)
vec (X,)

vec(C,)
vec(C,)

X =

>

vec (:Cp)

Hence, by using the invariance of the Frobenius norm
under unitary transformations, it is easy to prove that the
vector form Bu; = f, ayv, = M uy, Biy thyy; = My, — o,
and vy = Mluy, = By (i = 1,2,..) in LSMR
algorithm can be rewritten in matrix forms, respectively, as

vec (:Xq)

() .
BUY =C; j=12,...,p,

» , 1/2
= (Ser)
j=1

P
() Tr() pT :
“1V1] = zAilel Bj, j=L2....9,

o= (§ ([ ))

9
*) 0o
—<ZAjkVi Bjk>—ociUi], i=1,2...,p
k=1

e ien )

P
k T 17() pT k
“i+1V( ) = ZAij‘j By _ﬁi+1Vi( L k= L2,....q,
j=1

i+1 i+1
2>>

q
Xip1 = z
k=1

€ GBRS™", then

If the unknown matrices X;, X,,..., X
(1) and problem (2) are equivalent to (5) and problem (6),
respectively, with

P

T 170 pT
ZAikUl By
i=1

=

x

S

+ <

_
|

q

(k) ()
zAjkVi Bj — U
k=1

1/2
p

i+17 jk

T 1) pT @)
AULiBy — BV,
1

j=

€



T T

B ® Ay, B, ®Aj, Bqu®A1q

T T T
By ® Ay By ® Ay By ® Ay

T T T
Bl @4, Bl,®A, -  BL®A,
T T T
Ay ® By, A, ® By, A, ®B,
T T T
Ay ®BL Ap®Bl, - A, ®B
S T T
M= A, ®B), Ap®B), - A, ®Bl

(B1T1P1)®(A11P1) (B1T2P2)®(A12P2) (BTP)®(A P)
(B§1P1)®(A21P1) (B§2P2)®(A22P2) (BTP)®(A2qP)

(Bp) @ (4pP) (BLE) @ (ApR) - (B e (4,8,)
(AyP)e(BP) (A,P)e(BLP) - (Aqu)®(BTP)
(AyP)®(BLP) (AyuP)®(BLP) -+ (AyP,)®(B}P,)
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(ApP)®(ByP) (ApP)®(B,P) -+ (AyP,) @ (B,P,)

vec (X,)
vec (X,)
x = :

vec (Xq)

where P, P,,..., P, € SOR™". Hence, the vector forms of
T

Biwy = fravy = Muy, Bigwy, = My, — oguy, and
Oy Vip, = MTu,-Jr1 — Bivi i =1,2,...) in LSMR algorithm

can be rewritten in matrix forms, respectively, as

() .
BU” =Cj, j=12....p

(10)

1/2
bl

12 2
o S )
j=1
p

V"= Y (ALUP B + BU A,
i=1
+ (PyAy) UY (ByPy)+(PiBy) U (44R)
j=12,...,q
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k=1

iAz;cUil)ngl; + BikU{i)TAik X Uzi)l (B]kpk) (PkB]k) Ul(il (A kpk))
i=1

k
BV, k=12...q

o 12
P
>’ o (B[S ot nasgra,
i)

+ (P ARIUY (B P)+(PeBy) UV (AyP)

=1 ||j=1
q () (BT
b, B, P,
ﬁiJrleJZ)l - (zAjk‘/i(k)Bjk> U’(] ? j= 1)2>---:P: ( k ]k) U1+1 ( jk k)
k=1 o\ 172
\NT (k)
p o )il (am) -m] )
k )]
Pin = 2(2 ZAjkVi( By~ U ) > (11)

j=1llk=1

If the unknown matrices X;, X,,..., X, € RSSR™, then

p
(k) _ () (T T (1) and problem (2) are equivalent to (5) and problem (6),
Vil = E AT U, B + B Uil Ag +(PAS
Fie1 Vinn ( i1 i1 ik ( k ]k) respectively, with

