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Proper technology or configuration for sulfur recovery units (SRUs) strongly depends on H,S concen-
tration of inlet acid gas stream. Various acid gas enrichment (AGE) schemes with different solvents can
be used to reduce the concentration of carbon dioxide and heavy aromatic hydrocarbons while enriching
the HyS content of SRU feed stream. The present article uses combinations of Aspen-HYSYS software and
two in-house artificial neural networks (namely, Regularization and stabilized multilayer perceptron
networks) to compare the AGE capability of sulfinol-M (sulfolane + MDEA) solvent at optimal concen-
tration with traditional MDEA solution when both of them are used in a conventional gas treating unit

fg]-;” ords: (GTU). The simulation results indicate that the optimal concentration of Sulfinol-M aqueous solution
BTEX (containing 37 wt% Sulfolane and 45 wt% MDEA) will completely eliminate toluene and ethylbenzene
Regularization network from the SRU feed stream while removing 80% of benzene entering the GTU process. Furthermore, mole
MLP fraction of H,S in the SRU feed stream increases from the conventional 33.48 mol % to over 57 mol %.

Stabilized MLP Increased HaS selectivity of optimal sulfinol-M aqueous solution will elevate the CO, slippage through

sweet gas stream at around 4.5 mol % which is still below the permissible threshold. To the best of our

knowledge, the stabilized MLP network has not been addressed previously.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Acid gas enrichment (AGE) is crucial when treating exceedingly
high CO, (or other inert impurities) content sour gases, in which
the resulting acid gas stream is likely to contain relatively low HyS
concentrations making it unsuitable feed for Sulfur Recovery Units
(SRU). Excessive amount of inert impurities in acid gas stream
entering SRU Claus process will drastically decreases the combus-
tion chamber temperature and reduces the overall elemental sulfur
recovery efficiency. AGE has become an increasingly economic
option in the last two decades (Chludzinski and Iyengar, 1993).

Artificial neural networks (ANNs) are widely accepted as a
technology offering an alternative way to tackle complex and ill-
defined problems. Properly trained neural networks can derive
meaning from complicated or imprecise data (e.g. can extract the
underlying truth from noisy data). These powerful tools are tradi-
tionally used for their capability of nonlinear mapping and lack of
necessity for detailed mechanistic knowledge (Mahmoodzadeh
Vaziri and Shahsavand, 2013).
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Acid gas enrichment process depends on multiple input vari-
ables which posse's strong coupling between them with severe
uncertainty. The difficulties presented in using conventional
modeling techniques to model such nonlinear and highly complex
systems with large numbers of input and output variables, make
the application of ANNs particularly attractive.

Two main approaches are usually recruited for acid gas
enrichment. In the first scheme, suitable solvent is chosen in con-
ventional gas treating unit (GTU) to absorb more selectively H,S
while inhibiting CO; absorption. Sterically hindered amines, either
primary or secondary amines with large bulky alkyl or alkanol
groups attached to the nitrogen (Seagraves and Weiland, 2011),
show suitable result for selective absorption of H,S in the presence
of CO, (by reducing carbamate stability).

Secondly, necessary modifications can be applied to an existing
GTU configuration while using the conventional solvent. Various
schemes are used to enhance the selectivity of H,S over CO;
(Palmer, 2006; Mak et al., 2009; Al Utaibi and Al Khateeb, 2010;
Way and Viejo, 2013).

Tetra methylene sulfone (TMS) or sulfolane is an important in-
dustrial solvent with capability of removing acid gases such as CO,
and H,S from various sour gas streams. Furthermore, sulfolane is
able to extract monocyclic aromatic hydrocarbons (such as
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Benzene-Toluene-Ethylbenzene-Xylene (BTEX)) from different pe-
troleum products. Sulfolane is usually blended with alkanol amines
(specially methyl diethanol amine (MDEA)) to form adequate
mixed solvent (known as sulfinol) to capture various impurities,
simultaneously (Vahidi and Moshtari, 2013).

In 1981, Exxon-Mobil scientists recognized the effect of molec-
ular structure of the GTU solvent on the performance of natural gas
sweetening process and synthesized the so called “FLEXSORB-SE”
amine for high H,S selective absorption (Royan et al., 1992; Parks
et al.,, 2010).

In a similar research, in 1983, Satori et al. had compared H,S
selectivity and moles of H,S and CO, loadings per moles of amine
for various solvents (tertiary butyl amino ethoxyethanol (TBEE),
tertiary butyl amino ethanol (TBE) and MDEA). The results indi-
cated that TBEE has a significant higher selectivity than other two
solvents for the above purposes (Sartori et al., 1983).

In 2004, Mandal et al. had investigated selective absorption of
H,S from different sour gas streams containing various H,S and CO,
concentrations via aqueous solutions of MDEA and 2-amino-2-
methyl-1-propanol (AMP). The acid gas mass transfer has been
modeled using two different approaches. The equilibrium-mass-
transfer-kinetics-based-combined model is used for CO, absorp-
tion and gas-phase-transport-equation-based approximation is
recruited for modeling of H,S absorption. Negligible interactions
between CO, and HjS in both gas and liquid phases were assumed.
They reported that proper agreement existed between experi-
mental measurements and simulation results (Mandal et al., 2004).

Lu et al. (2006) used a unique mixture of TBEE and MDEA
(1 kmol/m> TBEE +1.5 kmol/m? MDEA) in a packed column at at-
mospheric pressure and constant liquid flow rate to absorb H,S and
CO; from different acid gases. The aqueous blend of MDEA and
TBEE has been found to be an exceedingly efficient mixed solvent
for selective H,S removal over traditional amines (Lu et al., 2006).

In 2011, Koolivand Salooki et al. designed a neural network to
predict the output parameters of gas sweetening regeneration
column of Khangiran refinery. The simulation results had close
agreement with plant data (Koolivand Salooki et al., 2011).

In 2011, Saghatoleslami et al. developed a neural network based
genetic algorithm (GA) to optimize the absorption column of
Khangiran refinery. They have used GA to determine the number of
neurons in the hidden layers, the momentum and learning rates
parameter. Operating variables such as inlet gas flow rate and
corresponding gas pressure and temperature, lean amine temper-
ature and its flow rate were selected as the input parameters while
acid gas and rich amine flow rates considered as the outputs of
ANN. They have reported that the model was in good agreement
with experimental data (Saghatoleslami et al., 2011).

