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By extending the idea of LSMR method, we present an iterative method to solve the general coupled matrix equations
∑
𝑞

𝑘=1
𝐴
𝑖𝑘
𝑋
𝑘
𝐵
𝑖𝑘
= 𝐶
𝑖
, 𝑖 = 1, 2, . . . , 𝑝, (including the generalized (coupled) Lyapunov and Sylvester matrix equations as special cases)

over some constrained matrix groups (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑞
), such as symmetric, generalized bisymmetric, and (𝑅, 𝑆)-symmetric matrix

groups. By this iterativemethod, for any initialmatrix group (𝑋(0)
1
, 𝑋(0)
2
, . . . , 𝑋(0)

𝑞
), a solution group (𝑋∗

1
, 𝑋∗
2
, . . . , 𝑋∗

𝑞
) can be obtained

within finite iteration steps in absence of round-off errors, and the minimum Frobenius norm solution or the minimum Frobenius
norm least-squares solution group can be derived when an appropriate initial iterative matrix group is chosen. In addition, the
optimal approximation solution group to a given matrix group (𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑞
) in the Frobenius norm can be obtained by finding

the least Frobenius norm solution group of new general coupledmatrix equations. Finally, numerical examples are given to illustrate
the effectiveness of the presented method.

1. Introduction

In control and system theory [1–7], we often encounter
Lyapunov and Sylvester matrix equations which have been
playing a fundamental role. Due to the important roles of
the matrix equations, the studies on the matrix equations
have been addressed in a large body of papers [8–27]. By
using the hierarchical identification principle [9–11, 28–32], a
gradient-based iterative (GI) method was presented to solve
the solutions and the least-squares solutions of the general
coupled matrix equations. In [19, 33], Zhou et al. deduced
the optimal parameter of the GI method for solving the
solutions and the weighted least-squares solutions of the
general coupled matrix equations. Dehghan and Hajarian
[34–36] introduced several iterative methods to solve various
linear matrix equations.

In [12, 17], Huang et al. presented finite iterative algo-
rithms for solving generalized coupled Sylvester systems.

Li and Huang [37] proposed a matrix LSQR iterative method
to solve the constrained solutions of the generalized cou-
pled Sylvester matrix equations. Hajarian [38] presented the
generalized QMRCGSTAB algorithm for solving Sylvester-
transpose matrix equations. Recently, Lin and Simoncini
[39] established minimal residual methods for large scale
Lyapunov equations.They explored the numerical solution of
this class of linear matrix equations when a minimal residual
(MR) condition is used during the projection step.

In this paper, we construct a matrix iterative method
based on the LSMR algorithm [40] to solve the constrained
solutions of the following problems.

Compatible matrix equations are as follows

𝑞

∑
𝑘=1

𝐴 𝑖𝑘𝑋𝑘𝐵𝑖𝑘 = 𝐶𝑖, 𝑖 = 1, 2, . . . , 𝑝. (1)
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Least-squares problem is as follows:

min(
𝑝

∑
𝑖=1



𝑞

∑
𝑘=1

𝐴 𝑖𝑘𝑋𝑘𝐵𝑖𝑘 − 𝐶𝑖



2

)

1/2

. (2)

Matrix nearness problem is as follows:

min
(𝑋1 ,𝑋2,...,𝑋𝑞)∈𝑆𝐸

{

𝑞

∑
𝑘=1

𝑋𝑘 − 𝑋𝑘

2

} , (3)

where 𝐴 𝑖𝑘, 𝐵𝑖𝑘, 𝐶𝑖, 𝑖 = 1, 2, . . . , 𝑝, 𝑘 = 1, 2, . . . , 𝑞, are constant
matrices with suitable dimensions, 𝑋𝑘, 𝑘 = 1, 2, . . . , 𝑞, are
unknown matrices to be solved, 𝑋𝑘, 𝑘 = 1, 2, . . . , 𝑞, are given
matrices, and 𝑆𝐸 is the solution set of (1) or problem (2).

This paper is organized as follows. In Section 2, we
will briefly review the LSMR algorithm for solving linear
systems of equations. In Section 3, we propose the matrix
LSMR iterative algorithms for solving the problems (1)-(2). In
Section 4, we solve the problem (3) by finding the minimum
Frobenius norm solution group of the corresponding new
general coupled matrix equations. In Section 5, numerical
examples are given to illustrate the efficiency of the proposed
iterative method. Finally, we make some concluding remarks
in Section 6.

The notations used in this paper can be summarized as
follows. tr(𝐴) represents the trace of the matrix𝐴. For𝐴, 𝐵 ∈
R𝑚×𝑛, notation 𝐴 ⊗ 𝐵 is Kronecker product and ⟨𝐴, 𝐵⟩ =
tr(𝐵𝑇𝐴) is the inner product with the Frobenius norm ‖𝐴‖ =

√⟨𝐴,𝐴⟩ = √tr(𝐴𝑇𝐴).The use of vec(𝐴) represents the vector
operator defined as

vec (𝐴) = (𝑎𝑇
1
𝑎𝑇
2
⋅ ⋅ ⋅ 𝑎𝑇
𝑛
)
𝑇

, (4)

where 𝑎𝑘 is the 𝑘th column of𝐴.The generalized bisymmetric
matrices, the (𝑅, 𝑆)-symmetric matrices, and the symmetric
orthogonal matrices can be defined as follows.

Definition 1 (see [41]). A matrix 𝑃 ∈ 𝑅𝑛×𝑛 is said to be a
symmetric orthogonal matrix (𝑃 ∈ 𝑆𝑂𝑅𝑛×𝑛), if 𝑃𝑇 = 𝑃 and
𝑃2 = 𝐼𝑛.

Definition 2 (see [42]). For given symmetric orthogonal
matrices 𝑅 ∈ R𝑚×𝑚, 𝑆 ∈ R𝑛×𝑛, we say a matrix 𝑋 ∈ R𝑚×𝑛

is (𝑅, 𝑆)-symmetric (𝑋 ∈ 𝑅𝑆𝑆𝑅𝑛×𝑛), if𝑋 = 𝑅𝑋𝑆.

Definition 3 (see [43]). For a given symmetric orthogonal
matrix𝑃 ∈ R𝑛×𝑛, amatrix𝑋 ∈ R𝑛×𝑛 is said to be a generalized
bisymmetric matrix (𝑋 ∈ 𝐺𝐵𝑅𝑆𝑛×𝑛), if 𝑋𝑇 = 𝑋 and 𝑋 =
𝑃𝑋𝑃.

2. LSMR Algorithm

In this section, we briefly review some fundamental
properties of the LSMR algorithm [40], which is an iterative

method for computing a solution 𝑥 to either of the following
problems.

Compatible linear systems are as follows:

𝑀𝑥 = 𝑓. (5)

Least-squares problem is as follows:

min 𝑀𝑥 − 𝑓
2, (6)

where 𝑀 ∈ R𝑚×𝑛 and 𝑓 ∈ R𝑚. The LSMR algorithm
uses an algorithm of Golub and Kahan [44], which stated as
procedure Bidiag 4, to reduce 𝑀 to lower bidiagonal form.
The procedure Bidiag 4 can be described as follows.

Bidiag 4 (starting vector 𝑓; reduction to lower bidiagonal
form).

𝛽1𝑢1 = 𝑓, 𝛼1V1 = 𝑀
𝑇𝑢1,

𝛽𝑖+1𝑢𝑖+1 = 𝑀V𝑖 − 𝛼𝑖𝑢𝑖,

𝛼𝑖+1V𝑖+1 = 𝑀
𝑇𝑢𝑖+1 − 𝛽𝑖+1V𝑖,

𝑖 = 1, 2, . . . .