j=1
B @Ay B,®Ay Bqu®A1q
By, ® Ay By, ® Ay, Bqu®A2q
e By, ® A, B,®A, By, ®A,,
(BlT151) ® (A 1R)) (B1Tzsz) ®(ApR,) - (B1quq) (AlqRq)
(B;Sl) ® (AyR,) (Bgzsz) ®(ApR,) - (qusq) (AZqRq)
T : T : T
(BuSi)® (4,R1) (BypS;) @ (ApRy) - (By,S,) @ (quRq) 12)
vec (C;)
vec (C,)
vec (X;)
vec (X,) vec (Cp)
S R L A e A
vec (Xq) vec(C,)
vec (Cp)
where P, R; € SOR™",i = 1,2,...,q. Hence, the vector forms q 2\ 2
T i) T 1 1() pT
of fiuy = f, vy = M uy, Biyuyyy = My, — ogu;, and z ZAku sz + Ry (AikUl Bik)Sk >
Oy Vip, = MTuiJrl = Biv;i (i = 1,2,...) in LSMR algorithm k=1lli=1
can be rewritten in matrix forms, respectively, as ) q ®p 0
() . ﬁi+1UH]-1 Z jkV (in;’] > ] = 1’2>""P’
U =C, j=12....p, P

(k) ()
Z ]kVi Bjk_‘ini]

» . 1/2 p 2\ 172
= ﬁ( Ylel > , Bins = <]Z ) :
j=1 =

I J ‘ , p
oV = Y (ATUPBE + R (ATUPBY)S)), Vi = Y (AU BY + R (AL UL BL) S, )
i=1 j=1

. k
j=L2,...,q —ﬁiHVi( L ok=1,2...,9



P
Z ( Ul(ij-)lB]k + Rk (A Uz-i]-)l ]k) Sk)

j=1
2>1/2

If the unknown matrices X;, X,,..., X, € SR™" (the
set of symmetric matrices), then (1) and problem (2) are
equivalent to (5) and problem (6), respectively, with

q
Kip1 = Z
k=1

k
_ﬁiHVi( :

(13)

T T T
B ®Ay; Bp,®Ap, - B @Ay,
T T T
Bl Ay, BL®Ay, - BL @A,
T T T
M= B, ®A, B,®A, -+ B, ,®A,
= T T |
Apn®B;, Ap®B), - Ay®B),
T T T
An®B; Ap®By, 0 Ay ®By,
T o T o T
A, ®B, A,®B, - Ay ®B,,
(14)
vec(C,)
vec (C,)
vec (X;)
vec (X,) | vee (CP) N
*= . ’ f= Vec(ClT) (15)
vec (Xq) vec (CZT)

vec (C};)

Hence, the vector forms of f,u,

T
f avy, = M ou,
Bisithipy = Mv; — ogu, and oy v,y = m" Uiy = Piavi (i = 1,

2,...)in LSMR algorithm can be rewritten in matrix forms,
respectively, as

() .
U =C; j=12,...,p,

s=i(Sker)

p
)] T () pT T .
oV =Y (ALUVBL + BLUTA), =124,

i=1
2>1/2
bl

|| M’v

P
T 1) pT &1
ZAikU11 By + By U Ay

9
=)
k=1{li=1
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q
) k () .
BiaU) = (ZAjka ’Bjk> U, j=12....p,
k=1
2 1/2
Bin = <Z ZA kV(k B fXU(] ) ,
j=1llk=1

p
k () (NT k
z+1Vz(+1) = Z(A Uy B +By Uy, A jk)—ﬁmvi( g

i+1 i+1
j=1
k = 13 23 . sq:
2 1/2
LS () DT 4 (k)
®ir1 = Z Z( Ul+lBJk+B Uz+1 j )_ﬂiHVi
k=1||j=1
(16)

From above results, we can obtain the matrix form itera-
tion method of LSMR algorithm for solving the constrained
solution group of (1) and problem (2). When the unknown
matrices X, X,,..., X, € SR™", the matrix form iterative
method is given as shown in Algorithm 2.