In 2013, Angaji et al. examined the performance of various
concentrations of sulfolane in the Sulfinol solvent for GTUs of
Khangiran natural gas refinery. They have concluded that providing
40.2%wt sulfolane, 21.2% wt H,0 and 37.7%wt MDEA in liquid
mixture of Sulfinol-M could increases the capacity of sour gas
treatment from 173 to 220 MSCMH. The version of Aspen Plus
software which has been used for the entire simulation is unable to
provide proper property package for mixtures of MDEA-sulfolane
solutions. Limited parameters such as condenser and reboiler
duties were investigated in order to optimize sulfolane concen-
tration (Torabi Angaji et al., 2013).

In 2013, Adib et al. developed a support vector machine (SVM) to
estimate process output variables of contactor and regenerator of
Khangiran gas treatment unit over 13 series of input—output plant
data each consisting of 145 exemplars. They have claimed that SVM
based model showed to be in better agreement with operating
plant data compared to artificial neural networks based models
(Adib et al., 2013).

In 2014, Kazemi et al. simulated Sulfinol-M, LO-CAT and mixed
amine process via Aspen plus software v.8.1 for natural gas
sweetening. Feed contained 5 mol% H>S, 1.33 mol% CO, and the
remaining (93.67 mol %) was methane. Aspen process economic
analyzer was used to economically evaluate the entire processes in
order to meet the pipeline specifications. They have claimed that
LO-CAT process is the more appropriate choice when capital and
operating costs along with acid gas loading are taken into account
(Kazemi et al., 2014).

In the present article, a conventional GTU is simulated by
resorting to power full Aspen-HYSYS software V.8.3. Instead of
using traditional MDEA solution as solvent, various concentrations
of MDEA and sulfolane (known as sulfinol solution) will be used to
predict the concentration of H,S and BTEX components in the acid
gas stream leaving GTU. The above version of Aspen-HYSYS soft-
ware is capable of providing adequate property package for all
mixtures of MDEA-sulfolane solutions. The limited data collected
from Aspen-HYSYS simulations using various sulfinol concentra-
tions will be employed as the training data to optimize two stabi-
lized artificial neural networks. The trained networks performances
will be initially compared with the performance of conventionally
used neural network toolbox of MATLAB software and then finally
they will be recruited to provide reliable interpolation hyper-
surfaces for practical uses.

2. Why AGE and BTEX elimination in a conventional GTU?

As it was mentioned previously, treating of sour gases with high
amounts of impurities (e.g. CO,) can lead to lean acid gas streams
which contain significant amounts of inert constituents such as
CO,. Excessive amounts of carbon dioxide available in the acid gas
stream entering SRU can dramatically reduce the combustion
chamber temperature and hence drastically limit the elemental
sulfur capacity. In other words, extreme dilution of SRU feed stream
by very high amounts of CO, may cause severe flame instability in
combustion chamber and in the worst scenario, it can completely
quench the combustion chamber flame (Palmer, 2006). Moreover,
effective elimination of carbon dioxide from acid gas streams via a
successful acid gas enrichment scenario can dramatically decrease
the size of a conventional Claus unit in the design stage or signifi-
cantly increase the plant throughput for an existing SRU facility.
Selim et al. experimentally studied the effect of CO, and N, content
of SRU feed on sulfur recovery and overall conversion efficiency.
They reported that increasing the concentration of carbon dioxide
in acid gas stream drastically deteriorates the performance of the
Claus process. Carbon dioxide reduced the probability of sulfur
recovery where most of HyS is converted to SO,. Conversely, ni-
trogen tends to act as an inert medium, and was found to have less
severe effect as compared to carbon dioxide (Selim et al., 2012).

The majority of existing acid gas streams contains significant
quantities of other contaminants (such as BTEX) that should be
destroyed in the Claus furnace (providing high enough combustion
chamber temperatures) to protect the downstream Claus reactors
catalysts. However, relatively high carbon dioxide concentrations
tend to lower the furnace flame temperature, thereby often making
thermal destruction of these contaminants difficult (or even
impossible).

Deleterious effects of heavy hydrocarbons and particularly ar-
omatics in an SRU plant feed stream are essentially known and well
documented (Crevier et al., 2001). Fig. 1 shows the variations of
combustion chamber adiabatic flame temperature versus HjS
content of acid gas stream entering the SRU process. As it can be
seen, destruction of aromatics (BTEX) can't be commenced when
acid gas contains less than 35 mol % H,S (Zarenezhad, 2011). In
many practical situations, the destruction of Benzene starts at
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Fig. 1. Adiabatic flame temperature of combustion chamber versus H,S concentration
(Zarenezhad, 2011).

around 820 °C while other heavy aromatic hydrocarbons begin to
dissociate and burn at around 940 °C (Schobel et al., 2001).

When BTEX is not sufficiently destructed in the reaction furnace,
it deposits on various Claus catalyst beds (especially the first bed)
resulting rapid fouling of all catalysts which will lead to short
lifespan of catalyst and more frequent turnarounds. Incomplete
destruction of such aromatic compounds can result in contamina-
tion of the final elemental sulfur product (production of dark
yellowish sulfur) and deactivation of the catalysts. Several studies
have shown that catalyst coking has been tied directly to aromatic
content of acid gas stream with toluene being the primary
contributor (Zarenezhad and Hosseinpour, 2008).

As it was emphasized before, a minimum reaction furnace
temperature of 1050 ‘C (1920 °F) is recommended for adequate
destruction of BTEX. The split design scheme (where part of the
acid gas is bypassed around the reaction furnace) may not be also
effective due to excessive fouling of the first convertor catalyst by
the slipped BTEX in the bypassed stream.

Evidently, increasing the H,S concentration of SRU feed stream
via AGE can effectively increase reaction furnace temperature and
will lead to proper destruction of BTEX components. Various mix-
tures of sulfolane and MDEA solutions (sulfinol solvent) will be
considered in this research and their performances of the enrich-
ment efficiency of the Khangiran refinery GTU will be investigated.
Effective AGE increases the H,S content of SRU feed stream and
alleviates SRU existing complications such as flame temperature
and BTEX issues.