(7)

The scalers 𝛼𝑖 ≥ 0 and 𝛽𝑖 ≥ 0 are chosen such that ‖𝑢𝑖‖2 =
‖V𝑖‖2 = 1.

The following properties presented in [7] illustrate that
the procedure Bidiag 4 has finite termination property.

Property 1. Suppose that 𝑘 steps of the procedure Bidiag
4 have been taken; then the vectors V1, V2, . . . , V𝑘 and
𝑢1, 𝑢2, . . . , 𝑢𝑘, 𝑢𝑘+1 are the orthonormal basis of the Krylov
subspaces 𝐾𝑘(𝑀

𝑇𝑀, V1) and𝐾𝑘+1(𝑀𝑀
𝑇, 𝑢1), respectively.

Property 2. The procedure Bidiag 4 will stop at step 𝑚 if and
only if min{𝜇, 𝜆} is𝑚, where 𝜇 is the grade of V1 with respect
to𝑀𝑇𝑀 and 𝜆 is the grade of 𝑢1 with respect to𝑀𝑀𝑇.

By using the procedure Bidiag 4, the LSMR method
constructs an approximation solution of the form 𝑥𝑘 = 𝑉𝑘𝑦𝑘,
where 𝑉𝑘 = (V1, V2, . . . , V𝑘), which solves the least-squares
problem, min𝑦

𝑘

‖𝑀𝑇𝑟𝑘‖, where 𝑟𝑘 = 𝑓 − 𝑀𝑥𝑘 is the residual
for the approximate solution 𝑥𝑘. The main steps of the LSMR
algorithm can be summarized as shown in Algorithm 1.

More details about the LSMR algorithm can be found in
[40].

The stopping criterion may be used as ‖𝑀𝑇𝑟𝑘‖ =

‖𝑀𝑇(𝑓 −𝑀𝑥𝑘)‖2 = |𝜁𝑘+1| for the compatible linear systems
(5) and for the least-squares problem (6). Other stopping
criteria can also be used and are not listed here. Reader can
see [40] for details. Clearly, the sequence 𝑥𝑘 ∈ Range (𝑀𝑇)
generated by the LSMR algorithm converges to the unique
minimum norm solution of (5) or the unique minimum
norm least-squares solution of problem (6).
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Set 𝛽
1
𝑢
1
= 𝑓, 𝛼

1
V
1
= 𝑀𝑇𝑢

1
, 𝛼
1
= 𝛼
1
, 𝜁
1
= 𝛼
1
𝛽
1
, 𝜌
0
= 1, 𝜌

0
= 1, 𝑐
0
= 1, 𝑠

0
= 0, ℎ

1
= V
1
, ℎ
0
= 0, 𝑥

0
= 0

For 𝑘 = 1, 2, . . ., until convergence Do:
𝛽
𝑘+1
𝑢
𝑘+1

= 𝑀V
𝑘
− 𝛼
𝑘
𝑢
𝑘

𝛼
𝑘+1

V
𝑘+1

= 𝑀𝑇𝑢
𝑘+1
− 𝛽
𝑘+1

V
𝑘

𝜌
𝑘
= (𝛼2
𝑘
+ 𝛽2
𝑘+1
)1/2

𝑐
𝑘
= 𝛼
𝑘
/𝜌
𝑘

𝑠
𝑘
= 𝛽
𝑘+1
/𝜌
𝑘

𝜃
𝑘+1

= 𝑠
𝑘
𝛼
𝑘+1

𝛼
𝑘+1

= 𝑐
𝑘
𝛼
𝑘+1

𝜃
𝑘
= 𝑠
𝑘−1
𝜌
𝑘

𝜌
𝑘
= ((𝑐
𝑘−1
𝜌
𝑘
)2 + 𝜃2

𝑘+1
)1/2

𝑐
𝑘
= 𝑐
𝑘−1
𝜌
𝑘
/𝜌
𝑘

𝑠
𝑘
= 𝜃
𝑘+1
/𝜌
𝑘

𝜁
𝑘
= 𝑐
𝑘
𝜁
𝑘

𝜁
𝑘+1

= −𝑠
𝑘
𝜁
𝑘

ℎ
𝑘
= ℎ
𝑘
− (𝜃
𝑘
𝜌
𝑘
/(𝜌
𝑘−1
𝜌
𝑘−1
))ℎ
𝑘−1

𝑥
𝑘
= 𝑥
𝑘−1
+ (𝜁
𝑘
/(𝜌
𝑘
𝜌
𝑘
))ℎ
𝑘

ℎ
𝑘+1

= V
𝑘+1
− (𝜃
𝑘+1
/𝜌
𝑘
)ℎ
𝑘

If |𝜁
𝑘+1
| is small enough then stop

End Do.

Algorithm 1: LSMR algorithm.

3. A Matrix LSMR Iterative Method

In this section, we will present our matrix iterative method
based on the LSMR algorithm, for solving (1) and problem
(2). For the unknown matrices 𝑋𝑖 ∈ R𝑛×𝑛, 𝑖 = 1, 2, . . . , 𝑞,
by using the Kronecker product, (1) and problem (2) are
equivalent to (5) and problem (6), respectively, with

𝑀 =(

𝐵𝑇
11
⊗ 𝐴11 𝐵𝑇

12
⊗ 𝐴12 ⋅ ⋅ ⋅ 𝐵

𝑇

1𝑞
⊗ 𝐴1𝑞

𝐵𝑇
21
⊗ 𝐴21 𝐵𝑇

22
⊗ 𝐴22 ⋅ ⋅ ⋅ 𝐵

𝑇

2𝑞
⊗ 𝐴2𝑞

...
...

...

𝐵𝑇
𝑝1
⊗ 𝐴𝑝1 𝐵

𝑇

𝑝2
⊗ 𝐴𝑝2 ⋅ ⋅ ⋅ 𝐵

𝑇

𝑝𝑞
⊗ 𝐴𝑝𝑞

),

𝑥 = (

vec (𝑋1)
vec (𝑋2)

...

vec (𝑋𝑞)

) , 𝑓 = (

vec (𝐶1)
vec (𝐶2)

...

vec (𝐶𝑝)

) .

(8)

Hence, by using the invariance of the Frobenius norm
under unitary transformations, it is easy to prove that the
vector form 𝛽1𝑢1 = 𝑓, 𝛼1V1 = 𝑀

𝑇𝑢1, 𝛽𝑖+1𝑢𝑖+1 = 𝑀V𝑖 − 𝛼𝑖𝑢𝑖,
and 𝛼𝑖+1V𝑖+1 = 𝑀𝑇𝑢𝑖+1 − 𝛽𝑖+1V𝑖 (𝑖 = 1, 2, . . .) in LSMR
algorithm can be rewritten in matrix forms, respectively, as

𝛽1𝑈
(𝑗)

1
= 𝐶𝑗, 𝑗 = 1, 2, . . . , 𝑝,

𝛽1 = (

𝑝

∑
𝑗=1

𝐶𝑗

2

)

1/2

,

𝛼1𝑉
(𝑗)

1
=

𝑝

∑
𝑖=1

𝐴𝑇
𝑖𝑗
𝑈(𝑖)
1
𝐵𝑇
𝑖𝑗
, 𝑗 = 1, 2, . . . , 𝑞,

𝛼1 = (

𝑞

∑
𝑘=1

(



𝑝

∑
𝑖=1

𝐴𝑇
𝑖𝑘
𝑈(𝑖)
1
𝐵𝑇
𝑖𝑘



2

))

1/2

,

𝛽𝑖+1𝑈
(𝑗)

𝑖+1
= (

𝑞

∑
𝑘=1

𝐴𝑗𝑘𝑉
(𝑘)

𝑖
𝐵𝑗𝑘) − 𝛼𝑖𝑈

(𝑗)

𝑖
, 𝑗 = 1, 2, . . . , 𝑝,

𝛽𝑖+1 = (

𝑝

∑
𝑗=1

(



𝑞

∑
𝑘=1

𝐴𝑗𝑘𝑉
(𝑘)

𝑖
𝐵𝑗𝑘 − 𝛼𝑖𝑈

(𝑗)

𝑖



2

))

1/2

,

𝛼𝑖+1𝑉
(𝑘)

𝑖+1
=

𝑝

∑
𝑗=1

𝐴𝑇
𝑗𝑘
𝑈
(𝑗)

𝑖+1
𝐵𝑇
𝑗𝑘
− 𝛽𝑖+1𝑉

(𝑘)

𝑖
, 𝑘 = 1, 2, . . . , 𝑞,

𝛼𝑖+1 = (

𝑞

∑
𝑘=1

(



𝑝

∑
𝑗=1

𝐴𝑇
𝑗𝑘
𝑈
(𝑗)

𝑖+1
𝐵𝑇
𝑗𝑘
− 𝛽𝑖+1𝑉

(𝑘)

𝑖



2

))

1/2

.

