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Characterizations of the Pareto distribution
in the presence of outliers
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M. Jabbari Nooghabi 2
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Abstract

Here we have given some characterizations for the Pareto distribution in the
presence of outliers. It is proved that a necessary and sufficient condition for f(x)
to be a Pareto density function in the presence of outliers is that the statistics X(r)

and
X(s)

X(r)
(1 ≤ r < s ≤ n) are independent. Further, we have derived some another

characterizations of the Pareto distribution in the presence of outliers.

Key Words: Pareto distribution, Power distribution, Characterization, Order statistics,
Outliers.

1 Introduction

Ahsanullah and Kabir [2] proved that necessary and sufficient condition for f(x) to be

a Pareto distribution is that the statistics X(r) and
X(s)

X(r)
(1 ≤ r < s ≤ n) are independent.

Dallas [3] proved that for a cumulative distribution function (CDF) G(y) (y ≥ β), if

E(Y r|Y > c) = E
(
Y c
β

)r
holds then Y has a Pareto distribution.

In this paper, we assume that the random variables (X1, X2, ..., Xn) are such that k of
them are distributed with probability density function (pdf)

f2(x;α, β, θ) =
α(βθ)α

xα+1
, 0 < βθ ≤ x, α > 0, β > 1, θ > 0, (1)

and remaining (n− k) random variables are distributed as

f1(x;α, θ) =
αθα

xα+1
, 0 < θ ≤ x, α > 0. (2)

One should note that two sets of the observation (i.e. k and n − k) are independent.
But X1, X2, . . . , Xn are not independent because of the model of outliers (for more details
see [5, 7, 8]). Also, we may note that our assumptions are based of Dixit’s model for
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the outliers problem and it is totaly different than the mixture models which considers
X1, X2, . . . , Xn are independent.
Here, we have extended the approaches of Ahsanullah and Kabir [2] and Dallas [3] for
the homogenous case of the Pareto distribution and derived some characterizations of the
Pareto distribution in the presence of outliers.

2 Prerequisite Results

Assume that X(1) < X(2) < ... < X(n) be the order statistics of a random sample of size
n such that k out of n are coming from pdf f2 (or CDF F2) and the remaining (n − k)
follow the pdf f1 (or CDF F1). The CDF and pdf of rth (1 ≤ r ≤ n) order statistic are

HX(r)
(x) =

n∑
i=r

m6∑
j=m5

C(k, j)[F2(x)]j[1− F2(x)]k−jC(n− k, i− j)[F1(x)]i−j[1− F1(x)]n−k−i+j, (3)

where m5 = max(0, i− n+ k) and m6 = min(k, i) and

hX(r)
(x) = kf2(x)

m2∑
j=m1

{C(k − 1, j)[F2(x)]j[1− F2(x)]k−j−1C(n− k, r − 1− j)

× [F1(x)]r−j−1[1− F1(x)]n−k−r+j+1}+ (n− k)f1(x)
m4∑
j=m3

{C(k, j)[F2(x)]j

× [1− F2(x)]k−jC(n− k − 1, r − 1− j)[F1(x)]r−j−1[1− F1(x)]n−k−r+j}, (4)

where m1 = max(0, k + r − n − 1), m2 = min(k − 1, r − 1), m3 = max(0, k + r − n),
m4 = min(k, r − 1), respectively (for more details see [4, 5, 6, 8]).
Further, the joint CDF and pdf of (X(r), X(s)) (1 ≤ r < s ≤ n) are

HX(r),X(s)
(x, y) =

n∑
j=s

j∑
i=r

w10∑
m=w9

t10∑
l=t9

{C(k,m)C(k −m, l)[F2(x)]m[F2(y)− F2(x)]l[1− F2(y)]k−m−l

× C(n− k, i−m)C(n− k − i+m, j − i− l)[F1(x)]i−m[F1(y)− F1(x)]j−i−l

× [1− F1(y)]n−k−j+m+l}, (5)

where w9 = max(0, i − n + k), w10 = min(k, i), t9 = max(0, j − n + k −m) and t10 =
min(k −m, j − i) and

hX(r),X(s)
(x, y) = k(k − 1)f2(x)f2(y)

