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In this paper the nonlinear elasticity solution of functionally graded nanocomposite rotating thick disks 
with variable thickness reinforced with single-walled carbon nanotubes (SWCNTs) is presented. Four 
distribution types of uniaxial aligned SWCNTs are considered: uniform and three types of functionally 
graded (FG) distributions along radial direction of the disk. The effective material properties of the 
nanocomposite disk are estimated by a micro-mechanical model. The governing nonlinear equations 
are based on the axisymmetric theory of elasticity with the geometric nonlinearity in axisymmetric 
complete form. The nonlinear graded finite element method (NGFEM) based on Rayleigh–Ritz energy 
formulation with the Picard iterative scheme is employed to solve the nonlinear equations. The solution 
is considered for four different thickness profiles, namely constant, linear, concave and convex. The effects 
of different types of distributions and volume fractions of CNTs and various types of thickness profiles on 
the displacement and stresses of the rotating disks as well as comparison between linear and nonlinear 
responses are investigated. The achieved results show that the displacement and stress fields can be 
controlled by changing the type of distribution and volume fraction of CNTs as well as the thickness 
profile. Moreover, the difference between linear and nonlinear results are noticeable in high angular 
velocities; thus, for obtaining accurate results, the geometric nonlinearity must be considered.

© 2014 Elsevier Masson SAS. All rights reserved.
1. Introduction

Rotating disks are of practical concern in many fields of en-
gineering, such as marine, mechanical and aerospace industry in-
cluding gas turbines, gears, turbo-machinery, flywheel systems and 
centrifugal compressors. The stresses due to centrifugal load can 
have important effects on their strength and safety. Thus, control 
and optimization of stress and displacement fields can help to re-
duce the overall payload in aerospace industry.

In recent years, nano-structured materials such as nanocompos-
ites have generated considerable interest in the material research 
community and became an attractive new subject in material sci-
ence due to their potentially impressive mechanical properties. 
Carbon nanotubes (CNTs) have illustrated remarkable mechanical, 
thermal and electrical properties. For instance, they could poten-
tially have a Young’s modulus as high as 1 TPa and a tensile 
strength approaching 100 GPa [20]. These enormous advantages 
make them highly desirable candidates for the reinforcement of 
the polymer composites, provided that good interfacial bonding 
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between CNTs and polymer and proper dispersion of the individual 
CNTs in the polymeric matrix can be assured [9].

The majority of researches performed on carbon nanotube re-
inforced composites (CNTRCs) are focused on their material prop-
erties [8,29,6,13,17]. Han and Elliott [11] by use of molecular dy-
namic simulation (MD) obtained the elastic modulus of composite 
structures reinforced with CNTs and studied the effect of volume 
fraction of SWCNTs on mechanical properties of nanocomposites. 
Hu et al. [12] by analyzing the elastic deformation of a repre-
sentative volume element (RVE) under various loading conditions 
evaluated the macroscopic elastic properties of CNTRCs. Zhu et al. 
[36] studied the effect of CNTs on the mechanical properties of 
polymeric composites. Their results show that adding CNTs can 
greatly improve the Young’s modulus. Due to dependency of the 
interaction at the polymer and nanotube interface on the local 
molecular structure and bonding, Odegard et al. [21], by utilizing 
an equivalent-continuum modeling method, proposed a constitu-
tive model for CNTRCs.

Functionally graded materials (FGMs) are special composite ma-
terials, microscopically inhomogeneous, in which the mechanical 
properties vary smoothly and continuously from one surface to 
the other. This idea which was used for the first time by Japanese 
researchers [15], leads to the concept of FGMs. A wide range of 
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researches have been carried out on FGMs in various fields of me-
chanics. Motivated by the concept of FGMs, Shen [26] presented 
a type of CNTRCs that the volume fraction of CNTs are graded 
with certain rules along desired directions and demonstrated that 
the use of FG-CNTRCs improves the mechanical properties of the 
structures. Zhu et al. [35] studied the bending and free vibra-
tion analyses of composite plates reinforced with SWCNTs using 
the finite element method based on the first order shear defor-
mation plate theory. The effective material properties of the FG-
CNTRC are graded in the thickness direction and are estimated 
according to the rule of mixtures. The three-dimensional free vi-
bration of FC-CNTRC panels has been investigated by Yas et al. 
[30]. The boundary conditions are assumed to be simply support 
and the equations are solved by a generalized differential quadra-
ture (GDQ) method. Shen [27] presented a postbuckling analysis 
for nanocomposite cylindrical shells reinforced with single-walled 
carbon nanotubes (SWCNTs) subjected to lateral or hydrostatic 
pressure in thermal environments. Sobhani Aragh and Yas [28]
investigated the static and free vibration characteristics of contin-
uously graded fiber-reinforced (CGFR) cylindrical shells based on 
three-dimensional theory of elasticity. The boundary conditions are 
assumed to be simply support and the equations are solved by a 
GDQ method. Moradi-Dastjerdi et al. [18] studied the free vibration 
of FG-CNTRC cylinders with a mesh-free method. The conditions 
are assumed to be axisymmetric where the effect of the waviness 
of the CNTs and its parameters are studied.