(9)

If the unknown matrices 𝑋1, 𝑋2, . . . , 𝑋𝑞 ∈ 𝐺𝐵𝑅𝑆𝑛×𝑛, then
(1) and problem (2) are equivalent to (5) and problem (6),
respectively, with
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𝑀 =

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝐵𝑇
11
⊗ 𝐴11 𝐵𝑇

12
⊗ 𝐴12 ⋅ ⋅ ⋅ 𝐵𝑇

1𝑞
⊗ 𝐴1𝑞

𝐵𝑇
21
⊗ 𝐴11 𝐵𝑇

22
⊗ 𝐴22 ⋅ ⋅ ⋅ 𝐵𝑇

2𝑞
⊗ 𝐴2𝑞

...
...

...

𝐵𝑇
𝑝1
⊗ 𝐴𝑝1 𝐵𝑇

𝑝2
⊗ 𝐴𝑝2 ⋅ ⋅ ⋅ 𝐵𝑇

𝑝𝑞
⊗ 𝐴𝑝𝑞

𝐴11 ⊗ 𝐵
𝑇

11
𝐴12 ⊗ 𝐵

𝑇

12
⋅ ⋅ ⋅ 𝐴1𝑞 ⊗ 𝐵

𝑇

1𝑞

𝐴21 ⊗ 𝐵
𝑇

21
𝐴22 ⊗ 𝐵

𝑇

22
⋅ ⋅ ⋅ 𝐴2𝑞 ⊗ 𝐵

𝑇

2𝑞

...
...

...

𝐴𝑝1 ⊗ 𝐵
𝑇

𝑝1
𝐴𝑝2 ⊗ 𝐵

𝑇

𝑝2
⋅ ⋅ ⋅ 𝐴𝑝𝑞 ⊗ 𝐵

𝑇

𝑝𝑞

(𝐵𝑇
11
𝑃1) ⊗ (𝐴11𝑃1) (𝐵𝑇

12
𝑃2) ⊗ (𝐴12𝑃2) ⋅ ⋅ ⋅ (𝐵𝑇

1𝑞
𝑃𝑞) ⊗ (𝐴1𝑞𝑃𝑞)

(𝐵𝑇
21
𝑃1) ⊗ (𝐴21𝑃1) (𝐵𝑇

22
𝑃2) ⊗ (𝐴22𝑃2) ⋅ ⋅ ⋅ (𝐵𝑇

2𝑞
𝑃𝑞) ⊗ (𝐴2𝑞𝑃𝑞)

...
...

...

(𝐵𝑇
𝑝1
𝑃1) ⊗ (𝐴𝑝1𝑃1) (𝐵𝑇

𝑝2
𝑃2) ⊗ (𝐴𝑝2𝑃2) ⋅ ⋅ ⋅ (𝐵𝑇

𝑝𝑞
𝑃𝑞) ⊗ (𝐴𝑝𝑞𝑃𝑞)

(𝐴11𝑃1) ⊗ (𝐵
𝑇

11
𝑃1) (𝐴12𝑃2) ⊗ (𝐵

𝑇

12
𝑃2) ⋅ ⋅ ⋅ (𝐴1𝑞𝑃𝑞) ⊗ (𝐵

𝑇

1𝑞
𝑃𝑞)

(𝐴21𝑃1) ⊗ (𝐵
𝑇

21
𝑃1) (𝐴22𝑃2) ⊗ (𝐵

𝑇

22
𝑃2) ⋅ ⋅ ⋅ (𝐴2𝑞𝑃𝑞) ⊗ (𝐵

𝑇

2𝑞
𝑃𝑞)

...
...

...

(𝐴𝑝1𝑃1) ⊗ (𝐵
𝑇

𝑝1
𝑃1) (𝐴𝑝2𝑃2) ⊗ (𝐵

𝑇

𝑝2
𝑃2) ⋅ ⋅ ⋅ (𝐴𝑝𝑞𝑃𝑞) ⊗ (𝐵

𝑇

𝑝𝑞
𝑃𝑞)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

,

𝑥 = (

vec (𝑋1)
vec (𝑋2)

...

vec (𝑋𝑞)

) , 𝑓 =

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

vec (𝐶1)
vec (𝐶2)

...

vec (𝐶𝑝)
vec (𝐶𝑇

1
)

vec (𝐶𝑇
2
)

...

vec (𝐶𝑇
𝑝
)

vec (𝐶1)
vec (𝐶2)

...

vec (𝐶𝑝)
vec (𝐶𝑇

1
)

vec (𝐶𝑇
2
)

...

vec (𝐶𝑇
𝑝
)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

,

(10)

where 𝑃1, 𝑃2, . . . , 𝑃𝑞 ∈ 𝑆𝑂𝑅𝑛×𝑛. Hence, the vector forms of
𝛽1𝑢1 = 𝑓, 𝛼1V1 = 𝑀𝑇𝑢1, 𝛽𝑖+1𝑢𝑖+1 = 𝑀V𝑖 − 𝛼𝑖𝑢𝑖, and
𝛼𝑖+1V𝑖+1 = 𝑀

𝑇𝑢𝑖+1 − 𝛽𝑖+1V𝑖 (𝑖 = 1, 2, . . .) in LSMR algorithm
can be rewritten in matrix forms, respectively, as

𝛽1𝑈
(𝑗)

1
= 𝐶𝑗, 𝑗 = 1, 2, . . . , 𝑝,

𝛽1 = 2(

𝑝

∑
𝑗=1

𝐶𝑗

2

)

1/2

,

𝛼1𝑉
(𝑗)

1
=

𝑝

∑
𝑖=1

(𝐴𝑇
𝑖𝑗
𝑈(𝑖)
1
𝐵𝑇
𝑖𝑗
+ 𝐵𝑖𝑗𝑈

(𝑖)𝑇

1
𝐴 𝑖𝑗

+ (𝑃𝑗𝐴
𝑇

𝑖𝑗
)𝑈(𝑖)
1
(𝐵𝑇
𝑖𝑗
𝑃𝑗)+(𝑃𝑗𝐵𝑖𝑗)𝑈

(𝑖)𝑇

1
(𝐴 𝑖𝑗𝑃𝑖)) ,

𝑗 = 1, 2, . . . , 𝑞,



Journal of Applied Mathematics 5

𝛼1= (

𝑞

∑
𝑘=1



𝑝

∑
𝑖=1

𝐴𝑇
𝑖𝑘
𝑈(𝑖)
1
𝐵𝑇
𝑖𝑘
+ 𝐵𝑖𝑘𝑈

(𝑖)𝑇

1
𝐴 𝑖𝑘

+ (𝑃𝑘𝐴
𝑇

𝑖𝑘
)𝑈(𝑖)
1
(𝐵𝑇
𝑖𝑘
𝑃𝑘)+(𝑃𝑘𝐵𝑖𝑘) 𝑈

(𝑖)𝑇

1
(𝐴 𝑖𝑘𝑃𝑖)