2.1. Characteristics of sulfinol solvent

Sulfinol is a composite solvent which is initially introduced by
Shell company in 1963. It is a mixture of Sulfolane (C4HgO,S),
water and diisopropanolamine (DIPA, CgHi5NO;) or MDEA
known as Sulfinol-D or Sulfinol-M, respectively. Unlike alkanol-
amines, sulfinol physically bonds with the above species and
enhances the removal of hydrogen sulfide, carbon dioxide,
carbonyl sulfide, mercaptans and organic sulfur components
from natural gas.

Proper heat economy, small solvent losses because of the low
vapor pressure of the sulfolane, relatively poor hydrocarbon
selectivity and reduction of corrosion rate are other advantages of
these hybrid solvents (Mokhatab and Poe, 2012). Thermodynamic
modeling of aqueous sulfolane solutions (in the absence of alka-
nolamines) for prediction of their thermal and physical properties
are well received remarkable attention in numerous studies (Zong
and Chen, 2011; Vahidi and Moshtari, 2013; Shokouhi et al., 2013).

Optimizations of sulfolane concentration in the proposed
sulfinol-M solvent instead of MDEA solvent in the Khangiran

natural gas refinery treating unit via artificial neural network is the
essence of this work.

3. A brief review of artificial neural networks

Artificial Neural Networks (ANNs) are multifaceted tools that
can be successfully used to model and predict various complex and
highly non-linear processes. ANNs have been widely applied in
many fields such as process modeling, control, optimization, esti-
mation and forecasting (Haykin, 1999). Single Perceptron concept is
initially presented by Rosenblatt in 1958 and widely used in last 55
years in multilayer Perceptron (MLP) networks to successfully
model highly non-linear systems. Lipmann presented the percep-
tron convergence algorithm in 1987 (Haykin, 1999). In the
following sections, a brief description of the un-stabilized ANNs
and two in-house stabilized MLP and Regularization networks have
been presented. To the best of our knowledge, the stabilized MLP
network has not been addressed previously.

3.1. Our modified un-stabilized MLP network

Feed-forward multilayer Perceptrons (MLP) networks were able
to successfully map a set of multidimensional input data
(x;; i=1,---,N) onto a set of appropriate multidimensional out-
puts(y; i=1,---,N). The MLP configuration has been extensively
used for static regression applications and it consists of one input
layer, one or more hidden layer(s) and one output layer. MLP
network utilizes a supervised learning technique called back
propagation for training the network (Haykin, 1999). All input
variables (x; ,---,Xp) are initially projected into a scalar for the jth
neuron (j=1,---;M) neuron by using a set of linear weights
(wj, i=1,---,p). Ultimately, a proper nonlinear activation function
(¢), such as such as threshold, piecewise-linear, sigmoid and hy-
perbolic tangent, performs a pre-defined mathematical operation
over its argument and provides the model predictions (y).

The MLP network is often trained by adapting the synaptic
weights using a back-propagation technique or any other optimi-
zation procedure. During the training phase, network output(s) is
(are) compared with the desired target value(s). The obtained sum
of squared error(s) between these two values is used to adapt the
weights. This rate of adaptation may be controlled by a learning
rate parameter. A high learning rate will make the network adapt
its weights quickly, but will make it potentially unstable
(Shahsavand, 2000). Setting the learning rate to zero, will make the
network keep its weights constant. The steepest descent optimi-
zation technique with variable learning rate (step length) param-
eters is used in this work. As shown in Fig. 2, additional linear
weights («q, ..., ap) are used in our modified MLP network for two
reason: 1) to accelerate the network convergence for a single hid-
den layer MLP network, 2) to provide a vehicle for mimicking large
values outputs with limited number of hidden layer neurons.

Fig. 2 also depicts that the optimal values of linear parameters
(«) for conventional MLP network should be updated after each
iteration of back-propagation method using the following update
rule:

(@Tcp)g =Ty 1)

Where @;; = ¢-(z;j), i=1,---,Nandj=1,---,M and y is the N x 1
vector of measured values. The parameters N and M represent the
number of training exemplars and the number of hidden layer
neurons, respectively. All inputs of training data should be scaled
between —1 and 1 to assure that the original S shape of sigmoid
function is preserved for all cases.
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Fig. 2. Schematic representation of a single hidden layer MLP network for MIMO problem.

3.2. Novel stabilized MLP network

In most practical engineering applications, the number of
available measurements (N) is limited and all measurements are
inevitably contaminated with measurement error (noise). On the
other hand, the neural network model should have large number of
neurons (M) to obtain sufficient degrees of freedom and have high
flexibility to reconstruct the data points. Consequently, the
response of such networks will eventually lead to oscillatory and
highly degenerate solution which is due to ill conditioning or sin-
gularity of the related matrices. In order to eliminate or alleviate
such oscillatory phenomena, a stabilization technique is required to
filter out the noise and capture the true underlying trend
embedded in the noisy data.

As mentioned above, the M x M matrix ®'® will be severely
ill condition or even singular when M >> N and equation (1) will
have large number of highly degenerate and oscillatory solutions.
By resorting to singular value decomposition (SVD) technique
will help to select a relatively optimum solution, but SVD may
lead to a large number of zero singular values which results in
losing most of the information content of matrix ® (Shahsavand,
2000).

In order to dispel large oscillations in the elements of the
solution vector (a), the so called ridge regression can be used. To
minimize the oscillations, the following constrained optimiza-
tion should be introduced (Shahsavand and Pourafshari Chenar,
2007).