Moreover, numerous researches have been performed on anal-
ysis of functionally graded rotating disks. Durodola and Attia [7]
studied the deformation and stress fields in functionally graded 
rotating disks using direct numerical integration of the governing 
differential equations as well as finite element analysis. Zenkour 
[33] investigated an analytical solution for functionally graded an-
nular rotating disks under the plane-stress assumption with ex-
ponentially variable material properties. He later extended this 
solution to a variable thickness rotating disk [34]. Nie and Batra 
[19] obtained the equation of functionally graded rotating disks 
with variable thickness by using an Airy stress function and solved 
both analytically and numerically using the differential quadra-
ture method. Kordkheili and Naghdabadi [16] presented a semi-
analytical thermoelasticity solution for hollow and solid rotating 
axisymmetric disks made of functionally graded materials based 
on the plane-stress assumption. Their solution is based on dividing 
the radial domain into sub-domains. Callioglu et al. [5] investi-
gated the stress analysis of functionally graded rotating disks and 
demonstrated that they have the capability of higher angular rota-
tions compared with the homogeneous isotropic ones. Asghari and 
Ghafoori [1] proposed a semi-analytical three-dimensional elastic-
ity solution for the rotating functionally graded problem suitable 
for thick disks. Zafarmand and Hassani [31] presented the elas-
ticity solutions of 2D-FG thick rotating annular and solid disks 
with variable thickness. Shariyat and Mohammadjani [25] stud-
ied the stress analysis of rotating thick 2D-FG annular plates with 
non-uniform loads and elastic foundation. A second order point 
collocation method with forward–backward schemes was adopted 
to solve the system of the governing and boundary conditions.

According to literature, the studies deal with linear analysis of 
rotating disks. It has to be noted that in high speed advanced mod-
ern technologies such as gas turbines, turbochargers, centrifugal 
devices or machine tools, the speeds of rotary parts may approach 
up to ω = 20 000 rad/s. Thus, the application of linear analysis to 
high angular velocities may cause remarkable errors. Therefore, in 
order to obtain accurate results, the nonlinear analysis should be 
applied. Very few nonlinear analysis have been presented so far for 
rotating disks [10,3], in which their governing nonlinear equations 
are based on plate theories with von Karman large displacement 
scheme that do not involve nonlinear terms of radial displacement.
Fig. 1. Axisymmetric thick FG-CNTRC rotating disk.

To the best knowledge of the authors, there are no studies 
available in the literature on nonlinear analysis of FG-CNTRC ro-
tating disks with variable thickness based on elasticity theory with 
the geometric nonlinearity in axisymmetric complete form. Thus, 
the purpose of this paper is to investigate the nonlinear analy-
sis of thick FG-CNTRC rotating disks with variable thickness. Ma-
terial properties are assumed to vary continuously along radial 
direction. The effective material properties of FG-CNTRC disk are 
estimated using a micro-mechanical model and the displacement 
and stress fields of FG-CNTRC disk for various types of distribu-
tions and volume fractions of CNTs as well as different types of 
thickness profiles are computed and compared. The difficulty in 
obtaining analytical solutions for the response of graded material 
systems comes from the dispersion of the heterogeneous material 
systems. Therefore, analytical or semi-analytical solutions are avail-
able only through a number of problems with simple boundary 
conditions. Besides, in the case of nonlinear analysis, the availabil-
ity of such solutions becomes narrower. Thus, in order to find the 
nonlinear solution for a thick FG-CNTRC disk with variable thick-
ness, powerful numerical methods such as nonlinear graded finite 
element method (NGFEM) are needed. The graded finite element 
incorporates the gradient of the material properties at the element 
scale in the framework of a generalized isoparametric formulation. 
Some studies can be found in the literature on modeling of non-
homogenous structures by using GFEM [14,2,32]. In these studies, 
it is shown that the conventional FEM formulation causes a discon-
tinuous stress field whereas the graded elements give a continuous 
and smooth variation.