2

)

1/2

,

𝛽𝑖+1𝑈
(𝑗)

𝑖+1
= (

𝑞

∑
𝑘=1

𝐴𝑗𝑘𝑉
(𝑘)

𝑖
𝐵𝑗𝑘) − 𝛼𝑖𝑈

(𝑗)

𝑖
, 𝑗 = 1, 2, . . . , 𝑝,

𝛽𝑖+1 = 2(

𝑝

∑
𝑗=1



𝑞

∑
𝑘=1

𝐴𝑗𝑘𝑉
(𝑘)

𝑖
𝐵𝑗𝑘 − 𝛼𝑖𝑈

(𝑗)

𝑖



2

)

1/2

,

𝛼𝑖+1𝑉
(𝑘)

𝑖+1
=

𝑝

∑
𝑗=1

(𝐴𝑇
𝑗𝑘
𝑈
(𝑗)

𝑖+1
𝐵𝑇
𝑗𝑘
+ 𝐵𝑗𝑘𝑈

(𝑗)𝑇

𝑖+1
𝐴𝑗𝑘 + (𝑃𝑘𝐴

𝑇

𝑗𝑘
)

×𝑈
(𝑗)

𝑖+1
(𝐵𝑇
𝑗𝑘
𝑃𝑘)+(𝑃𝑘𝐵𝑗𝑘)𝑈

(𝑗)𝑇

𝑖+1
(𝐴𝑗𝑘𝑃𝑘))

− 𝛽𝑖+1𝑉
(𝑘)

𝑖
, 𝑘 = 1, 2, . . . , 𝑞,

𝛼𝑖+1 = (

𝑞

∑
𝑘=1



𝑝

∑
𝑗=1

(𝐴𝑇
𝑗𝑘
𝑈
(𝑗)

𝑖+1
𝐵𝑇
𝑗𝑘
+ 𝐵𝑗𝑘𝑈

(𝑗)𝑇

𝑖+1
𝐴𝑗𝑘

+ (𝑃𝑘𝐴
𝑇

𝑗𝑘
)𝑈
(𝑗)

𝑖+1
(𝐵𝑇
𝑗𝑘
𝑃𝑘)

+ (𝑃𝑘𝐵𝑗𝑘)𝑈
(𝑗)𝑇

𝑖+1
(𝐴𝑗𝑘𝑃𝑘)) −𝛽𝑖+1𝑉

(𝑘)

𝑖



2

)

1/2

.

(11)

If the unknown matrices 𝑋1, 𝑋2, . . . , 𝑋𝑞 ∈ 𝑅𝑆𝑆𝑅𝑛×𝑛, then
(1) and problem (2) are equivalent to (5) and problem (6),
respectively, with

𝑀 =

(
(
(
(
(
(
(
(
(
(
(

(

𝐵𝑇
11
⊗ 𝐴11 𝐵𝑇

12
⊗ 𝐴12 ⋅ ⋅ ⋅ 𝐵𝑇

1𝑞
⊗ 𝐴1𝑞

𝐵𝑇
21
⊗ 𝐴21 𝐵𝑇

22
⊗ 𝐴22 ⋅ ⋅ ⋅ 𝐵𝑇

2𝑞
⊗ 𝐴2𝑞

...
...

...

𝐵𝑇
𝑝1
⊗ 𝐴𝑝1 𝐵𝑇

𝑝2
⊗ 𝐴𝑝2 ⋅ ⋅ ⋅ 𝐵𝑇

𝑝𝑞
⊗ 𝐴𝑝𝑞

(𝐵𝑇
11
𝑆1) ⊗ (𝐴11𝑅1) (𝐵𝑇

12
𝑆2) ⊗ (𝐴12𝑅2) ⋅ ⋅ ⋅ (𝐵𝑇

1𝑞
𝑆𝑞) ⊗ (𝐴1𝑞𝑅𝑞)

(𝐵𝑇
21
𝑆1) ⊗ (𝐴21𝑅1) (𝐵𝑇

22
𝑆2) ⊗ (𝐴22𝑅2) ⋅ ⋅ ⋅ (𝐵𝑇

2𝑞
𝑆𝑞) ⊗ (𝐴2𝑞𝑅𝑞)

...
...

...

(𝐵𝑇
𝑝1
𝑆1) ⊗ (𝐴𝑝1𝑅1) (𝐵𝑇

𝑝2
𝑆2) ⊗ (𝐴𝑝2𝑅2) ⋅ ⋅ ⋅ (𝐵𝑇

𝑝𝑞
𝑆𝑞) ⊗ (𝐴𝑝𝑞𝑅𝑞)

)
)
)
)
)
)
)
)
)
)
)

)

,

𝑥 =(

vec (𝑋1)
vec (𝑋2)

...

vec (𝑋𝑞)

) , 𝑓 =

(
(
(
(
(
(
(
(
(

(

vec (𝐶1)
vec (𝐶2)

...

vec (𝐶𝑝)
vec (𝐶1)
vec (𝐶2)

...

vec (𝐶𝑝)

)
)
)
)
)
)
)
)
)

)

,

(12)

where𝑃𝑖,𝑅𝑖 ∈ 𝑆𝑂𝑅
𝑛×𝑛, 𝑖 = 1, 2, . . . , 𝑞. Hence, the vector forms

of 𝛽1𝑢1 = 𝑓, 𝛼1V1 = 𝑀𝑇𝑢1, 𝛽𝑖+1𝑢𝑖+1 = 𝑀V𝑖 − 𝛼𝑖𝑢𝑖, and
𝛼𝑖+1V𝑖+1 = 𝑀

𝑇𝑢𝑖+1 − 𝛽𝑖+1V𝑖 (𝑖 = 1, 2, . . .) in LSMR algorithm
can be rewritten in matrix forms, respectively, as

𝛽1𝑈
(𝑗)

1
= 𝐶𝑗, 𝑗 = 1, 2, . . . , 𝑝,

𝛽1 = √2(

𝑝

∑
𝑗=1

𝐶𝑗

2

)

1/2

,

𝛼1𝑉
(𝑗)

1
=

𝑝

∑
𝑖=1

(𝐴𝑇
𝑖𝑗
𝑈(𝑖)
1
𝐵𝑇
𝑖𝑗
+ 𝑅𝑗 (𝐴

𝑇

𝑖𝑗
𝑈(𝑖)
1
𝐵𝑇
𝑖𝑗
) 𝑆𝑗) ,

𝑗 = 1, 2, . . . , 𝑞,

𝛼1 = (

𝑞

∑
𝑘=1



𝑝

∑
𝑖=1

𝐴𝑇
𝑖𝑘
𝑈(𝑖)
1
𝐵𝑇
𝑖𝑘
+ 𝑅𝑘 (𝐴

𝑇

𝑖𝑘
𝑈(𝑖)
1
𝐵𝑇
𝑖𝑘
) 𝑆𝑘



2

)

1/2

,

𝛽𝑖+1𝑈
(𝑗)

𝑖+1
=(

𝑞

∑
𝑘=1

𝐴𝑗𝑘𝑉
(𝑘)

𝑖
𝐵𝑗𝑘) − 𝛼𝑖𝑈

(𝑗)

𝑖
, 𝑗 = 1, 2, . . . , 𝑝,

𝛽𝑖+1 = √2(

𝑝

∑
𝑗=1



𝑞

∑
𝑘=1

𝐴𝑗𝑘𝑉
(𝑘)

𝑖
𝐵𝑗𝑘 − 𝛼𝑖𝑈

(𝑗)

𝑖



2

)

1/2

,

𝛼𝑖+1𝑉
(𝑘)

𝑖+1
=

𝑝

∑
𝑗=1

(𝐴𝑇
𝑗𝑘
𝑈
(𝑗)

𝑖+1
𝐵𝑇
𝑗𝑘
+ 𝑅𝑘 (𝐴

𝑇

𝑗𝑘
𝑈
(𝑗)

𝑖+1
𝐵𝑇
𝑗𝑘
) 𝑆𝑘)

− 𝛽𝑖+1𝑉
(𝑘)

𝑖
, 𝑘 = 1, 2, . . . , 𝑞,
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𝛼𝑖+1 = (

𝑞

∑
𝑘=1



𝑝

∑
𝑗=1

(𝐴𝑇
𝑗𝑘
𝑈
(𝑗)

𝑖+1
𝐵𝑇
𝑗𝑘
+ 𝑅𝑘 (𝐴

𝑇

𝑗𝑘
𝑈
(𝑗)

𝑖+1
𝐵𝑇
𝑗𝑘
) 𝑆𝑘)

−𝛽𝑖+1𝑉
(𝑘)

𝑖



2

)

1/2

.