Minimize J(a) =

3 (7(s) )" 32 (222)

adla<y

N\'—‘

Subject to :
(2)

When v is any arbitrary constant. By resorting to Lagrangian
multiplier concept, the constraint can be combined into original
merit function as the following penalized sum of square error
(PSSE) or penalized least square (PLS) objective function:

T
Minimize J (a) = %(@g — }_/) (@g — X) + %/\(QTQ -7v)

(3)

Evidently extremely large values of the so called Lagrangian
multiplier (4) or ridge regression parameter pulls away the over-
smoothen final solution from the original data and reinforces the a
priori information, while very tiny A's ignore the a priori assumption

and provide the final (oscillatory) solution such that it is totally
compatible with original (noisy) data. Differentiating equation (3)
with respect to model parameter («) and simplifying the corre-
sponding equations leads to:

(o704 20)a= Ty (4)

Where I is an M x M identity matrix. Evidently, the optimal value
of ridge regression parameter is case dependent and a reliable
automatic method should be devised to provide the optimal value
of A* for the problem at hand. The leave one out cross validation
technique (LOOCV) is frequently used for automatic selection of
optimal ridge regression level. A detailed comparison of LOOCV
with other techniques such as Generalized cross validation (GCV),
L-curve, modified L-curve, U curve and modified U-curve method
have been presented in our recent article (Niknam Shahrak et al.,
2013).

The above so-called “Stabilized MLP network” leads to
equation (4) which seems very similar to the ultimate result of
zero order (Thikonov) regularization theory. We should
emphasize here that these two concepts are entirely different
and should not be mixed with each other. In stabilization, a
penalty function is added to the original least square merit
function to reduce the oscillations in linear weights, while in
(Thikonov) regularization theory one will add a penalty term
based on its a priori information about the shape (or distribu-
tion) of the actual solution.

3.2.1. Automatic selection of ridge regression parameter

Golub and Van-loan derived the following equation for
computation of leave one out cross validation criteria (Golub and
Van Loan, 1996):

2
N [elr—Hy
LOOCV(2) AJL4444447 5
=5 22 [efi— e ©)
Where H(3) = ®(@T® + AI)~1@T is the N x N smoother matrix and

ex is a column vector which all of its elements are zero except the
kth element which is unity.

The inversion of M x M matrix(®T® + Al)~! at each value of A
requires an order of M> mathematical operations which can be
extremely time demanding, especially for large data networks. This
gigantic amount of computation can be avoided by resorting to the
SVD technique as summarized below:
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o=USVT; peRNM_yepN=N, SeéRNXM(diagonal>, VerMM
U and V are orthonormal UTU=UUT =1y & VTV=vVT=Iy,

a%/(a%+l) 0 0
Hoy—u| O Bf(dr2) 0 U
b 0 J%/(O"ﬁ+l)

(6)

Whereg;; i=1,---,N are the singular values of matrix ®(or square
roots of eigenvalues of matrix(®' ®). Using the above approach, the
number of mathematical operations required for the entire LOOCV
criteria calculations reduces from nx M3 order of magnitude to nx
M order of magnitude, where n is the number of trial values for
ridge regression parameter (A). Fig. 3 illustrates the entire training
algorithm for novel stabilized MLP network when LOOCV is used
for automatic selection of optimal ridge regression parameter and
SVD technique is employed to promote the speed of computations
(Shahsavand, 2000).

3.3. A brief review of regularization networks

Learning an input—output mapping from a set of data in can be
considered as a multi-dimensional function approximation tool.
Many neural networks have been constructed to perform this issue
by solving hyper-surface reconstruction problem. This form of
learning is closely related to classical approximation techniques
such as regularization theory (Poggio and Girosi, 1990a).

The solution of multivariate regularization theory leads to a
three layer networks called Regularization networks (Poggio and
Girosi, 1990a). Regularization Networks is proved to be a strong
technique for solving certain problems of learning, in particular the
regression problem of approximating a multivariate function from
sparse data. In other words, Regularization network is a method for
solving ill-posed function interpolation problems. Radial Basis

Function (RBF) is a special case of such network (Girosi et al., 1995).
An obvious property of this technique is that it can be implemented
by a simple network with just one layer of hidden neuron. Learning
algorithm, which implements a set of approximating functions
f(x,w), where w is a set of parameters of an arbitrary nature. Given a
noisy function y(x), the goal is to find function f(x, wg) that mini-
mizes (overall possible parametersw) the functional:

R(w.2) = ly() —f(x.0)|” + 2 2[f (x, )] (7)

Here Q[f(x, )] is a non-negative penalty term which penalizes
non-smooth function f(x, »), and 2 is the regularization parameter
(Cherkassky and Ma, 2009). Poggio and Girosi (1990b) showed that
the following equation minimizes the merit function of. R(w, 1)

(G+AN W, =Y (8)
where G is the N x N symmetric Green's matrix, A the regularization
parameter, Iy is the N x N identity matrix,w, is the N x 1 linear
synaptic weight vector and y is the real response values corre-
sponding to input vector x; =1,2,---,N. Fig. 4 illustrates the
equivalent network (known as the Regularization network (RN))
for the above equation with N being the number of both training
exemplars and neurons of RN. These neurons (or centers) should be
positioned exactly at the locations of training exemplars.

The network consists of a single hidden layer with N neurons
and the activation function of the jth hidden neuron is a Green's
function G(x, x;) centered at a particular data point x;. The influence
of the regularization parameter A is embedded in the unknown
synaptic weights w;s.

The performance of Regularization network strongly depends
on the appropriate choice of the isotropic spread and the proper
level of regularization. Small values of 2 lead to oscillatory solutions
due to fitting of the noise, while excessively large levels of regu-
larization parameter will over-smooth the Regularization network
predictions. Same as our novel stabilized MLP, the optimal value of
ridge regression parameter is case dependent and as before, the
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]
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Fig. 3. Block diagram representation of training algorithm for a stabilized MLP network.
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Fig. 4. Schematic representation of Regularization network with single hidden layer.

LOOCV criterion (among many others) can be used to provide the
optimal value of A* for the problem at hand. Our fully optimized in-
house training algorithm for the isotropic Regularization network
has been discussed in sufficient detail elsewhere (Shahsavand and
Ahmadpour, 2005; Shahsavand and Pourafshari Chenar, 2007,
Shahsavand, 2009). To avoid excessive degrees of freedom (flexi-
bility) of The RN, all isotropic spreads of N neurons are assumed to
be the same in our proposed algorithm.