4. The Solution Group of Problem (3)

Now, we consider the solution group of the matrix nearness
problem (3) for given matrix group (X, X,,..., X, q)» where
X, € R™ k = 1,2,...,q. If X, € SR™, it is easy to prove

that
X, -X
T D
— —T 12
. Xi + X,
= min -—
X €SR™" k=1,2,...q kZi k 2 17
L3RR
Let
e X+ X Lo
k — - 2 > = b 4. >q)
; (18)
_ L X+ X,
Ci=Cj= Y Ap——"Bjp j=12...p

then problem (3) is equivalent to finding the minimum
Frobenius norm symmetric solution group or minimum
Frobenius norm least-squares symmetric solution group of
the following problems, respectively.

Compatible matrix equations are as follows:

q
Y AuX By =C, i=12,...,p. (19)
k=1
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SetXW =0, k=1,2,...,q
Br= (S fe ) v = c =12
o = (XL, |22, Aﬁ{U(")Bi+B,kU(i)TA,k||2)l/2
v<") I(AQUO By +BRUT A o, k=1,2,...,9
Set o, —cxl,(l =afpp=1p=1¢=15=0h"=VvP k= l,2,...,q,ﬁgk> =0, k=1,2,...,q
For k = 1,2,..., until converges Do:
B, = ( “zq AVOB, - U<i)|2)1/2
U, = L AVB, —akU('/ﬁkH,z_m .
= (S |5 (7055 + B0 A,) - B vIT)
VO = (30, (ALUP B+ BUPTA) = B Vi) i =1,2,...,q
pr = (@ + ﬁk+1)1/2
G = %/ i
Sk = Prar/ Px
Orir = Sy
Fpr1 = GOy
O = Se1px
Pi = ((Ek—lpk)z + elin)l/z
Cx = Co1 il P
S = Gkﬂ/ﬁk
§k =l _
Ckn = =50
B =B =@ P P i = 12 g
;(“ X0 4 (Gl (pp )y i = 1,2,...,q
hl(:L Vk(:l - (6k+1/Pk)hl(:)> i=12...,9
If |{,, | is small enough then stop
End Do.
ALGORITHM 2: LSMR_SR_M algorithm.
Least-squares problem is as follows: Example 1. Suppose that the matrices A;;, B;;, C;, i, j = 1,2,

q

Z 1ka ik —

o\ 172

> . (20)
By LSMR_SR_M method, we can get the minimum Frobenius
,52;) of (19)
(or the minimum Frobenius norm least-squares symmetric
solution group of problem (20)). Then, the optimal approx-
imate solution group (X, X,, ..., X ) of problem (3) can be

obtained; that is, X; = Xk + (X + Xk)/2.

1nh1<25

i=1

norm symmetric solution group (X;,X;,...

5. Numerical Examples

To compare the behavior of the proposed matrix method
discussed in the previous section with the CGNE method [43]
and the matrix LSQR iterative method (LSQR_M) [37], we
present in this section numerical results for three examples.
All the numerical computations are performed in MATLAB
7.

are given by the following matrices:

8 -1 2 -3 4
5 0 2 21
Ay= 0o 3 7 2 4|,
-2 -1 -1 2 4
4 1 1 21

By=| 2 5 -4-81 |,
9 0 2 5 1
3 -3 1 1 9
4 34 41
2 -2 6 —4 4

A= 9 6 05 1 |,
5 45 3 3
9 1 7-59
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-2 -1 -2 32
1 5 4 96
Bp=| 9 31 11
52 5 41
4 -8 2 21
123 -5 2
46 1 -39
A, = 44—223
22 8 1
314—38
9 2 3 -1 -1
3 -1 8 8 5
By=| -1 -2 -8 -5 -2 |,
-1-12 7 3
1 -1 -8 8 2
9 2 3 2 1
33 9 4 3
Ap=| 8 2 6 -8 8 |,
1 2 -9 4 -2
2 -1 -2 -2 -3

-1 -2 9 8 9
1 -3 -3-39
-1 -3-9-59
1 -9 -6 5 -1
2 -7 -4 5 8

B,, =

(21)

The C, and C, matrices are chosen such that X; = I, and
X, = E,, where I, and E,, are the n x n identity matrix and
the n x n matrix whose entries are all one, respectively.