2. Problem formulation

In this section different types of CNTs’ distributions along radial 
direction of the disk are investigated. The axisymmetric governing 
nonlinear equations of motion are obtained and nonlinear graded 
finite element method is employed for modeling the material non-
homogeneity and geometric nonlinearity.

2.1. Material properties in FG-CNTRC rotating disk

A thick FG-CNTRC disk of inner radius a, outer radius b and 
variable thickness h(r) is considered. The geometry and coordinate 
system of the disk is shown in Fig. 1.

This FG-CNTRC disk consists of radially aligned SWCNTs and an 
isotropic matrix. Several studies have been published each with 
different focuses on mechanical properties of CNTRCs. However, for 
the sake of simplicity in the present study the rule of mixtures is 
employed and thus the effective material properties of CNTRC disk 
can be obtained as [26]:
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Table 1
Comparison of Young’s moduli for polymer/CNTRC at T0 = 300 [30].

V ∗
CNT MD [11] Extended rule of mixtures

E1 (GPa) E2 (GPa) E1 (GPa) η1 E2 (GPa) η2

0.12 94.6 2.9 94.78 0.137 2.9 1.022
0.17 138.9 4.9 138.68 0.142 4.9 1.626
0.28 224.2 5.5 224.5 0.141 5.5 1.585

E1 = η1 V CNT ECNT
1 + Vm Em (1)

η2

Ei
= V CNT

ECNT
i

+ Vm

Em
(i = 2,3) (2)

η3

Gij
= V CNT

GCNT
i j

+ Vm

Gm
(i �= j) (3)

υi j = V CNTυ
CNT
i j + Vmυm (i �= j) (4)

ρ = V CNTρ
CNT + Vmρm (5)

where ECNT
i , GCNT

i j , υCNT
i j and ρCNT are elasticity modulus, shear 

modulus, Poisson’s ratio and density respectively, of the CNTs and 
Em , Gm , υm and ρm are corresponding properties for the matrix. 
η j ( j = 1, 2, 3) is the CNTs’ efficiency parameter where its deter-
mination is a key issue for successful application of the extended 
rule of mixtures to CNTRCs. This parameter can be computed by 
matching the elastic modulus of CNTRCs observed from the MD 
simulation results with those obtained from rule of mixtures. Han 
and Elliott [11] with the use of MD simulation and energy mini-
mization obtained the elastic moduli of polymer/CNT composites. 
In the conventional rule of mixtures the whole system is assumed 
to be continuum and the interfaces between the matrix and fibers 
remain fully intact, thus the general macroscopic rule of mixtures 
cannot be applied straightforwardly to composites with strong in-
terfacial interactions. Besides, micromechanics equations cannot 
capture the scale difference between the nano and micro levels. 
For this purpose, CNT efficiency parameters η j ( j = 1, 2, 3) are ob-
tained by comparing the Young’s moduli ECNT

1 and ECNT
2 of CNTRCs 

achieved from the extended rule of mixtures to those from MD 
simulation given by [11]. It should be noticed that there are no 
MD results available for shear modulus G12 in Ref. [11]. The re-
sults are shown in Table 1 and are used in the present study, in 
which it is assumed that η3 = 0.7η2 [30].

Moreover, V CNT and Vm are the volume fractions of the CNTs 
and matrix, respectively, which is assumed to be related by V CNT +
Vm = 1, this assumption comes from considering a perfect com-
posite (no voids, etc.). It has to be stated that this assumption may 
yield results somewhat different from the experimental ones.