4. Simulation case study: GTU of Khangiran natural gas
refinery

Khangiran natural gas refinery which is located in the north
eastern of Iran was founded in late 1970s and commissioned in
early 80s. It was expanded in several steps in 2000 and 2004
(Shahsavand and Garmroodi Asil, 2010; Moaseri et al., 2013). At the
present, it consists of five sour gas treating units (GTUs) with
maximum total capacity of around 50MMSCMD, four sulfur re-
covery units with maximum total sulfur production capacity of
2600 tons per day and two topping plants with each receiving 183.6
CMD (1155 bbl/day) sweet condensate (Moaseri et al., 2013).

All sweetening units were designed using 34wt% DEA in water
as the solvent. Since 2006, 47wt% MDEA solution in water was
replaced for DEA solution, to decrease amine circulation rate and
hence save energy in regenerator reboilers and provide extra
sweetening capacity for sour gas treatment. Table 1 presents the
wet sour gas analysis for the contactor feed of the Khangiran GTUs
(Shahsavand and Garmroodi Asil, 2010).

Each GTU consists of two parallel trains with two distinct ab-
sorbers and two strippers. Therefore, the entire refinery has 10
contactors (with 2.895 m inside diameter (ID), 21 m height (H) and
20 valve trays (T)) and 10 regenerators (with ID = 3.8 m, H = 24 m,
T = 24). Although, both trains of each GTU share the same amine
and gas flash drums, however, it is always assumed that each train
performs independently and there is no interaction between two
adjacent parallel contactors or strippers. The rich amine stream
enters regenerator over the fourth tray at around 99 °C
(Shahsavand and Garmroodi Asil, 2010; Shahsavand et al., 2011).

Table 1

Wet sour gas analysis (mole%) of Khangiran refinery GTUs feed.
Components C; C; GC iC4 nCy iCs nCs H,0 (Vap.)
mole% 88.57 0.53 0.06 0.01 0.03 0.01 0.014 0.38
Component C§(MW = 156) H,S N, CO, CgHg C;Hg CgHjo
mole% 0.03 3.57 0.37 6.43 0.015 0.005 0.002

The acid gas leaving Khangiran refinery's GTU contains about
35% hydrogen sulfide. Such low quality SRU feed stream requires
split flow with pre-heat scheme for 500 tons per day production of
elemental sulfur by each sulfur recovery unit. In the absence of
sufficient pre-heat, serious operational problems will be encoun-
tered, such as combustion chamber low flame temperature (around
860 ‘C), unburned BTEX components, low quality and impure
produced elemental sulfur with dark yellowish color. Low acid gas
quality combined with the premature catalyst deactivation rapidly
decreases the overall efficiency of the entire Claus process from the
standard value of 97% to less than 90%.

The entire Khangiran GTU process was initially simulated using
Aspen HYSYS (version 8.3') simulator using the actual operating
conditions which has been described in full detail in our previous
article (Shahsavand and Garmroodi Asil, 2010). The simulation is
initially calibrated by validation with real plant data. The most
important operating conditions are summarized in Table 2. To
ensure the reliability of the recruited software, prior to simulation
of Khangiran GTU using sulfionl solvent to, the accuracy of acid gas
property package for prediction of equilibrium data of Sulfolane
plus MDEA mixture were compared with available experimental
data borrowed from literature (Macgregor and Mather, 1991;
Murrieta-Guevara et al,, 1994; Zong and Chen, 2011). The pre-
dicted values for equilibrium constants via Aspen-HYSYS software
had close agreement with the experimental data at corresponding
operating conditions.

Fig. 5 shows the simplified schematic diagram of Khangiran gas
refinery showing all output parameters of artificial neural network
(in italic fonts). Both our novel stabilized MLP (SMLP) and in-house
RN are used to investigate the effects of ANN inputs (sulfolane and
MDEA weight percent in the lean amine solution) on actual oper-
ational variables such as benzene, toluene and ethylbenzene (BTE)
escape factors®, H,S mole fraction and total moles of SRU feed,
reboiler temperature, condenser and reboiler duties, molar flow of
H,S to flare and mole fraction of CO; in sweet gas.

Fig. 6 maps the entire input domain of the ANN and illustrates
37 concentration pairs used as training exemplars for MDEA and
sulfolane in the range of (25—47 wt%) and (0—37 wt%), respectively.
The Aspen HYSYS V.8.3 software was used to compute the values of
previously mentioned 10 output variables for training exemplar
(run). All training data set are presented in Appendix 1.

1 Aspen HYSYS V.8.3 contains a special acid gas property package which supports
various Sulfolane-M solutions.

2 Defined as: (moles of BTE escaping from regenerator to SRU/total BTE moles
entering GTU) x 100.
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Table 2
Some operational conditions of Khangiran GTUs.
Stream Parameter
Temperature Pressure Flow H,S CO,
(°C) (psia) (kmole/h) (mol%) (mol%)

Sour gas (To contactor) 52 1050 7319 3.57 6.43

Treated Gas 36 1050 6574 0 0.66

Lean Amine 57 1050 18,650 0.03 0.01
(To Contactor)

Rich Amine 72 1050 19,380 1.35 221
(From Contactor)

Lean Amine 57 90 70 0.03 0.01
(To Flash Drum)

Rich Amine 929 920 19,445 135 2.19
(To Regenerator )

Lean Amine 121 27 18,670 0.03 0.01
(From Regenerator)

Acid Gas 69 90 28.5 0.04 6.81
(From Flash Drum)

Acid Gas 55 27 755 3348 56.05

(From Regenerator)

5. ANNs predictions

The training data of appendix 1 is used to train several artificial
neural networks (ANNs) including conventional MATLAB neural
network toolbox back-propagation and exact fit networks along
with two un-stabilized and two fully optimized (stabilized) MLP
and RN networks. After training, the trained network can be used
for predicting outputs for one or some of the training data (recall)
or computing outputs for some exemplars outside the training set
but inside the training domain (generalization).

For all cases, the numbers of hidden layer neurons were selected
to be equal to the number of training exemplars to ensure sufficient
degrees of freedom for all scenarios. Both stabilization and regu-
larization techniques will kick-in (if necessary) and will prevent the
over-fitting phenomena.