(13)

If the unknown matrices 𝑋1, 𝑋2, . . . , 𝑋𝑞 ∈ 𝑆𝑅𝑛×𝑛 (the
set of symmetric matrices), then (1) and problem (2) are
equivalent to (5) and problem (6), respectively, with

𝑀 =

(
(
(
(
(
(
(
(
(
(

(

𝐵𝑇
11
⊗ 𝐴11 𝐵𝑇

12
⊗ 𝐴12 ⋅ ⋅ ⋅ 𝐵

𝑇

1𝑞
⊗ 𝐴1𝑞

𝐵𝑇
21
⊗ 𝐴21 𝐵𝑇

22
⊗ 𝐴22 ⋅ ⋅ ⋅ 𝐵

𝑇

2𝑞
⊗ 𝐴2𝑞

...
...

...

𝐵𝑇
𝑝1
⊗ 𝐴𝑝1 𝐵

𝑇

𝑝2
⊗ 𝐴𝑝2 ⋅ ⋅ ⋅ 𝐵

𝑇

𝑝𝑞
⊗ 𝐴𝑝𝑞

𝐴11 ⊗ 𝐵
𝑇

11
𝐴12 ⊗ 𝐵

𝑇

12
⋅ ⋅ ⋅ 𝐴1𝑞 ⊗ 𝐵

𝑇

1𝑞

𝐴21 ⊗ 𝐵
𝑇

21
𝐴22 ⊗ 𝐵

𝑇

22
⋅ ⋅ ⋅ 𝐴2𝑞 ⊗ 𝐵

𝑇

2𝑞

...
...

...

𝐴𝑝1 ⊗ 𝐵
𝑇

𝑝1
𝐴𝑝2 ⊗ 𝐵

𝑇

𝑝2
⋅ ⋅ ⋅ 𝐴𝑝𝑞 ⊗ 𝐵

𝑇

𝑝𝑞

)
)
)
)
)
)
)
)
)
)

)

,

(14)

𝑥 =(

vec (𝑋1)
vec (𝑋2)

...

vec (𝑋𝑞)

) , 𝑓 =

(
(
(
(
(
(
(
(
(
(

(

vec (𝐶1)
vec (𝐶2)

...

vec (𝐶𝑝)
vec (𝐶𝑇

1
)

vec (𝐶𝑇
2
)

...

vec (𝐶𝑇
𝑝
)

)
)
)
)
)
)
)
)
)
)

)

. (15)

Hence, the vector forms of 𝛽1𝑢1 = 𝑓, 𝛼1V1 = 𝑀𝑇𝑢1,
𝛽𝑖+1𝑢𝑖+1 = 𝑀V𝑖 − 𝛼𝑖𝑢𝑖, and 𝛼𝑖+1V𝑖+1 = 𝑀

𝑇𝑢𝑖+1 − 𝛽𝑖+1V𝑖 (𝑖 = 1,
2, . . .) in LSMR algorithm can be rewritten in matrix forms,
respectively, as

𝛽1𝑈
(𝑗)

1
= 𝐶𝑗, 𝑗 = 1, 2, . . . , 𝑝,

𝛽1 = √2(

𝑝

∑
𝑗=1

𝐶𝑗

2

)

1/2

,

𝛼1𝑉
(𝑗)

1
=

𝑝

∑
𝑖=1

(𝐴𝑇
𝑖𝑗
𝑈(𝑖)
1
𝐵𝑇
𝑖𝑗
+ 𝐵𝑖𝑗𝑈

(𝑖)𝑇

1
𝐴 𝑖𝑗) , 𝑗 = 1, 2, . . . , 𝑞,

𝛼1 = (

𝑞

∑
𝑘=1



𝑝

∑
𝑖=1

𝐴𝑇
𝑖𝑘
𝑈(𝑖)
1
𝐵𝑇
𝑖𝑘
+ 𝐵𝑖𝑘𝑈

(𝑖)𝑇

1
𝐴 𝑖𝑘



2

)

1/2

,

𝛽𝑖+1𝑈
(𝑗)

𝑖+1
= (

𝑞

∑
𝑘=1

𝐴𝑗𝑘𝑉
(𝑘)

𝑖
𝐵𝑗𝑘) − 𝛼𝑖𝑈

(𝑗)

𝑖
, 𝑗 = 1, 2, . . . , 𝑝,

𝛽𝑖+1 = √2(

𝑝

∑
𝑗=1



𝑞

∑
𝑘=1

𝐴𝑗𝑘𝑉
(𝑘)

𝑖
𝐵𝑗𝑘 − 𝛼𝑖𝑈

(𝑗)

𝑖



2

)

1/2

,

𝛼𝑖+1𝑉
(𝑘)

𝑖+1
=

𝑝

∑
𝑗=1

(𝐴𝑇
𝑗𝑘
𝑈
(𝑗)

𝑖+1
𝐵𝑇
𝑗𝑘
+ 𝐵𝑗𝑘𝑈

(𝑗)𝑇

𝑖+1
𝐴𝑗𝑘) − 𝛽𝑖+1𝑉

(𝑘)

𝑖
,

𝑘 = 1, 2, . . . , 𝑞,

𝛼𝑖+1= (

𝑞

∑
𝑘=1



𝑝

∑
𝑗=1

(𝐴𝑇
𝑗𝑘
𝑈
(𝑗)

𝑖+1
𝐵𝑇
𝑗𝑘
+𝐵𝑗𝑘𝑈

(𝑗)𝑇

𝑖+1
𝐴𝑗𝑘)−𝛽𝑖+1𝑉

(𝑘)

𝑖



2

)

1/2

.

(16)

From above results, we can obtain the matrix form itera-
tion method of LSMR algorithm for solving the constrained
solution group of (1) and problem (2). When the unknown
matrices 𝑋1, 𝑋2, . . . , 𝑋𝑞 ∈ 𝑆𝑅𝑛×𝑛, the matrix form iterative
method is given as shown in Algorithm 2.

4. The Solution Group of Problem (3)
Now, we consider the solution group of the matrix nearness
problem (3) for given matrix group (𝑋1, 𝑋2, . . . , 𝑋𝑞), where
𝑋𝑘 ∈ R𝑛×𝑛, 𝑘 = 1, 2, . . . , 𝑞. If 𝑋𝑘 ∈ 𝑆𝑅

𝑛×𝑛, it is easy to prove
that

min
𝑋
𝑘
∈𝑆𝑅𝑛×𝑛,𝑘=1,2,...,𝑞

{

𝑞

∑
𝑘=1

𝑋𝑘 − 𝑋𝑘

2

}

= min
𝑋
𝑘
∈𝑆𝑅𝑛×𝑛,𝑘=1,2,...,𝑞

{
{
{

𝑞

∑
𝑘=1



𝑋𝑘 −
𝑋𝑘 + 𝑋

𝑇

𝑘

2



2

}
}
}

+
{
{
{

𝑞

∑
𝑘=1



𝑋𝑘 − 𝑋
𝑇

𝑘

2



2

}
}
}

.