Furthermore, the volume fraction of CNTs (V CNT ) is assumed 
to be graded continuously along the radial direction of the disk, 
hence, the disk is consisted of inhomogeneous and anisotropic ma-
terial. Accordingly, four distribution types are defined in this study; 
that is either uniformly distributed (UD) or three types of function-
ally graded (FG_V, FG_O and FG_X) in radial direction. They are 
assumed to be as [26]:

V CNT = V ∗
CNT (type UD) (6)

V CNT = 2

(
r − a

b − a

)
V ∗

CNT (type FG_V) (7)

V CNT = 2

(
b − r

b − a

)
V ∗

CNT (type FG _O) (8)

V CNT = 4

∣∣∣∣ r − rm

b − a

∣∣∣∣V ∗
CNT (type FG_X) (9)

in which:
rm =
(

a + b

2

)
(10)

V ∗
CNT = wCNT

wCNT + (ρCNT/ρm) − (ρCNT/ρm)wCNT
(11)

where wCNT is the mass fraction of CNTs, ρCNT and ρm are the 
densities of CNTs and matrix, respectively.

2.2. Governing equations

In the case of rotating disk, the body force is directed along 
the radial direction. Hence, the equations of equilibrium with the 
axisymmetric assumption in term of stresses are obtained as [4]:

∂σr

∂r
+ ∂σrz

∂z
+ σr − σθ

r
+ ρrω2 = 0

∂σrz

∂r
+ ∂σz

∂z
+ σrz

r
= 0 (12)

where ρ is the mass density that can be a function of radial coor-
dinate according to Eq. (5).

The stress-strain relation from the Hook’s law in matrix form is 
as [24]:

σ = Dε (13)

where the stress and strain components and the coefficients of 
elasticity D, are as the following relations [24]:

σ = {σr σθ σz σrz }T (14)

ε = {εr εθ εz γrz }T (15)

D =

⎡
⎢⎢⎣

D11 D12 D13 0

D12 D22 D23 0

D13 D23 D33 0

0 0 0 D55

⎤
⎥⎥⎦ (16)

in which:

D11 = 1 − υ23υ32

E2 E3Δ
, D22 = 1 − υ13υ31

E1 E3Δ
,

D33 = 1 − υ12υ21

E1 E2Δ
, D12 = υ21 + υ31υ23

E2 E3Δ
,

D13 = υ31 + υ21υ32

E2 E3Δ
, D23 = υ32 + υ12υ31

E1 E3Δ
,

D55 = G13,

Δ = 1 − υ12υ21 − υ23υ32 − υ13υ31 − 2υ21υ32υ13

E1 E2 E3
(17)

where Ei , Gij and υi j are found from Eqs. (1)–(4).
The strain-displacement equations based on the Green–Lagrange 

axisymmetric form in cylindrical coordinate are [4]:

εr = ∂u

∂r
+ 1

2

[(
∂u

∂r

)2

+
(

∂ w

∂r

)2]

εθ = u

r
+ 1

2

(
u

r

)2

εz = ∂ w

∂z
+ 1

2

[(
∂u

∂z

)2

+
(

∂ w

∂z

)2]

γrz = ∂u

∂z
+ ∂ w

∂r
+

[
∂u

∂z

∂u

∂r
+ ∂ w

∂z

∂ w

∂r

]
(18)

where u and w are radial and axial components of displacement, 
respectively.
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Fig. 2. Local coordinate.

2.3. Graded finite element modeling

In order to solve the governing nonlinear equations, the non-
linear graded finite element method is used. In this method, in 
addition to displacement field, the heterogeneity of the material 
properties of the FGM may also be determined based on their 
nodal values. In this regard, shape functions similar to those of the 
displacement fields may be used. Therefore, a graded finite ele-
ment method (GFEM) is used to effectively trace smooth variations 
of the material properties at the element level. Using the graded 
elements for modeling of gradation of the material leads to more 
accurate results than dividing the solution domain into homoge-
nous elements.

The finite element approximation of the domain is in the r–z
plane, which is the plane of revolution. The section of the disk in 
the r–z plane is considered and divided into a number of simplex 
linear quadrilateral elements. For convenience the local coordinate 
is used which its variables (ξ, η) are between −1 to 1 as is shown 
in Fig. 2.