Fig. 7 presents typical recall performances of all above six net-
works for benzene escape factor (%) (out of nine other recall per-
formances). As can be seen, the un-stabilized networks with 1 =0
(especially our two un-stabilized MLP and RN networks) performs
much better than the stabilized networks. Somebody unfamiliar
with the over-fitting concept may take proper recall performance
as a reliable basis to accept all predictions of such network. Fig. 8
which shows the corresponding generalization performances over
100 x 100 mesh, clearly illustrate that such naive presumption can
lead to catastrophic results when the trained network is used for
generalization purposes.

It should be emphasized that un-regularized (or un-stabilized)
networks tend to follow (fit) the noise (or measurement errors
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Fig. 6. Sulfolane and MDEA input data for training our in—house optimal RN and SMLP.

associated with real data) and hence provide better recall perfor-
mance but lead to severely oscillatory generalization performances
as shown in Fig. 8 (note the vertical axis values).

The optimum level of regularization eliminates the ill-
conditioning problem and leads to a more reasonable generaliza-
tion performance. It is quite clear that LOOCV criterion is relatively
successful to stabilize the generalization performance. Both Regu-
larization network and stabilized MLP provide almost similar
generalization performance over the entire domain. From now on,
only the generalization performances of these two networks will be
presented.

It should be emphasized that the standard neural network
toolbox of MATLAB software has not equipped with any stabiliza-
tion or noise filtering facility. To make sure that comparison is fair
and nothing is missed, the same optimal parameters which have
been computed in our in-house optimized networks are exactly
substituted in the MATLAB toolbox networks and the most optimal
learning procedures available in MATLAB were used. As mentioned
earlier, the so called “exact fit' network refers to a network which
has same number of neurons as the training data, which is
compatible with Regularization network. Otherwise, the so called
'fewer neuron' network should be used. No early-stopping training
was used in the case of “back-propagation trained” networks.

According to both fully optimized RN and stabilized MLP
network of Fig. 8, sulfolane and MDEA concentrations of (0,0.25)
and (0.37, 0.47) can be considered as the optimal choices based on
minimization of benzene escape factor entering SRU, which only
permits 20% of the total inlet benzene entering GTU passing to the
SRU feed stream. Evidently, the first point (i.e. 0 & 0.25) seems
much more attractive from both economical and operational view
points. However, other considerations (as will be discussed in the
following sections) will indicate that the other optimal point will be
more appropriate for sustainable production.
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Fig. 5. Simplified schematic diagram of Khangiran gas refinery unit.
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Fig. 9 depicts the generalization performances of toluene escape
factor versus MDEA and sulfolane (wt%) variation in lean amine via
Regularization and stabilized MLP networks. As before, the gener-
alization performances of both networks are practically the same
and no distinct difference can be distinguished.

Both generalization performances indicate that at the global
optimum point of (0.37, 0.47), almost the entire toluene content of
SRU feed stream has been eliminated. Evidently, the other subop-
timal point of (0, 0.25) will lead to the relatively high concentra-
tions of toluene.

In the same manner, Fig. 10 shows that the optimal point of
(0.37, 0.47) provides minimum Ethylbenzene escape factor and
practically removes all Ethylbenzene from GTU feed stream. In light
of the above results, a mixture of 37 wt¥% sulfolane, 47 wt% MDEA
and 16 wt% H,0 provides minimum escape factors for all BTE
components. Small fluctuations observed in predictions of opti-
mally tuned RN for Ethylbenzene escape factor indicates that
LOOCYV criterion relatively fails to totally filter the noise embedded
in the training exemplars. Other techniques such as modified U
curve method can lead to more stable hyper-surfaces.

Fig. 11 depicts two similar generalization performances for the
total molar flow rates (kgmole/hr) entering SRU versus MDEA and
sulfolane (wt%) variation in lean amine solution. Evidently, lower
molar flow rates are more desirable since they indicate higher levels
of acid gas enrichments due to efficient CO, rejection. Both
Figures indicate that as before, the optimal point of (0.37, 0.47)
provides minimum molar flow rate of 415 kgmole/hr for the SRU feed
stream. About 43% drop in the total molar flow rate of SRU inlet
stream (compared to 725 kgmole/hr at (0 & 0.47)) will dramatically
reduce the size of a conventional Claus unit in the design stage or
significantly increase the plant throughput at an existing SRU facility.

Fig. 12 illustrates two similar generalization performances for
hydrogen sulfide mole fractions of SRU feed streams versus MDEA
and sulfolane concentrations in lean amine solutions. Fig. 12 clearly
shows that the H,S mole percent in SRU feed stream increases more

rapidly when sulfolane wt% increases. In an original GTU with no
AGE (which uses a solvent containing 47 wt% MDEA and 52 wt%
H,0), the SRU feed stream contains around 34 mol % H,S while, by
using a solvent containing 37 wt% sulfolane, 47 wt% MDEA and 16%
H,O0, the H,S content of acid gas stream entering SRU will raise to
more than 57 mol % which indicates around 62% H5S enrichment. It
is anticipated that such high amount of H,S mole fraction in SRU
inlet stream, which is due to large slippage (rejection) of CO, and
other impurities such as BTE, can severely increase the furnace
temperature of Claus unit and alleviate the catalytic deactivation
while increasing the sulfur recovery efficiency.

Two 3D plots shown in top of Fig. 13 depict the generalization
performances of the optimally regularized and stabilized networks
for reboiler temperature of GTU regenerator column versus MDEA
and sulfolane concentrations. It is quite clear that LOOCV criterion
is relatively successful to stabilize the generalization performance
of the stabilized MLP network, however, severe oscillations still
remains in the generalization performance of the regularization
network. Evidently, LOOCV criterion fails to provide the optimal
level of regularization parameter for the regularization network.
Hence, it can't successfully filter out the noise and extract the true
underlying trend embedded in the noisy data set. Our previous
work (Niknam Shahrak et al., 2013) summarized various techniques
(such as visual, L-curve, modified L-curve, U-curve and modified U-
curve methods) for automatic selection of the optimum ridge
regression or regularization parameter.