(17)

Let

𝑋𝑘 = 𝑋𝑘 −
𝑋𝑘 + 𝑋

𝑇

𝑘

2
, 𝑘 = 1, 2, . . . , 𝑞,

𝐶𝑗 = 𝐶𝑗 −

𝑞

∑
𝑘=1

𝐴𝑗𝑘
𝑋𝑘 + 𝑋

𝑇

𝑘

2
𝐵𝑗𝑘, 𝑗 = 1, 2, . . . , 𝑝;

(18)

then problem (3) is equivalent to finding the minimum
Frobenius norm symmetric solution group or minimum
Frobenius norm least-squares symmetric solution group of
the following problems, respectively.

Compatible matrix equations are as follows:

𝑞

∑
𝑘=1

𝐴 𝑖𝑘𝑋𝑘𝐵𝑖𝑘 = 𝐶𝑖, 𝑖 = 1, 2, . . . , 𝑝. (19)
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Set𝑋(𝑘)
0
= 0, 𝑘 = 1, 2, . . . , 𝑞

𝛽
1
= √2(∑

𝑝

𝑗=1

𝐶𝑗

2

)
1/2

, 𝑈(𝑗)
1
= 𝐶
𝑗
/𝛽
1
, 𝑗 = 1, 2, . . . , 𝑝

𝛼
1
= (∑
𝑞

𝑘=1

∑
𝑝

𝑖=1
𝐴𝑇
𝑖𝑘
𝑈(𝑖)
1
𝐵𝑇
𝑖𝑘
+ 𝐵
𝑖𝑘
𝑈(𝑖)𝑇
1
𝐴
𝑖𝑘


2

)
1/2

𝑉(𝑘)
1
= ∑
𝑝

𝑖=1
(𝐴𝑇
𝑖𝑘
𝑈(𝑖)
1
𝐵𝑇
𝑖𝑘
+ 𝐵
𝑖𝑘
𝑈(𝑖)𝑇
1
𝐴
𝑖𝑘
)/𝛼
1
, 𝑘 = 1, 2, . . . , 𝑞

Set 𝛼
1
= 𝛼
1
, 𝜁
1
= 𝛼
1
𝛽
1
, 𝜌
0
= 1, 𝜌

0
= 1, 𝑐

0
= 1, 𝑠

0
= 0, ℎ(𝑘)

1
= 𝑉(𝑘)
1
, 𝑘 = 1, 2, . . . , 𝑞, ℎ

(𝑘)

0
= 0, 𝑘 = 1, 2, . . . , 𝑞

For 𝑘 = 1, 2, . . ., until converges Do:

𝛽
𝑘+1

= √2(∑
𝑝

𝑖=1

∑
𝑞

𝑗=1
𝐴
𝑖𝑗
𝑉
(𝑗)

𝑘
𝐵
𝑖𝑗
− 𝛼
𝑘
𝑈(𝑖)
𝑘



2

)
1/2

𝑈(𝑖)
𝑘+1

= ∑
𝑞

𝑗=1
𝐴
𝑖𝑗
𝑉
(𝑗)

𝑘
𝐵
𝑖𝑗
− 𝛼
𝑘
𝑈(𝑖)
𝑘
/𝛽
𝑘+1

, 𝑖 = 1, 2, . . . , 𝑝

𝛼
𝑘+1

= (∑
𝑞

𝑗=1

∑
𝑝

𝑖=1
(𝐴𝑇
𝑖𝑗
𝑈(𝑖)
𝑘+1
𝐵𝑇
𝑖𝑗
+ 𝐵
𝑖𝑗
𝑈(𝑖)𝑇
𝑘+1
𝐴
𝑖𝑗
) − 𝛽
𝑘+1
𝑉
(𝑗)

𝑘



2

)
1/2

𝑉(𝑖)
𝑘+1

= (∑
𝑝

𝑖=1
(𝐴𝑇
𝑖𝑗
𝑈(𝑖)
𝑘+1
𝐵𝑇
𝑖𝑗
+ 𝐵
𝑖𝑗
𝑈(𝑖)𝑇
𝑘+1
𝐴
𝑖𝑗
) − 𝛽
𝑘+1
𝑉
(𝑗)

𝑘
)/𝛼
𝑘+1

, 𝑖 = 1, 2, . . . , 𝑞
𝜌
𝑘
= (𝛼2
𝑘
+ 𝛽2
𝑘+1
)1/2

𝑐
𝑘
= 𝛼
𝑘
/𝜌
𝑘

𝑠
𝑘
= 𝛽
𝑘+1
/𝜌
𝑘

𝜃
𝑘+1

= 𝑠
𝑘
𝛼
𝑘+1

𝛼
𝑘+1

= 𝑐
𝑘
𝛼
𝑘+1

𝜃
𝑘
= 𝑠
𝑘−1
𝜌
𝑘

𝜌
𝑘
= ((𝑐
𝑘−1
𝜌
𝑘
)2 + 𝜃2

𝑘+1
)1/2

𝑐
𝑘
= 𝑐
𝑘−1
𝜌
𝑘
/𝜌
𝑘

𝑠
𝑘
= 𝜃
𝑘+1
/𝜌
𝑘

𝜁
𝑘
= 𝑐
𝑘
𝜁
𝑘

𝜁
𝑘+1

= −𝑠
𝑘
𝜁
𝑘

ℎ
(𝑖)

𝑘
= ℎ(𝑖)
𝑘
− (𝜃
𝑘
𝜌
𝑘
/(𝜌
𝑘−1
𝜌
𝑘−1
))ℎ
(𝑖)

𝑘−1
, 𝑖 = 1, 2, . . . , 𝑞

𝑋(𝑖)
𝑘
= 𝑋(𝑖)
𝑘−1
+ (𝜁
𝑘
/(𝜌
𝑘
𝜌
𝑘
))ℎ
(𝑖)

𝑘
, 𝑖 = 1, 2, . . . , 𝑞

ℎ(𝑖)
𝑘+1

= 𝑉(𝑖)
𝑘+1
− (𝜃
𝑘+1
/𝜌
𝑘
)ℎ(𝑖)
𝑘
, 𝑖 = 1, 2, . . . , 𝑞

If |𝜁
𝑘+1
| is small enough then stop

End Do.

Algorithm 2: LSMR SR M algorithm.

Least-squares problem is as follows:

min(
𝑝

∑
𝑖=1



𝑞

∑
𝑘=1

𝐴 𝑖𝑘𝑋𝑘𝐵𝑖𝑘 − 𝐶𝑖



2

)

1/2

. (20)

By LSMR SR Mmethod, we can get theminimumFrobenius
norm symmetric solution group (𝑋∗

1
, 𝑋∗
2
, . . . , 𝑋∗

𝑞
) of (19)

(or the minimum Frobenius norm least-squares symmetric
solution group of problem (20)). Then, the optimal approx-
imate solution group (𝑋1, 𝑋2, . . . , 𝑋𝑞) of problem (3) can be
obtained; that is,𝑋𝑘 = 𝑋

∗

𝑘
+ (𝑋𝑘 + 𝑋

𝑇

𝑘
)/2.

5. Numerical Examples

To compare the behavior of the proposed matrix method
discussed in the previous sectionwith theCGNEmethod [43]
and the matrix LSQR iterative method (LSQR M) [37], we
present in this section numerical results for three examples.
All the numerical computations are performed in MATLAB
7.