w2∑
j=w1

t2∑
i=t1

{C(k − 2, j)C(n− k, r − 1− j)[F2(x)]j

× [F1(x)]r−1−jC(k − 2− j, i)C(n− k − r + j + 1, n− s− i)[1− F2(y)]i

× [1− F1(y)]n−s−i[F2(y)− F2(x)]k−j−i−2[F1(y)− F1(x)]s−r−k+i+j+1}

+ (n− k)(n− k − 1)f1(x)f1(y)
w4∑
j=w3

t4∑
i=t3

{C(n− k − 2, j)C(k, r − 1− j)
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× [F1(x)]j[F2(x)]r−1−jC(n− k − 2− j, i)C(k − r + j + 1, n− s− i)[1− F1(y)]i

× [1− F2(y)]n−s−i[F1(y)− F1(x)]n−k−2−i−j[F2(y)− F2(x)]s−r+k−n+i+j+1}

+ k(n− k)f1(x)f2(y)
w6∑
j=w5

t6∑
i=t5

{C(n− k − 1, j)C(k − 1, r − 1− j)

× [F1(x)]j[F2(x)]r−1−jC(n− k − j − 1, i)C(k − r + j, n− s− i)[1− F1(y)]i

× [1− F2(y)]n−s−i[F1(y)− F1(x)]n−k−i−j−1[F2(y)− F2(x)]s−r−n+k+i+j}

+ k(n− k)f2(x)f1(y)
w8∑
j=w7

t8∑
i=t7

{C(k − 1, j)C(n− k − 1, r − 1− j)

× [F2(x)]j[F1(x)]r−1−jC(k − j − 1, i)C(n− k − r + j, n− s− i)[1− F2(y)]i

× [1− F1(y)]n−s−i[F2(y)− F2(x)]k−i−j−1[F1(y)− F1(x)]s−r−k+i+j}, (6)

where w1 = max(0, r− n+ k− 1), w2 = min(k− 2, r− 1), t1 = max(0, k− s+ r− j − 1)
and t2 = min(k − j − 2, n − s), w3 = max(0, r − k − 1), w4 = min(n − k − 2, r − 1),
t3 = max(0, n− s− k+ r− j− 1) and t4 = min(n− k− j− 2, n− s), w5 = max(0, r− k),
w6 = min(n−k−1, r−1), t5 = max(0, n−s−k+r−j−1), t6 = min(n−k−j−1, n−s),
w7 = max(0, r − n + k), w8 = min(k − 1, r − 1), t7 = max(0, k − s + r − j − 1),
t8 = min(k − j − 1, n− s), respectively.
One should note that if k = 1 the joint pdf of (X(r), X(s)) is given in Sinha [10]. Also, if
we put f1 = f2 and F1 = F2 then all pdfs and CDFs are reduced to homogeneous cases.
The following equations are named as Pexider’s equations.

f(xy) = g(x) + h(y), (7)

and

f(xy) = g(x)h(y). (8)

For solving these equations, the following Theorem has taken from Aczel [1] (Theorem 4.
in p. 144) and Kuczma [9] (Theorem 13.3.4. in p. 358).
Theorem 2.1. The general solutions, with f continuous in a point of (7) and (8),
respectively, both supposed for positive x and y, are

f(t) = c ln(αβt), g(t) = c ln(αt), h(t) = c ln(βt), (α > 0, β > 0, t > 0), (9)

and

f(t) = abtc, g(t) = atc, h(t) = btc, (t > 0), (10)

respectively, supplemented with the following trivial solutions in case of (8).
f(t) = 0,
g(t) = 0,
h(t) arbitrary,

and


f(t) = 0,
g(t) arbitrary,
h(t) = 0.

(11)
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3 Characterization of the Pareto distribution in the

presence of outliers

Theorem 3.1. Let X be a random variable having an absolutely continuous CDF F (x).
A necessary and sufficient condition that X follows the Pareto distribution in the presence
of outliers as given by (1) and (2) is that for some r and s (1 ≤ r < s ≤ n) the statistics

X(r) and
X(s)

X(r)
are independent.

Proof. Necessity:

From (6) we can get the joint pdf of X(r) and X(s). Substituting U = X(r) and V =
X(s)

X(r)

in (6), we can obtain the joint pdf of U and V as

hU,V (u, v) = u hX(r),X(s)
(u, uv).