In Figurel, we display the convergence curves of the
function log, 0, with

2], 7"
=] 1R )

where ng), i,k = 1,2, is the residual matrix of the ith
equation in kth iteration. The initial iterative matrices in
all the iterative methods are chosen as zero matrices of
suitable size. Figure 1 confirms that the proposed algorithm
has faster convergence rate and higher accuracy than the
CGNE method and similar behavior to the matrix LSQR
iterative method.

O = (22)

Example 2. Suppose that the matrices A;;, B

Cjinj=12,
are given by the following matrices:

l]’

Ay, = tridiag (-1,6,-1), By, = tridiag (1,8,-1),

A, =011, B,, = tridiag (1,0, 1),

Ay = (0.1)1, B,, = tridiag (-2,1,-2),

A,, = tridiag (-1,-3,-1), B,, = tridiag(1,6,2).
(23)
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Iters

-%- LSMR-SR-M
—— CGNE-SR-M
--- LSQR-SR-M

FIGURE 1: Convergence history of the LSMR, CGNE, and LSQR
iterative methods for Example 1.

As Example 1, the C, and C, matrices are chosen such that
X, = I,and X, = E, with n = 400 and the initial
iterative matrices in all the iterative methods are chosen as
zero matrices of suitable size. In Figure 2, as Figure 1, we
display the convergence curves of the function log, ,6,. This
figure shows that the LSMR method outperforms the CGNE
and LSQR methods.

Example 3 (see [45]). Consider the convection diffusion
equation with the Dirichlet boundary conditions

L(u):=-Au+ 2va— + 2va—u = on ),
u=g on Q.

Here Q is the unit square [0, 1] x [0, 1]. The operator L was
discretized using central finite differences on Q, with mesh
size h = 1/(n + 1) in the “x” direction and k = 1/(p + 1)

in the “y” direction. This ylelds a linear system of algebraic
equations that can be written as a Sylvester matrix equation

AX - XB=C, (25)

(as a particular case of (1) with A}, = A, A, = -I,, B}, =
I,, B, = B, C; = C,and X, = X, = X) where tridiagonal
matrices A and B are given by

A= ® trldlag (1 +vh),-2,(1 —vh)),

(26)
B= %tridiag((l +7vk),-2,(1 —vk)).
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The right-hand side matrix C is obtained as follows:

C(i,j):f(x,»+1,yj+1), fori=2,...,n-1,
j=2,...,p—1,
1+vh
CLD) = f(x0,) + —5— ™ g(0,»,)
1+7/k
+ —5—9(x,,0),
1+vh
C(l,p) = f(xz’)’p+1)+ Tg(o’yp+1)

1),

Cn,1) = f(xn+1’y2)+ 2 g(l 1)

k
1zv g(xn+1’ )’
1-vh
C(np)= f(xn+1’yp—1)+79(1’yp+l) (27)
- vk
+ 122 —5 9 (xp101),
h
C(1,j) = f(xzxyj+1)+1;—;}g(0,yj+1),
for j=2,...,p—-1,
. 1-vh
C(I’l,]) = f(xn+1’yj+1)+ 79(1))’j+1),

for j=2,...,p-1,

. 1+7k
C@i1) = f (x40 05) + Tg(xm»o)’

fori=2,...,n—-1,

) 1-vk
C(l’ P) = f(xi+l’yp+1) + Tg (xi+1> 1) >

fori=2,...,n-1.
In this example, the functions f and g were chosen such that
the exact solution is

—x?—y?

u(x,y) = xe (28)
on the domain Q. In addition, we used the symmetric suc-
cessive overrelaxation (SSOR) preconditioner for the matrix
equation (25) to increase the convergence rate. It is easy to

prove that the matrix equation (25) is equivalent to the npxnp
linear system:

dx =, (29)

where o = I, A- B'® I,, ¢ =vec(C), and X = vec(X).

Iters

-%- LSMR-SR-M
—o— CGNE-SR-M
--- LSQR-SR-M

FIGURE 2: Convergence history of the LSMR, CGNE, and LSQR
iterative methods for Example 2.