In the absence of a reliable method for successful estimation of
the optimal regularization level, the computed values for the
optimal spreads has no practical meaning and both the optimal
values of the isotropic spread and the regularization level should be
recomputed using one the above techniques. The bottom-left 3D
plot of Fig. 13 clearly shows that visual optimization of regulariza-
tion level dramatically fails when improper value is selected for the
Gaussian isotropic spread (note the value of vertical axis). On the
other hand, The bottom-right 3D plot of Fig. 13 illustrates that visual
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optimization of regularization level successfully captures the true
underlying trend embedded in the training data when proper value
of (¢ = 1.0) is selected for the Gaussian isotropic spread.

Itis proved that maximum recommended skin temperature (tube
wall temperature) for MDEA is 178 °C (350 F) and the temperature
when MDEA degradation starts is advised as 182 °C (360 F) (Chakma
and Meisen, 1997; Reza and Trejo, 2006). But lots of parameter can
affect the degradation process and must be taken to account. Amine
solutions are prematurely degraded by reaction with CO,, oxygen,
organic sulfur compounds, and other gas impurities to form heat-
stable salts and amine degradation products. Most of scientific
literature agree that MDEA thermal degradation temperature start at
127 °C (260 °F) in presence of HoS and CO5. In other words, to achieve
reliable and steady operating system, it is recommended that the
maximum amine temperature should be kept below 127 °C (260 °F).

Both right 3D plots of Fig. 13 indicate that the reboiler temper-
ature essentially remains independent of MDEA concentration,
especially for extremely low sulfolane concentrations. The previ-
ously found optimal solution containing 37 wt% sulfolane and 47 wt
% MDEA still leads to reboiler temperature of around 129 °C which
can cause excessive degradation of MDEA. To ensure more sus-
tainable operation, the sulfinol solution of 37 wt% sulfolane and
45 wt% MDEA may be recommended.

Figs. 14 and 15 shows the similar generalization performances of
fully optimized RN and SMLP networks for both condenser and
reboiler duties (kcal/hr) of the regenerator column versus MDEA

and sulfolane (wt%) concentrations, respectively. As before,
although both ANNs predictions predict similar trends, the gener-
alization performances of the Regularization network for the
reboiler duty shows slight oscillations. Increasing the sulfolane and
MDEA concentrations in the lean amine solution decrease both
condenser and reboiler duties. Figs. 14 and 15 clearly demonstrate
that using sulfinol solvent with optimum concentration of 37 wt%
sulfolane and 47 wt% MDEA (the remaining 16 wt% is water) can
easily lead to 70% and 35% energy savings in the condenser and
reboiler duties, respectively compared to original GTU solvent (47%
MDEA, 53% water). A more close examination of the above figures
shows that approximately the same amount of energy savings can
be accomplished by using the sulfinol solution containing 37 wt%
sulfolane and 45 wt% MDEA (the remaining 18 wt% is water).

Fig. 16 shows the completely similar generalization perfor-
mances of RN and SMLP for prediction of hydrogen sulfide molar
flow (kgmole/hr) slipped to the atmosphere from the overhead of
packed bed column. Due to strict environmental legislations, H,S
emission should not be exceeded the threshold limit of 3 mol % of
hydrogen sulfide entering GTU process. Once again, the previously
determined optimal concentrations of 37 wt% sulfolane and 45 wt%
MDEA will practically lead to insignificant values of HyS slippage
and almost just pure CO, will be slipped from the overhead of
packed bed column to atmosphere.

Fig. 17 which shows two nearly equal generalization perfor-
mances of both fully optimized ANNs for carbon dioxide mole
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fraction in sweet gas stream (mole %) leaving the contactor.
Conventionally, the carbon dioxide content of the sweet gas
entering the trunk line should be around 2—5 mol percent (Kidnay
and Parrish, 2006; Mokhatab and Poe, 2012). As it is anticipated,
high concentrations of sulfolane will reject the carbon dioxide from
acid gas stream and increases the mole fraction of CO; inside
the previously determined
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several obtained results via stabilized MLP network and fully
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Table 3

Comparison of neural networks predictions and Aspen-HYSYS simulations at optimal concentration of Sulfinol-M solution. (37 wt% Sulfolane, 45 wt% MDEA).

Benzene escape  Toluene escape Ethylbenzene SRU molar flow H,S mole % in Reboiler Condenser  Reboiler H,S molar CO, Mole % in
factor% factor % escape kgmole/hr SRU feed % temp. 'C  duty (*10%) duty (*107) flow to flare sweet gas mol%
factor % kcal/hr kcal/hr kgmole/hr
NN 22 3 4 415 57 129 1.3 x 108 1.18 x 107 03 4.5
AH 213 2.3 5.0 421.3 56.4 128.6 127 x 106 1.23 x 107 0.26 44
%Er 33 30 25 1.5 1 03 2.4 4 15 2

several locations of the GTU process) at optimal concentration of
Sulfinol-M solution (37 wt% Sulfolane, 45 wt% MDEA). The com-
parison shows that both neural networks (stabilized MLP and fully
optimized RN) can successfully predict the output parameters
especially for sufficiently large parameters (outputs).

6. Conclusion

Selective removal of H,S is essential for production of H,S
enriched acid gas streams which provides better-quality Claus
process feed stream for attaining proper sulfur recovery efficiency.
Various mixtures of sulfolane and MDEA solutions (Sulfinol sol-
vent) were used to simulate the conventional GTU process of
Khangiran natural gas refinery via Aspen-HYSYS V.8.3 and inves-
tigated their performances for the H,S enrichment efficiency. A
novel stabilized MLP artificial neural network is introduced for the
first time and its recall and generalization performances were
compared with our previously developed in-house Regularization
network and two other networks borrowed from conventional
MATLAB neural network toolbox (back-propagation and exact fit
networks). It was clearly shown that two fully optimized (stabi-
lized) MLP and RN networks provided more reliable interpolation

hyper-surfaces for ten outputs in order to find optimal sulfolane
concentration in the sulfinol-M solvent.