Then after some simplification (replace hU,V (u, v) with h(u, v))

h(u, v) = α2θα(n−r+1)βαkvα(s−n−1)−1[1− v−α]s−r−1

× uα(r−n−1)−1

k(k − 1)
w2∑
j=w1

t2∑
i=t1

A1β
−αj

[
1−

(
βθ

u

)α]j [
1−

(
θ

u

)α]r−1−j

+ (n− k)(n− k − 1)β−α(r−1)
w4∑
j=w3

t4∑
i=t3

A2β
αj

[
1−

(
θ

u

)α]j [
1−

(
βθ

u

)α]r−1−j

+ k(n− k)β−α(r−1)
w6∑
j=w5

t6∑
i=t5

A3β
αj

[
1−

(
θ

u

)α]j [
1−

(
βθ

u

)α]r−1−j

+ k(n− k)
w8∑
j=w7

t8∑
i=t7

A4β
−αj

[
1−

(
βθ

u

)α]j [
1−

(
θ

u

)α]r−1−j , (12)

where

A1 = C(k − 2, j)C(n− k, r − 1− j)C(k − 2− j, i)C(n− k − r + j + 1, n− s− i),

A2 = C(n− k − 2, j)C(k, r − 1− j)C(n− k − 2− j, i)C(k − r + j + 1, n− s− i),

A3 = C(n− k − 1, j)C(k − 1, r − 1− j)C(n− k − j − 1, i)C(k − r + j, n− s− i),

A4 = C(k − 1, j)C(n− k − 1, r − 1− j)C(k − j − 1, i)C(n− k − r + j, n− s− i).

(13)

Therefore, it establishes the independence of U and V .

Sufficiency:
Here we assume that U and V are independent. The joint pdf of U and V is

h(u, v) = k(k − 1)uf2(u)f2(uv)
w2∑
j=w1

t2∑
i=t1

{A1[F2(u)]j[F1(u)]r−1−j[1− F2(uv)]i
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× [1− F1(uv)]n−s−i[F2(uv)− F2(u)]k−j−i−2[F1(uv)− F1(u)]s−r−k+i+j+1}

+ (n− k)(n− k − 1)uf1(u)f1(uv)
w4∑
j=w3

t4∑
i=t3

{A2[F1(u)]j[F2(u)]r−1−j[1− F1(uv)]i

× [1− F2(uv)]n−s−i[F1(uv)− F1(u)]n−k−2−i−j[F2(uv)− F2(u)]s−r+k−n+i+j+1}

+ k(n− k)uf1(u)f2(uv)
w6∑
j=w5

t6∑
i=t5

{A3[F1(u)]j[F2(u)]r−1−j[1− F1(uv)]i

× [1− F2(uv)]n−s−i[F1(uv)− F1(u)]n−k−i−j−1[F2(uv)− F2(u)]s−r−n+k+i+j}

+ k(n− k)uf2(u)f1(uv)
w8∑
j=w7

t8∑
i=t7

{A4[F2(u)]j[F1(u)]r−1−j[1− F2(uv)]i

× [1− F1(uv)]n−s−i[F2(uv)− F2(u)]k−i−j−1[F1(uv)− F1(u)]s−r−k+i+j}, (14)

where A1, A2, A3 and A4 are given in (13).
By using some elementary algebra we have

h(u, v) = k(k − 1)uf2(u)f2(uv)[F1(u)]r−1[1− F1(uv)]n−s[F1(uv)− F1(u)]s−r−k+1

× [F2(uv)− F2(u)]k−2
w2∑
j=w1

t2∑
i=t1

{A1

[
F2(u)

F1(u)

]j [
1− F1(u)

1− F2(u)

]j [
1− F2(uv)

F2(uv)− F2(u)

]i

×
[
F1(uv)− F1(u)

1− F1(uv)

]i [
F1(uv)− F1(u)

1− F1(u)

]j [
1− F2(u)

F2(uv)− F2(u)

]j
}

+ (n− k)(n− k − 1)uf1(u)f1(uv)[F2(u)]r−1[1− F2(uv)]n−s[F1(uv)− F1(u)]n−k−2

× [F2(uv)− F2(u)]s−r+k−n+1
w4∑
j=w3

t4∑
i=t3

{A2

[
F1(u)