Example 1. Suppose that the matrices 𝐴 𝑖𝑗, 𝐵𝑖𝑗, 𝐶𝑗, 𝑖, 𝑗 = 1, 2,
are given by the following matrices:

𝐴11 =(

8 −1 2 −3 4
5 0 2 2 1
0 3 −7 2 4
−2 −1 −1 2 4
4 1 1 2 1

),

𝐵11 =(

9 −2 −3 1 1
0 5 4 −2 −2
2 5 −4 −8 1
9 0 2 5 1
−3 −3 1 1 9

),

𝐴12 =(

4 −3 4 −4 1
−2 −2 6 −4 4
9 6 0 5 1
5 4 5 3 3
9 1 7 −5 9

),
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𝐵12 =(

−2 −1 −2 −3 2
1 5 4 9 6
9 −3 1 1 1
−5 2 5 4 1
4 −8 2 2 1

),

𝐴21 =(

1 2 3 −5 2
4 6 1 −3 9
4 4 −2 2 3
2 2 8 1 −9
3 1 4 −3 8

) ,

𝐵21 =(

9 2 3 −1 −1
3 −1 8 8 5
−1 −2 −8 −5 −2
−1 −1 2 7 3
1 −1 −8 8 2

),

𝐴22 =(

−9 2 3 2 1
−3 3 9 4 3
8 2 6 −8 8
1 2 −9 4 −2
2 −1 −2 −2 −3

),

𝐵22 =(

−1 −2 9 8 9
1 −3 −3 −3 9
−1 −3 −9 −5 9
1 −9 −6 5 −1
2 −7 −4 5 8

).

(21)

The 𝐶1 and 𝐶2 matrices are chosen such that 𝑋1 = 𝐼𝑛 and
𝑋2 = 𝐸𝑛, where 𝐼𝑛 and 𝐸𝑛 are the 𝑛 × 𝑛 identity matrix and
the 𝑛 × 𝑛matrix whose entries are all one, respectively.

In Figure 1, we display the convergence curves of the
function log

10
𝛿𝑘, with

𝛿𝑘 = max
{
{
{

𝑅
(𝑘)

1

𝐹
𝑅
(0)

1

𝐹

,

𝑅
(𝑘)

2

𝐹
𝑅
(0)

2

𝐹

}
}
}

, (22)

where 𝑅(𝑘)
𝑖
, 𝑖, 𝑘 = 1, 2, is the residual matrix of the 𝑖th

equation in 𝑘th iteration. The initial iterative matrices in
all the iterative methods are chosen as zero matrices of
suitable size. Figure 1 confirms that the proposed algorithm
has faster convergence rate and higher accuracy than the
CGNE method and similar behavior to the matrix LSQR
iterative method.

Example 2. Suppose that the matrices𝐴 𝑖𝑗, 𝐵𝑖𝑗, 𝐶𝑗, 𝑖, 𝑗 = 1, 2,
are given by the following matrices:

𝐴11 = tridiag (−1, 6, −1) , 𝐵11 = tridiag (1, 8, −1) ,

𝐴12 = (0.1) 𝐼𝑛, 𝐵12 = tridiag (1, 0, 1) ,

𝐴21 = (0.1) 𝐼𝑛, 𝐵21 = tridiag (−2, 1, −2) ,

𝐴22 = tridiag (−1, −3, −1) , 𝐵22 = tridiag (1, 6, 2) .
(23)
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Figure 1: Convergence history of the LSMR, CGNE, and LSQR
iterative methods for Example 1.

As Example 1, the 𝐶1 and 𝐶2 matrices are chosen such that
𝑋1 = 𝐼𝑛 and 𝑋2 = 𝐸𝑛 with 𝑛 = 400 and the initial
iterative matrices in all the iterative methods are chosen as
zero matrices of suitable size. In Figure 2, as Figure 1, we
display the convergence curves of the function log

10
𝛿𝑘,. This

figure shows that the LSMR method outperforms the CGNE
and LSQR methods.

Example 3 (see [45]). Consider the convection diffusion
equation with the Dirichlet boundary conditions

𝐿 (𝑢) := −Δ𝑢 + 2]
𝜕𝑢

𝜕𝑥
+ 2]

𝜕𝑢

𝜕𝑦
= 𝑓 on Ω,

𝑢 = 𝑔 on 𝜕Ω.

(24)

Here Ω is the unit square [0, 1] × [0, 1]. The operator 𝐿 was
discretized using central finite differences on Ω, with mesh
size ℎ = 1/(𝑛 + 1) in the “𝑥” direction and 𝑘 = 1/(𝑝 + 1)
in the “𝑦” direction. This yields a linear system of algebraic
equations that can be written as a Sylvester matrix equation

𝐴𝑋 − 𝑋𝐵 = 𝐶, (25)

(as a particular case of (1) with 𝐴11 = 𝐴, 𝐴12 = −𝐼𝑛, 𝐵11 =
𝐼𝑝, 𝐵12 = 𝐵, 𝐶1 = 𝐶, and 𝑋1 = 𝑋2 = 𝑋) where tridiagonal
matrices 𝐴 and 𝐵 are given by

𝐴 =
−1

ℎ2
tridiag ((1 + ]ℎ) , −2, (1 − ]ℎ)) ,

𝐵 =
1

𝑘2
tridiag ((1 + ]𝑘) , −2, (1 − ]𝑘)) .

(26)



Journal of Applied Mathematics 9

The right-hand side matrix 𝐶 is obtained as follows:

𝐶 (𝑖, 𝑗) = 𝑓 (𝑥𝑖+1, 𝑦𝑗+1) , for 𝑖 = 2, . . . , 𝑛 − 1,

𝑗 = 2, . . . , 𝑝 − 1,

𝐶 (1, 1) = 𝑓 (𝑥2, 𝑦2) +
1 + ]ℎ
ℎ2

𝑔 (0, 𝑦2)

+
1 + ]𝑘
𝑘2

𝑔 (𝑥2, 0) ,

𝐶 (1, 𝑝) = 𝑓 (𝑥2, 𝑦𝑝+1) +
1 + ]ℎ
ℎ2

𝑔 (0, 𝑦𝑝+1)

+
1 − ]𝑘
𝑘2

𝑔 (𝑥2, 1) ,

𝐶 (𝑛, 1) = 𝑓 (𝑥𝑛+1, 𝑦2) +
1 − ]ℎ
ℎ2

𝑔 (1, 𝑦2)

+
1 + ]𝑘
𝑘2

𝑔 (𝑥𝑛+1, 0) ,

𝐶 (𝑛, 𝑝) = 𝑓 (𝑥𝑛+1, 𝑦𝑝−1) +
1 − ]ℎ
ℎ2

𝑔 (1, 𝑦𝑝+1)

+
1 − ]𝑘
𝑘2

𝑔 (𝑥𝑛+1, 1) ,

𝐶 (1, 𝑗) = 𝑓 (𝑥2, 𝑦𝑗+1) +
1 + ]ℎ
ℎ2

𝑔 (0, 𝑦𝑗+1) ,

for 𝑗 = 2, . . . , 𝑝 − 1,

𝐶 (𝑛, 𝑗) = 𝑓 (𝑥𝑛+1, 𝑦𝑗+1) +
1 − ]ℎ
ℎ2

𝑔 (1, 𝑦𝑗+1) ,

for 𝑗 = 2, . . . , 𝑝 − 1,

𝐶 (𝑖, 1) = 𝑓 (𝑥𝑖+1, 𝑦2) +
1 + ]𝑘
𝑘2

𝑔 (𝑥𝑖+1, 0) ,

for 𝑖 = 2, . . . , 𝑛 − 1,

𝐶 (𝑖, 𝑝) = 𝑓 (𝑥𝑖+1, 𝑦𝑝+1) +
1 − ]𝑘
𝑘2

𝑔 (𝑥𝑖+1, 1) ,

for 𝑖 = 2, . . . , 𝑛 − 1.