For element (e), the displacements are approximated as [23]:

U (e) = �Λ(e) (19)

where U (e) is the element displacements vector, � is the matrix of 
linear shape functions in local coordinate and Λ(e) is the element 
nodal displacement vector that are as:

U (e) =
{

u
w

}(e)

(20)

� =
[

Φ1 0 Φ2 0 Φ3 0 Φ4 0

0 Φ1 0 Φ2 0 Φ3 0 Φ4

]
(21)

Λ(e) = { U1 V 1 U2 V 2 U3 V 3 U4 V 4 }T (22)

in which:

Φi = 1

4
(1 + ξiξ)(1 + ηiη) (23)

To treat the material inhomogeneity by using the GFEM, it may be 
written:

Ψ (e) =
4∑

i=1

ΨiΦi (24)

where Ψ (e) is the material property of the element.
Substituting Eq. (19) in Eq. (18) gives the element strain matrix 

as:

ε(e) = (BL + BNL)︸ ︷︷ ︸
B

Λ(e) (25)

where:

BL =

⎡
⎢⎢⎢⎣

∂Φ1
∂r 0 · · · ∂Φ4

∂r 0
Φ1
r 0 · · · Φ4

r 0

0 ∂Φ1
∂z · · · 0 ∂Φ4

∂z
∂Φ1 ∂Φ1 ∂Φ4 ∂Φ4

⎤
⎥⎥⎥⎦
∂z ∂r · · ·
∂z ∂r
BNL =

⎡
⎢⎢⎢⎣

1
2 (

∑4
i=1

∂Φi
∂r Ui)

∂Φ1
∂r

1
2 (

∑4
i=1

∂Φi
∂r W i)

∂Φ1
∂r · · ·

1
2r2 (

∑4
i=1 Φi U i)Φ1 0 · · ·

1
2 (

∑4
i=1

∂Φi
∂z Ui)

∂Φ1
∂z

1
2 (

∑4
i=1

∂Φi
∂z W i)

∂Φ1
∂z · · ·

(
∑4

i=1
∂Φi
∂z Ui)

∂Φ1
∂r (

∑4
i=1

∂Φi
∂z W i)

∂Φ1
∂r · · ·

1
2 (

∑4
i=1

∂Φi
∂r Ui)

∂Φ4
∂r

1
2 (

∑4
i=1

∂Φi
∂r W i)

∂Φ4
∂r

1
2r2 (

∑4
i=1 Φi U i)Φ4 0

1
2 (

∑4
i=1

∂Φi
∂z Ui)

∂Φ4
∂z

1
2 (

∑4
i=1

∂Φi
∂z W i)

∂Φ4
∂z

(
∑4

i=1
∂Φi
∂z Ui)

∂Φ4
∂r (

∑4
i=1

∂Φi
∂z W i)

∂Φ4
∂r

⎤
⎥⎥⎥⎦ (26)

Now by using Hamilton’s principle and Rayleigh–Ritz energy 
formulation, the NGFEM is imposed and finally the stiffness and 
force matrices are obtained as following:

t2∫
t1

δ(Π − W )dt = 0 (27)

where Π and W are potential energy and virtual work done by 
body forces, respectively. These functions and their variations are:

Π = 1

2

∫
Ω

εT σdΩ (28)

δΠ =
∫
Ω

δεT σdΩ (29)

W =
∫
Ω

P T UdΩ (30)

δW =
∫
Ω

P T δUdΩ (31)

where Ω is the volume of the domain under consideration and P
is the vector of body forces and in the case of rotating disk is as:

P = {ρrω2 0 }T (32)

Also, it should be mentioned that δε = B̃δΛ in which B̃ = BL +
2BNL . Substituting Eqs. (28)–(31) in Hamilton’s Principle, applying 
side conditions δU |t1,t2 = 0 and using part integration give:∫
Ω

δεT σdΩ =
∫
Ω

P T δUdΩ (33)

By imposing Eqs. (13), (19) and (25) into Eq. (33) for each ele-
ment, it can be achieved that:

δΛ(e)T
{∫

Ω

B̃T DBdΩ

}
Λ(e) = δΛ(e)T

∫
Ω

ΦT PdΩ (34)

Since δΛ(e)T
is the variation of the nodal displacements and is 

arbitrary, it can be omitted from Eq. (35). Due to dependency of 
matrix B and B̃ to the nodal displacements, the element stiffness 
matrix becomes a function of nodal displacements. Thus, the non-
linear equations can be formulated as:[
K(e)({Λ(e)})]{Λ(e)} = {

F (e)} (35)

where the characteristic matrices are defined as:

K(e) =
∫
Ω

B̃T DBdΩ (36)

F (e) =
∫

�T PdΩ (37)
Ω
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Now by assembling the element matrices, the global nonlinear 
equations for the FG-CNTRC rotating disk can be written as:

[
K
({Λ})]{Λ} = {F } (38)