The outstanding generalization performance of the RN network
is the result of its strong theoretical backbone due to the powerful
multivariate regularization theory coupled with the efficient tech-
nique of leave one out cross validation (CV) criterion. Also, strong
noise filtering capabilities of stabilization techniques made our
novel stabilized MLP network to provide a distinguished perfor-
mance. The optimal concentrations of 37 wt% sulfolane and 45 wt%
MDEA was selected for the GTU process of Khangiran refinery
which can successfully eliminate the entire toluene and ethyl-
benzene from the SRU feed stream while removing 80% of benzene
entering the GTU process. The mole fraction of H,S in the SRU feed
stream was also increased from 33.48 mol % to over 57 mol % when
using the optimal sulfinol-M aqueous solution.
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Nomenclature: A* optimum ridge regression or optimal regularization
parameter

Symbols o singular values

X input data vector c isotropic spread

y output data vector c* optimum value of ¢

N number of input data

w synaptic weights Abbreviations

p dimensions of input data AGE acid gas enrichment

M number of neurons ANNs artificial neural networks

z projected input variable BTE benzene — toluene — ethyl benzene

I identity matrix BTEX benzene — toluene — ethyl benzene — xylene

H smoother matrix CMD cubic meter per day

e zero column vector DIPA diisopropanol amine

8} orthonormal matrix GA genetic algorithm

\% orthonormal matrix GCV generalized cross validation

S diagonal matrix GTU gas treatment unit

G green matrix LOOCV leave one out cross validation

MDEA methyl diethanol amine
Creel MLP multilayer perceptrons
0 reeks threshold MMSCMD million standard cubic meter per day
i.es t(') functi MW molecular weight

@ ?C tvation E[tlc ton RN regularization Network

‘; .lneatr Wetlg. S SMLP  stabilized multilayer perceptrons

N 'npu ¢ Ifna rtlx SRU sulfur recovery unit

N {perl unc ;lotn SVD singular value decomposition

& Inear weights SVM support vector machine

v constant

A Lagrangian multiplier ridge regression parameter .

grangian P ge reg P Appendix
A regularization parameter
MDEA conc. Sulfolane Benzene Toluene escape Ethylbenzene SRU molar H,S mole % Reboiler Condensor Reboiler = H,S molar CO, mole %
wt% conc. wt% escape factor% factor% escape factor% flow kgmole/hr in SRU feed mol% temp. ‘C duty (*10%) duty (*107) flow to flare in sweet
kcal/hr kcal/hr kgmole/hr  gas mol%

0.47 0 59.5 98.8 100 729 035 1209  3.62 1.68 0.43 0.009
0.47 0.1 89.5 99.9 100 687.5 0.36 121.9 319 1.52 0.4 0.0157
0.47 0.2 99.9 50.9 29.2 591.1 0.42 1236 250 1.35 0.2 0.0292
0.47 0.3 54.1 26.8 134 481.8 0.52 1267 1.78 1.23 0.15 0.0437
0.47 0.32 48.0 233 113 464.9 0.54 127.7  1.64 1.22 0.19 0.044
0.47 0.37 39.3 3.3 6.7 4132 0.57 1283 121 1.19 0.32 0.045
0.44 0 52.3 93.8 98.9 730.7 035 120.7  3.73 1.70 0.56 0.0093
0.44 0.1 77.7 99.9 100 697 0.36 1216 3.34 1.55 0.6 0.0142
0.44 0.2 99.8 94.0 38.7 616.5 0.41 1229 2.72 1.38 0.4 0.0257
0.44 0.3 64.6 32.8 17.2 507.1 0.50 1254  2.00 124 0.24 0.0405
0.44 0.32 57.4 28.9 14.7 489.2 0.51 1262  1.87 1.22 0.25 0.0429
0.4 0 44.1 82.5 88.6 730.7 035 1203  3.86 1.71 0.84 0.0091
0.4 0.1 64.7 99.7 100 704.6 0.36 1211 352 1.58 0.94 0.0129
0.4 0.2 96.0 99.5 81.1 640.1 0.39 1222 296 1.42 0.76 0.0223
0.4 0.3 99.9 419 23.7 541.9 0.46 1241 228 1.27 0.49 0.036
0.4 035 60.5 31.1 16.1 493.6 0.51 1257 195 1.21 0.46 0.0424
035 0 35.8 68.4 70.7 728.2 035 120 424 1.73 1.45 0.0092
035 0.1 51.9 94.2 99.1 704.8 0.36 1207  3.69 1.60 1.6 0.0124
0.35 0.2 77.7 99.8 98.9 654.2 038 1216 321 1.46 1.43 0.0199
035 0.25 94.6 97.4 51.3 617.4 0.41 1222 291 1.38 1.23 0.0253
035 0.3 99.8 60.5 33.8 574.8 0.44 123 2.60 1.30 1.04 0.0314
0.35 0.35 99.9 421 23.8 529 0.48 124 228 1.24 0.9 0.0377
035 0.38 88.7 355 19.0 503.5 0.50 1249 210 1.20 0.87 0.0412
0.3 0 29.1 56.1 55.1 716.6 035 1198 421 1.70 2.75 0.0101
0.3 0.1 41.7 80.0 86.4 693.1 0.36 1203  3.80 1.60 2.77 0.0133
03 0.2 61.8 99.4 99.9 651.8 0.39 1211 337 1.48 2.46 0.0196
0.3 0.3 93.6 83.8 46.0 589.3 0.43 1221 2.83 1.34 1.96 0.0289
0.3 035 99.7 55.1 33.6 549.8 0.46 1229 254 1.27 1.76 0.0345
03 0.38 99.9 46.7 27.5 528.2 0.48 1235 237 1.23 1.61 0.0376
0.25 0 23.5 45.0 419 678.8 0.37 1195  6.22 1.86 5.29 0.014
0.25 0.1 33.5 65.1 68.0 657.6 0.38 1199  3.83 1.57 4.6 0.0174
0.25 0.2 49.4 91.9 98.4 626.2 0.40 1206  3.40 1.47 4.05 0.0223
0.25 0.25 60.5 99.1 99.7 603 0.42 1211 3.7 1.41 3.68 0.0259
0.25 0.3 75.1 95.5 60.5 579.7 0.43 1215 295 1.35 3.37 0.0294
0.25 035 92.7 68.6 45.0 551.8 0.46 1221 271 1.29 3.07 0.0336

0.25 0.38 98.7 58.7 37.6 533.2 0.47 1225 2.56 1.25 2.92 0.0363
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