F2(u)

]j [
1− F2(u)

1− F1(u)

]j [
1− F1(uv)

F1(uv)− F1(u)

]i

×
[
F2(uv)− F2(u)

1− F2(uv)

]i [
1− F1(u)

F1(uv)− F1(u)

]j [
F2(uv)− F2(u)

1− F2(u)

]j
}

+ k(n− k)uf1(u)f2(uv)[F2(u)]r−1[1− F2(uv)]n−s[F1(uv)− F1(u)]n−k−1

× [F2(uv)− F2(u)]s−r+k−n
w6∑
j=w5

t6∑
i=t5

{A3

[
F1(u)

F2(u)

]j [
1− F2(u)

1− F1(u)

]j [
1− F1(uv)

F1(uv)− F1(u)

]i

×
[
F2(uv)− F2(u)

1− F2(uv)

]i [
F2(uv)− F2(u)

1− F2(u)

]j [
1− F1(u)

F1(uv)− F1(u)

]j
}

+ k(n− k)uf2(u)f1(uv)[F1(u)]r−1[1− F1(uv)]n−s[F2(uv)− F2(u)]k−1

× [F1(uv)− F1(u)]s−r−k
w8∑
j=w7

t8∑
i=t7

{A4

[
F2(u)

F1(u)

]j [
1− F1(u)

1− F2(u)

]j [
1− F2(uv)

F2(uv)− F2(u)

]i

×
[
F1(uv)− F1(u)

1− F1(uv)

]i [
F1(uv)− F1(u)

1− F1(u)

]j [
1− F2(u)

F2(uv)− F2(u)

]j
}. (15)

Also from (4) and after some simplification, the marginal pdf of U = X(r) is as h1(u).

h1(u) = [1− F2(u)]k−1[F1(u)]r−1[1− F1(u)]n−k−r+1D, (16)
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where

D = kf2(u)
m2∑
j=m1

B1

[
F2(u)

F1(u)

]j [
1− F1(u)

1− F2(u)

]j

+ (n− k)f1(u)

[
1− F2(u)

1− F1(u)

]
m4∑
j=m3

B2

[
F2(u)

F1(u)

]j [
1− F1(u)

1− F2(u)

]j
,

and 
B1 = C(k − 1, j)C(n− k, r − 1− j),

B2 = C(k, j)C(n− k − 1, r − 1− j).
(17)

Therefore from independency of U and V , we can write

h2(v) =
h(u, v)

h1(u)
, (18)

where h2(v) is pdf of V .

Letting p = p(u, v) = 1−F1(uv)
1−F1(u)

and q = q(u, v) = 1−F2(uv)
1−F2(u)

, we obtain

h2(v) = −{k(k − 1)pn−s[1− p]s−k−r+1[1− q]k−2
w2∑
j=w1

t2∑
i=t1

A1

[
F2(u)

F1(u)

]j [
1− F1(u)

1− F2(u)

]j

× p−i[1− p]i+jqi[1− q]−i−jf2(u)
∂q

∂v

+ (n− k)(n− k − 1)

[
F2(u)

F1(u)

]r−1 [
1− F1(u)

1− F2(u)

]r−2
[1− p]n−k−2qn−s[1− q]k+s−r−n+1

×
w4∑
j=w3

t4∑
i=t3

A2

[
F1(u)

F2(u)

]j [
1− F2(u)

1− F1(u)

]j
q−i[1− q]i+jpi[1− p]−i−jf1(u)

∂p

∂v

+ k(n− k)

[
F2(u)

F1(u)

]r−1 [
1− F1(u)

1− F2(u)

]r−2
qn−s[1− q]k+s−r−n[1− p]n−k−1

×
w6∑
j=w5

t6∑
i=t5

A3

[
F1(u)

F2(u)

]j [
1− F2(u)

1− F1(u)

]j
pi[1− p]−i−jq−i[1− q]i+jf1(u)

∂q

∂v

+ k(n− k)pn−s[1− p]s−k−r[1− q]k−1
w8∑
j=w7

t8∑
i=t7

A4

[
F2(u)

F1(u)

]j [
1− F1(u)

1− F2(u)

]j

× p−i[1− p]i+jqi[1− q]−i−jf2(u)
∂p

∂v
}D−1. (19)

From the assumption, we know that U and V are independent. So h2(v) is independent
of u and by using the lemma in Ahsanullah and Kabir [2] p = p(u, v) = g1(v) and
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q = q(u, v) = g2(v) (we say functions of v only) and the remaining parts should be
constant. Therefore{

1− F1(uv) = [1− F1(u)]g1(v), θ ≤ u, 1 < v, θ > 0,
1− F2(uv) = [1− F2(u)]g2(v), βθ ≤ u, 1 < v, θ > 0, β > 1.