The nonlinear algebraic equations of the problem should be 
solved by an iterative method. In iterative methods, the nonlinear 
equations are linearized by evaluating the nonlinear terms with 
the known solution from preceding iteration(s). Picard method is 
a commonly used iterative method also known as the direct itera-
tion method. In this method, the solution vector from the previous 
iteration is used to evaluate the stiffness matrix, and the solution 
at the subsequent iteration is determined by solving the assem-
bled equations after the imposition of boundary conditions [23]. 
Accordingly, Eq. (38) may be expressed as:

[
K
({Λ}κ)]{Λ}κ+1 = {F } (39)

where {Λ}κ denotes the solution vector at the κth iteration. The it-
eration process begins with an initial guess for displacements vec-
tor ({Λ}1) and determines the next approximation using Eq. (39). 
This procedure is continued until the difference between {Λ}κ and 
{Λ}κ+1 decreases to a preselected error tolerance. The global error 
criterion is of the form [22]:√√√√∑N

I=1 |Λκ+1
I − Λκ

I |2∑N
I=1 |Λκ+1

I |2 < ε (40)

where ε denotes the convergence tolerance and N is the total 
number of nodal displacements in the finite element mesh. In 
the current study, to obtain more accurate results and optimized 
computational efficiency, the convergence tolerance is taken as 
ε = 10−2 and the initial guess ({Λ}1) is assumed to be the lin-
ear response of the system.

3. Numerical results and discussion

3.1. Validation

To validate the presented work, the data of a functionally 
graded rotating disk can be used [5]. The inner and outer radii 
of the disk are a = 40 mm and b = 100 mm, respectively, and the 
thickness of the disk is small (h(r) = const. = 2.5 mm). The elas-
ticity modulus and density vary in the r direction as below:

E(r) = E0(r/b)n, ρ(r) = ρ0(r/b)n (41)

where E0 = 72 GPa, ρ0 = 2800 kg/m3 and the angular velocity is 
ω = 1570.8 rad/s. The boundary condition is free in both inner 
and outer surfaces. The comparison of the radial stress along the 
radial direction for n = 0, 0.5, 1 with the published data is shown 
in Fig. 3 and a good agreement between these results is observed.

3.2. Numerical results

In this section, the nonlinear response of FG-CNTRC thick 
rotating disks is presented. The disk is made of Polymethyl-
methacrylate (PMMA) as matrix, where SWCNTs are act as fibers 
aligned in radial direction. The properties of basic materials are 
[11,26]:

Em = 2.5 GPa, υm = 0.34, ρm = 1150 kg/m3 (42)

ECNT
1 = 5.6466 TPa, ECNT

2 = 7.08 TPa,

υm = 0.175, ρm = 1400 kg/m3 (43)
Fig. 3. Radial stress along radial direction compared with [5].

Table 2
Different types of thickness profiles.

Constant Linear Concave Convex

q = 0 q = 0.7 q = 0.7 q = 0.7
m = 1 m = 0.5 m = 2

Fig. 4. Different types of thickness profiles.

Furthermore, the thickness profile of FG-CNTRC disk is in the form 
of:

h(r) = h0
[
1 − q(r/b)m]

(44)

where h0 = b/10, q and m are geometric parameters that 0 ≤ q < 1
and m > 0. By changing the values of q and m four different types 
of thickness profiles, namely constant, linear, concave and convex 
are introduced in Table 2 and in the case of a = 0, b = 0.5 m are 
shown in Fig. 4.

The disk rotates about z axis with an angular velocity of ω. The 
boundary condition of the disk is clamped on its inner surface and 
free on its outer surface, where:

a = 0.1 m, b = 0.5 m, ω = 3000 rad/s (45)

The effects of CNTs’ distribution type on the variation of radial 
displacement and stress and circumferential stress along the radial 
direction of FG-CNTRC disk, are shown in Figs. 5–7, respectively. 
The thickness profile and volume fraction of CNTs are assumed 
to be linear and 0.12, respectively. According to these figures, the 
FG_V type of distribution has the largest radial displacement and 
circumferential stress among the other types, and the radial stress 
doesn’t vary significantly with the types of CNTs’ distribution. This 
behaviour can be explained in more details as follows. According 
to Eq. (13) and the fact that D11 > D12, it can be concluded that 
σr is mostly dependent on εr and Eq. (18) s hows that εr is a 



52 H. Zafarmand, M. Kadkhodayan / Aerospace Science and Technology 41 (2015) 47–54
Fig. 5. Variation of radial displacement along radial direction of disk with linear 
profile and V ∗

CNT = 0.12.