The matrices A and B can be written as

A=D,-E,-F,,
(30)
B=Dy-Ey-Fp,

where D, is the diagonal of A and —E , and —F, are the strict
lower and upper part of A, respectively. Then the splitting of
the matrix & is given as

A=D5-85,-F @31
with
D5=1,8D,-Dy®1,
&5=1,8E,-Fy®I, (32)

F5=1,0F,—E @I,

Now instead of solving the matrix equation (25), we will apply
the LSMR-M algorithm to the preconditioned system

di 'y =¢ with y = g, (33)

where fi is a preconditioner. As said, we use the SSOR
preconditioner defined by

Hssor =
(34)

We note that the np x np matrix o is not used explicitly.
We only use the action of the linear operator &/ on a matrix
V € R™?, defined by &/(V) = AV — VB. In addition, we use
only matrix-by-vector products; then when using the SSOR
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preconditioner we have to compute, for a given V. € R™?,
the matrix W € R™? such that

W = Fligeop? with @ = vec(W), ¥=vec(V), (35
or

@ = (Tiigior) 7= (aor) @7 with @ = vec (W),

v=vec(V).
(36)
With setting
F=i 'Ve=v=pgr with 7 =vec(R) (37)
the linear system (35) is equivalent to
W = Djiggoy¥ & W = dF. (38)

For computing R such that @ = ige,, ¥, we have to solve
the following matrix equations:

(Dy—wEL)Y -Y (Dg - wFg) =w(2-w)V, (39)
D,Y -YDy = Z, (40)
(D4 — wF,) R - R(Dy — wEg) = Z. (41)

The matrix equations (39) and (41) are also Sylvester matrix
equations. But as was stated in [45], since the matrices
involved in these equations are triangular, they are solved
easily. In (39), the matrix Y can be computed from left to right
and from top to bottom in each column; this corresponds to
backward substitution. Equation (41) is solved in the opposite
sense and this corresponds to forward substitution. Now, to
compute W in (35), it is sufficient to use the action of the
operator & on the matrix 7, defined by &/(¥) = A7 — 7B.

To compute W in (36), first, we use the action of the
operator &/ on the matrix, defined by /(%) = A™% — ¥B.
Then, by setting

¥=A"v-vB, (42)
the linear system (36) is equivalent to

1~ —
V= [t ox = 7. (43)

w= (ﬁgSOR)

Therefore, W can be obtained by solving the following matrix
equations:

(Dy-wEL)Y -Y (Dg-wFf) =0(2-w)¥  (44)
D,Y -YDy = Z, (45)

(D, - wFy) - (Dy - wEg) = Z. (46)

Similarly, the matrix equations (44) and (46) are also
Sylvester matrix equations. But since the matrices involved

in these equations are triangular, in (44), the matrix Y can
be computed from right to left and from bottom to top in

Journal of Applied Mathematics
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FIGURE 3: Convergence history of the LSMR-M and SSOR-LSMR-
M.

each row; this corresponds to forward substitution. Equation
(46) is solved in the opposite sense and this corresponds to
backward substitution.

In Figure 3, we exhibited the function log,,0) with

€ - (AX, - X, B

= N 47
©= O~ (X, ~ X,B)], “7)

versus the number of iterations for LSMR-M and the SSOR-
LSMR-M. Furthermore, we note that for computing the
quantity Rl (Ry is the residual matrix in kth iteration)
we used the pseudocode stated in [40]. These results were
obtained for v = 100, n = 300, p = 300, and w = 0.9. The
initial iterative matrix was chosen as zero matrix of suitable
size. As we observe by using the SSOR preconditioner the
convergence rate of the LSMR-M algorithm has increased,
effectively.

6. Conclusion

Solving the linear matrix equations is an attractive part of
research. By extending the idea of LSMR method, we have
proposed Algorithm 2 to solve the coupled matrix equations
(1) or the least-squares problem (2) over generalized symmet-
ric matrices. By this new iterative method on the selection
of special initial matrix group, we obtain the minimum
Frobenius norm solutions or the minimum Frobenius norm
least-squares solutions over generalized symmetric matrices.
All the presented results show that the matrix LSMR iterative
method is efficient to compute the solution group of the
general coupled matrix equations.
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