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Dynamics and vibration of a 3-PSP parallel
robot with flexible moving platform

Mahdi Sharifnia and Alireza Akbarzadeh

Abstract

In this research, first an analytical model is presented for dynamic and vibration analysis of a 3-PSP parallel robot with a

flexible moving platform. Next, the presented analytical model is solved using an approximate analytical method. The

moving platform is assumed to be made of three Euler-Bernoulli beams joined together to form a star. Each of the three

beams of the star slides through a passive prismatic joint. Then, three-dimensional vibration analysis of the flexible

moving platform, star, with three passive prismatic joints is the main subject of the present research. Only vibration

during free motion is considered. Therefore, it is assumed that only inertia forces of the star are the main source of its

vibration. First, direct kinematics is used for acceleration analysis of the rigid robot and inertia forces are obtained. For

dynamic modeling, the passive prismatic joints and junction point of the three beams are modeled using a new set of

geometric constraints. Additionally, a previously developed constrained motion equation for a planar Euler-Bernoulli

beam having a prismatic joint is further developed for the three beams of the star. Next, an approximate analytical

solution method, called the ‘‘constrained assumed modes method’’, is used for inverse dynamics and vibration analysis of

the robot. Furthermore, the developed model can be used for direct dynamics analysis of the robot. Finally, several input

trajectories and two different groups of mode shapes are considered to investigate the model efficiency. The results of

the presented model are compared with the results of a commercial finite element method software.
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1. Introduction

This research involves two main research areas such as
flexible multi-body dynamics and parallel manipula-
tors. High speed and accuracy together with high stiff-
ness to weight ratio are reasons why parallel robots
are an important part of industrial applications.
Microsurgery, space robotics, maintenance of nuclear
plants and high speed pick and place tasks represent
some of the applications commonly used by the parallel
robots. On the other hand, decreasing robot weight
enables additional potential applications. However,
parallel robots constructed with lightweight materials
can result in undesirable vibration. In these cases,
selected modeling methods in flexible multi-body
dynamics may be used to obtain a vibrational response.
Parallel robots commonly have many passive joints
which increase the number of kinematic constraints.
Therefore, constrained flexible multi-body dynamics is
a more specific area that can be used in the analysis of
flexible parallel robots. In this research, we present the

vibration analysis of a spatial parallel robot called
3-PSP where its flexible moving platform has three pas-
sive prismatic joints.

Flexible multi-body dynamics have been studied by
many researchers. Common global methods to describe
flexibility of the structures are lumped parameter mod-
eling, finite element method (FEM) and assumed mode
method (AMM). Perhaps the most used method in flex-
ible multi-body dynamics is the floating frame of refer-
ence formulation based on the FEM. This method was
introduced by Song and Haug (1980) and extended by
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Shabana and Wehage (1983). Also, Yoo and Haug
(1986a,b) introduced a method based on the FEM
using vibration and static correction modes. The
AMM may need to use a large number of mode
shapes to successfully model kinematics joints, for
example translational joints, with concentrated loads.
Consequently, this approximate analytical method or
other analytical methods are less extended to vibration
analysis of flexible parallel robots.

Many studies have presented the motion of a flexible
beam with prismatic joint. For example, Tabarrok et al.
(1974), Banerjee and Kane (1987), Wang and Wei
(1987), Yuh et al. (1989), Krishnamurrthy (1989),
Theodore and Ghosal (1997) and Gurgoze and
Yuksel (1999) used AMM to study vibration analysis
of an axially moving beam with prismatic joint.
Additionally, Stylianou and Tabarrok (1994) and Lee
and Jang (2007) used FEM. Some of these researchers
applied their model to flexible cylindrical
(Krishnamurrthy, 1989) or spherical (Theodore and
Ghosal, 1997) manipulators. Additionally, the study
of flexible beams can be extended to vibration analysis
of flexible robots (Sharifnia and Akbarzadeh, 2014a).