(27)

In this example, the functions 𝑓 and 𝑔 were chosen such that
the exact solution is

𝑢 (𝑥, 𝑦) = 𝑥𝑒−𝑥
2
−𝑦
2 (28)

on the domain Ω. In addition, we used the symmetric suc-
cessive overrelaxation (SSOR) preconditioner for the matrix
equation (25) to increase the convergence rate. It is easy to
prove that thematrix equation (25) is equivalent to the 𝑛𝑝×𝑛𝑝
linear system:

Ã𝑥 = 𝑐, (29)

where Ã = 𝐼𝑝 ⊗ 𝐴 − 𝐵
𝑇 ⊗ 𝐼𝑛, 𝑐 = vec(𝐶), and 𝑥 = vec(𝑋).
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Figure 2: Convergence history of the LSMR, CGNE, and LSQR
iterative methods for Example 2.

The matrices 𝐴 and 𝐵 can be written as

𝐴 = 𝐷𝐴 − 𝐸𝐴 − 𝐹𝐴,

𝐵 = 𝐷𝐵 − 𝐸𝐵 − 𝐹𝐵,
(30)

where𝐷𝐴 is the diagonal of𝐴 and −𝐸𝐴 and −𝐹𝐴 are the strict
lower and upper part of 𝐴, respectively. Then the splitting of
the matrix Ã is given as

Ã = D̃Ã − ẼÃ − F̃Ã, (31)

with

D̃Ã = 𝐼𝑝 ⊗ 𝐷𝐴 − 𝐷𝐵 ⊗ 𝐼𝑛,

ẼÃ = 𝐼𝑝 ⊗ 𝐸𝐴 − 𝐹
𝑇

𝐵
⊗ 𝐼𝑛,

F̃Ã = 𝐼𝑝 ⊗ 𝐹𝐴 − 𝐸
𝑇

𝐵
⊗ 𝐼𝑛.

(32)

Now instead of solving thematrix equation (25), wewill apply
the LSMR-M algorithm to the preconditioned system

Ã𝜇−1𝑦 = 𝑐 with 𝑦 = 𝜇𝑥, (33)

where 𝜇 is a preconditioner. As said, we use the SSOR
preconditioner defined by

𝜇SSOR =
1

𝜔 (2 − 𝜔)
(D̃Ã − 𝜔ẼÃ) D̃

−1

Ã
(D̃Ã − 𝜔F̃Ã) .

(34)

We note that the 𝑛𝑝 × 𝑛𝑝 matrix Ã is not used explicitly.
We only use the action of the linear operator A on a matrix
𝑉 ∈ R𝑛×𝑝, defined byA(𝑉) = 𝐴𝑉 − 𝑉𝐵. In addition, we use
only matrix-by-vector products; then when using the SSOR
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preconditioner we have to compute, for a given 𝑉 ∈ R𝑛×𝑝,
the matrix𝑊 ∈ R𝑛×𝑝 such that

𝑤 = Ã𝜇−1SSORṼ with 𝑤 = vec (𝑊) , Ṽ = vec (𝑉) , (35)

or

𝑤 = (Ã𝜇−1SSOR)
𝑇

Ṽ = (𝜇𝑇SSOR)
−1

Ã𝑇Ṽ with 𝑤 = vec (𝑊) ,

Ṽ = vec (𝑉) .
(36)

With setting

𝑟 = 𝜇−1Ṽ⇐⇒ Ṽ = 𝜇𝑟 with 𝑟 = vec (𝑅) (37)

the linear system (35) is equivalent to

𝑤 = Ã𝜇−1SSORṼ⇐⇒ 𝑤 = Ã𝑟. (38)

For computing𝑅 such that𝑤 = Ã𝜇−1SSORṼ, we have to solve
the following matrix equations:

(𝐷𝐴 − 𝜔𝐸𝐴) 𝑌 − 𝑌 (𝐷𝐵 − 𝜔𝐹𝐵) = 𝜔 (2 − 𝜔)𝑉, (39)

𝐷𝐴𝑌 − 𝑌𝐷𝐵 = 𝑍, (40)

(𝐷𝐴 − 𝜔𝐹𝐴) 𝑅 − 𝑅 (𝐷𝐵 − 𝜔𝐸𝐵) = 𝑍. (41)

The matrix equations (39) and (41) are also Sylvester matrix
equations. But as was stated in [45], since the matrices
involved in these equations are triangular, they are solved
easily. In (39), thematrix𝑌 can be computed from left to right
and from top to bottom in each column; this corresponds to
backward substitution. Equation (41) is solved in the opposite
sense and this corresponds to forward substitution. Now, to
compute 𝑊 in (35), it is sufficient to use the action of the
operatorA on the matrix 𝑟, defined byA(𝑟) = 𝐴𝑟 − 𝑟𝐵.

To compute 𝑊 in (36), first, we use the action of the
operator A𝑇 on the matrix, defined by A𝑇(Ṽ) = 𝐴𝑇Ṽ − Ṽ𝐵𝑇.
Then, by setting

̃̃V = 𝐴𝑇Ṽ − Ṽ𝐵𝑇, (42)

the linear system (36) is equivalent to

𝑤 = (𝜇𝑇SSOR)
−1̃̃V⇐⇒ 𝜇𝑇SSOR𝑤 =

̃̃V. (43)

Therefore,𝑊 can be obtained by solving the followingmatrix
equations:

(𝐷𝐴 − 𝜔𝐸
𝑇

𝐴
) 𝑌 − 𝑌 (𝐷𝐵 − 𝜔𝐹

𝑇

𝐵
) = 𝜔 (2 − 𝜔) ̃̃V, (44)

𝐷𝐴𝑌 − 𝑌𝐷𝐵 = 𝑍, (45)

(𝐷𝐴 − 𝜔𝐹
𝑇

𝐴
)𝑤 − 𝑤 (𝐷𝐵 − 𝜔𝐸

𝑇

𝐵
) = 𝑍. (46)

Similarly, the matrix equations (44) and (46) are also
Sylvester matrix equations. But since the matrices involved
in these equations are triangular, in (44), the matrix 𝑌 can
be computed from right to left and from bottom to top in
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Figure 3: Convergence history of the LSMR-M and SSOR-LSMR-
M.

each row; this corresponds to forward substitution. Equation
(46) is solved in the opposite sense and this corresponds to
backward substitution.

In Figure 3, we exhibited the function log
10
𝛿𝑘 with

𝛿𝑘 =

𝐶 − (𝐴𝑋𝑘 − 𝑋𝑘𝐵)
𝐹

𝐶 − (𝐴𝑋0 − 𝑋0𝐵)
𝐹
, (47)

versus the number of iterations for LSMR-M and the SSOR-
LSMR-M. Furthermore, we note that for computing the
quantity ‖𝑅𝑘‖𝐹, (𝑅𝑘 is the residual matrix in 𝑘th iteration)
we used the pseudocode stated in [40]. These results were
obtained for ] = 100, 𝑛 = 300, 𝑝 = 300, and 𝜔 = 0.9. The
initial iterative matrix was chosen as zero matrix of suitable
size. As we observe by using the SSOR preconditioner the
convergence rate of the LSMR-M algorithm has increased,
effectively.

6. Conclusion

Solving the linear matrix equations is an attractive part of
research. By extending the idea of LSMR method, we have
proposed Algorithm 2 to solve the coupled matrix equations
(1) or the least-squares problem (2) over generalized symmet-
ric matrices. By this new iterative method on the selection
of special initial matrix group, we obtain the minimum
Frobenius norm solutions or the minimum Frobenius norm
least-squares solutions over generalized symmetric matrices.
All the presented results show that the matrix LSMR iterative
method is efficient to compute the solution group of the
general coupled matrix equations.
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