(20)

It is clear that these are version of Pexider’s equation. So from Theorem 2.1 we can solve
them. Since F1(x) and F2(x) are CDFs continuous for all x ∈ [θ,∞) and x ∈ [βθ,∞),
respectively. We may conclude that{

1− F1(x) = c1x
−α, θ ≤ x, θ > 0,

1− F2(x) = c2x
−α, βθ ≤ x, θ > 0, β > 1,

(21)

where c1, c2 and α are constant.
After replacing these solutions in (19) and using some simplification we get

h2(v) = αv−α(n−s+1)−1[1− v−α]s−r−1H[c2D]−1, (22)

where

H = k(k − 1)c2

w2∑
j=w1

t2∑
i=t1

A1

[
1− c2u−α

1− c1u−α

]j (
c1
c2

)j

+ (n− k)(n− k − 1)c1

w4∑
j=w3

t4∑
i=t3

A2

[
1− c2u−α

1− c1u−α

]r−1−j (
c1
c2

)r−2−j

+ k(n− k)c1

w6∑
j=w5

t6∑
i=t5

A3

[
1− c2u−α

1− c1u−α

]r−1−j (
c1
c2

)r−2−j

+ k(n− k)c2

t8∑
i=t7

A4

[
1− c2u−α

1− c1u−α

]j (
c1
c2

)j
.

We know that C(n, j) = 0 if j > n, then by using some elementary algebra H[c2D]−1 =
(n− r)C(n− r−1, n− s) and the right side of (22) is only depend on v and it is pdf of V .
Finally, from the property of CDF, α > 0, c1 = θα and c2 = (βθ)α. Thus sufficiency is
established and the proof is complete.

Theorem 3.2. Let X be a random variable with CDF F (x) = bF2(x) + b̄F1(x) such that
F1(x) (x ≥ θ) and F2(x) (x ≥ βθ) are CDFs, where b = k

n
, b̄ = 1− b, θ > 0 and β > 1. If

E(Xα|X > c) = bE2

(
Xc

βθ

)α
+ b̄E1

(
Xc

θ

)α
, (23)

holds for some α > 0 then F (x) is the Pareto distribution in the presence of outliers. We
assume that E(Xα) <∞.
Proof. Proof is similar as given in Dallas [3]. In the process to prove the theorem,
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we should note that the solution of the differential equation cP ′(c) = −γP (c) (P (c) =
1− F (c)) is P (c) = Ac−α, where A is a constant, γ = αδ/(δ − 1) > 0 and

δ = b
∫ ∞
βθ

(
X

βθ

)α
dF2(x) + b̄

∫ ∞
θ

(
X

θ

)α
dF1(x). (24)

Comparing the solution with the assumption imply that A = b(βθ)α + b̄θα and the proof
is complete.

4 An actual example

Here, we have given an example of motor insurance company from Dixit and Jabbari
Nooghabi [7]. From the example, we know that the data follow the Preto distribution in
the presence of outliers. So by using Theorem 3.1, we can check the sufficiency. Assuming
r = 3 and s = 12, we have x(r)=63000, and

x(s)
x(r)

=2.857. So, using the copula method and

independent test by package ’copula’ in R, the result is as follows:

Global Cramer-von Mises statistic: 0.03125 with p-value 0.9950495
Combined p-values from the Mobius decomposition:

0.9950495 from Fisher’s rule,

0.9950495 from Tippett’s rule.

Therefore, X(r) and
X(s)

X(r)
are independent, because of the p-value is grater than 0.05,

as significant level of the test. So, we can conclude that the data follow the Pareto
distribution in the presence of outliers.
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