Many researchers have used FEM for vibration ana-
lysis of flexible parallel robots. Fattah et al. (1994a,b,
1995) used the potential energy of a beam element in
their FEM model to describe flexibility of a ‘‘planar
beam-shaped flexible link’’. They presented kinematics
and dynamics of a flexible 3-RRS parallel robot. Piras
et al. (2005) presented a dynamic finite element analysis
for a flexible planar 3-PRR parallel robot. They inves-
tigated the effect of high-speed motions and configur-
ation of the mechanism on the vibrations of the robot.
Using the Lagrange finite element model for flexible
linkages, Wang and Mills (2006) presented sub-
structuring dynamic modeling for a flexible-link
planar 3-PRR parallel robot. Some researchers used
approximate analytical methods for vibration analysis
and active control of flexible parallel robots. Kang and
Mills (2002) and Zhang et al. (2008) presented an ana-
lytical model for a flexible planar 3-PRR parallel robot
using AMM and Lagrange’s multipliers.

In general, dynamic modeling of flexible parallel
robots with translational joints is relatively compli-
cated. The translational joints create time-variant
boundary conditions or holonomic constraints on the
flexible links. On the other hand, generalized coordin-
ates used in the dynamic modeling can create complex-
ities in the joint constraint equations and nonlinearity
in the motion equations (Sugiyama et al., 2003). When
a body coordinate system and an elastic coordinate
system are used for the dynamic modeling of a pris-
matic joint, depending on the modeling procedure
and interference of these two coordinate systems, geo-
metric nonlinearities can appear in the motion

equations (Sharifnia and Akbarzadeh, 2014a). In
previous work, modal coordinates have mostly been
preferred when the vibrational problems with time-
invariant boundary conditions have been studied. To
the best of the authors’ knowledge, aside from a few
FEM studies, there exist only two approximate analyt-
ical studies on vibration analysis of flexible parallel
robots with passive prismatic joints (Sharifnia and
Akbarzadeh, 2014a,b). Sharifnia and Akbarzadeh
(2014a), authors of the present paper, developed a
motion equation in variational form for vibration and
control analysis of a Euler-Bernoulli beam with a pas-
sive prismatic joint. A flexible beam with a general
planar motion is used as a moving platform of a PR-
PRP parallel robot. Sharifnia and Akbarzadeh (2014b)
presented vibration analysis of a planar 3-PRP parallel
robot called ST (Star-Triangle). The robot has a flexible
moving platform with three passive prismatic joints.
The authors used a constrained assumed modes
method (CAMM) for vibration analysis of the PR-
PRP and the 3-PRP parallel robots. As presented by
Sharifnia and Akbarzadeh (2014a,b), there is a differ-
ence between the AMM and CAMM. In the assumed
modes method, each of the assumed mode shapes must
satisfy all the geometrical boundary conditions.
However, using the constrained assumed modes
method, the assumed mode shapes each satisfies only
time-invariant geometrical boundary conditions and do
not satisfy time-variant geometrical boundary condi-
tions. Instead, by writing additional time-variant con-
straint equations, the combination of the assumed
modes will satisfy the time-variant geometrical bound-
ary conditions. In other words, this method applies the
time-variant constraints of the prismatic joint on the
assumed modes method (Sharifnia and Akbarzadeh,
2014b). Ibrahimbegovic and Mamouri (2000) presented
a finite element implementation of the internal con-
straints in a three-dimensional exact beam model.
Bauchau (2000) presented FEM modeling of prismatic
joints in the flexible multi-body systems. This reference
demonstrated different behavior of prismatic and slid-
ing joints. Including the passive prismatic joint param-
eters such as mass, moment of inertia and its actual
length increases the challenges for dynamic modeling
of the flexible parallel robots (Sharifnia and
Akbarzadeh, 2014b). For rigid planar kinematic
chains, Stoenescu and Marghitu (2004) showed that
the moment of inertia of the prismatic joints has sig-
nificant effects at high speeds. Sharifnia and
Akbarzadeh (2014a) investigated the effects of the
actual prismatic joint length on the vibrational behav-
ior of the PR-PRP parallel robot.