Fig. 6. Variation of radial stress along radial direction of disk with linear profile and 
V ∗

CNT = 0.12.

Fig. 7. Variation of circumferential stress along radial direction of disk with linear 
profile and V ∗

CNT = 0.12.

function of ∂u/∂r. Now, as it is seen from Fig. 5, when the radial 
displacement (u) varies, its slope (∂u/∂r) doesn’t vary considerably
for different CNTs’ distribution types, which causes to have nearly 
the same radial stresses for different distributions.

Moreover, in FG_X type of distribution, at r = 0.3 m according 
to Eq. (9), the volume fraction of CNTs vanishes. Hence, at this 
radius the disk is consisted of homogeneous and isotropic material 
and as a result, a jump in the material properties is occurred at 
this radius (rm) which yields to a discontinuity in stress field.

The variations of radial displacement and stress and circum-
ferential stress along the radial direction of FG-CNTRC disk for 
Fig. 8. Variation of radial displacement along radial direction of disk with concave 
profile and FG_V type of distribution.

Fig. 9. Variation of radial stress along radial direction of disk with concave profile 
and FG_V type of distribution.

Fig. 10. Variation of circumferential stress along radial direction of disk with con-
cave profile and FG_V type of distribution.

different volume fractions of CNTs, are illustrated in Figs. 8–10, re-
spectively. In this case, the thickness profile is concave and the 
type of distribution is FG_V type. As it can be seen, when volume 
fraction of CNTs rises, due to growth of structural stiffness, the ra-
dial displacement decreases while the radial and circumferential 
stresses increase.

Figs. 11–13 depict the influence of thickness profile on the vari-
ations of radial displacement and stress and circumferential stress 
along the radial direction of FG-CNTRC disk, respectively. The type 
of distribution and volume fraction of CNTs are assumed to be 
FG_O type and 0.17, respectively. It is obvious that by utilizing 
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Fig. 11. Variation of radial displacement along radial direction of disk with V ∗
CNT =

0.17 and FG_O type of distribution.

Fig. 12. Variation of radial stress along radial direction of disk with V ∗
CNT = 0.17 and 

FG_O type of distribution.

Fig. 13. Variation of circumferential stress along radial direction of disk with V ∗
CNT =

0.17 and FG_O type of distribution.

variable thickness, the displacement and stress fields are affected 
significantly, hence a capability of higher ω can be reached.

The comparison between linear and nonlinear responses of ra-
dial displacement and stress and circumferential stress at r =
0.3 m and z = 0 m versus angular velocity (ω) are demonstrated 
in Figs. 14–16, respectively. In this case, the thickness profile is 
constant and the type of distribution and volume fraction of CNTs 
are FG_X type and 0.28, respectively. According to these figures, as 
the angular velocity growths, the effect of geometric nonlinearity 
becomes more noticeable and the difference between linear and 
nonlinear responses increases considerably. Thus, in high angular 
Fig. 14. Variation of radial displacement versus angular velocity in two cases of 
linear and nonlinear analyses.

Fig. 15. Variation of radial stress versus angular velocity in two cases of linear and 
nonlinear analyses.

Fig. 16. Variation of circumferential stress versus angular velocity in two cases of 
linear and nonlinear analyses.

velocities, in order to obtain accurate results, the geometric non-
linearity must be considered.

4. Conclusions

The main purpose of the present paper was to investigate 
the nonlinear elasticity behaviour of FG-CNTRC rotating thick 
disks with variable thickness. The nonlinear graded finite element 
method based on Rayleigh–Ritz energy formulation with Picard it-
eration method is applied. For the sake of validation, a functionally 
graded rotating annular disk with available solution in the pub-
lished literature was taken into consideration and stresses were 
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presented for various values of power law exponents. The com-
parisons between the obtained results and the literature showed a 
good agreement. Various types of displacements and stresses are 
presented for different types of distributions and volume fractions 
of CNTs as well as different types of thickness profiles of rotating 
disks. Based on the achieved results, FG_CNTRCs have powerful po-
tentials for designing and optimizing structures under functional 
requirements and a higher ω can be reached by utilizing vari-
able thickness. Moreover, results demonstrate that in high angular 
velocities, the effect of nonlinearity is remarkable where the non-
linear displacements and stresses are smaller than linear ones.
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