Considering the existing body of literature on flex-
ible parallel manipulators, it may be concluded that (1)
Analytical methods are less used and most researchers
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used FEM or other numerical methods for the vibra-
tion analysis of parallel robots; (2) There are few exist-
ing FEM studies on flexible parallel robots with
prismatic joints. There are only two existing approxi-
mate analytical studies where the moving platform is
flexible and has passive prismatic joint; (3) The effect of
mass, moment of inertia and actual length of the pris-
matic joint on the vibration response is considered less
in the analytical methods.

The present study aims to offer certain advantages
for each of the above three shortcomings. To do this, a
spatial 3-PSP parallel robot (Rezaei et al., 2012, 2013)
having a flexible moving platform and three passive
prismatic joints is considered. The 3-PSP parallel
robot presented in this research has three symmetric
closed loop chains. Each chain consists of an active
prismatic joint (P), a passive spherical joint (S) and a
passive prismatic joint (P).

In this paper, the authors intend to further develop
their previous modeling and solution method and to
obtain more accurate results. To do this, a new set of
geometric constraints for dynamic modeling of the pas-
sive prismatic joints as well as a new set of geometric
constraints for the junction point of the three beams of
the flexible moving platform are presented for a more
complicated spatial 3-PSP robot.

The rest of this paper is organized as follows. In
Section 2, Robot structure and assumptions are intro-
duced. In Section 3, Direct kinematics of the robot is
presented. In Section 4, New constraint equations for

the center of the moving platform, star, are developed.
In Section 5, Motion equations and new constraints for
modeling of the prismatic joints are developed, and the
motion constraints are incorporated into the motion
equation. In Section 6, An approximate analytical solu-
tion for the motion equations using the ‘‘constrained
assumed modes method’’ is presented. In Section 7,
Numerical results of three case studies are presented.
In Section 8, A short discussion about mode shape
selection and its effect on the accuracy of the approxi-
mate analytical solution is presented, and in Section 9,
Concluding remarks are presented.

2. Robot structure and assumptions

The 3-PSP robot is a fully parallel robot with three
degrees of freedom (d.f.). Several types of 3-PSP par-
allel robot can be assembled. Structures of the 3-PSP
robot, solid and experimental models, used in the
present research are shown in Figure 1. In this struc-
ture, the moving platform is made of three flexible
beams shaped like a star. Each of the three legs
begins with an active prismatic joint (P) actuated by
a linear rod in the Z-direction, a passive spherical
joint (S) and a passive prismatic joint (P), which
slides through one of three beams of the star. The
three beams have the same physical and geometrical
properties and the plane and angle between each two
branches of the star is 120 degrees. Finally, the three
linear actuator rods are aligned vertically on three

Figure 1. Solid and physical model of the 3-PSP parallel robot.
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corners of an equilateral triangle (fixed triangular
base of the robot).

In the present research for dynamic modeling of the
3-PSP robot, the three branches of the moving star, also
referred to as beams 1, 2 and 3, are each considered as a
discrete Euler-Bernoulli beam with a prismatic joint.
The rigid configuration of the star is called the rigid
star and a plane obtained from three beams of the
rigid star is called ‘‘rigid star plane’’. Consider
Figure 2, which shows coordinate systems used on the
3-PSP robot. Points I, J and K represent centers of the
three passive prismatic joints. Points A, B and C repre-
sent three ends of the beams 1, 2 and 3, respectively. As
shown, a fixed coordinate system XYZ with its origin
attached to point O at the center of the fixed triangular
base is defined. A rigid body coordinate system xyz is
attached to point G, end-effector, for the star. Its y-axis
is in the opposite direction of vector GI

�!
and its z-axis is

in the same direction as the normal vector of the rigid
star plane. At the start of motion, the z and Z-axis are
collinear and the x and y-axis are parallel with the X
and Y-axis, respectively. Additionally, at the start of
motion, the velocity of each of the input trajectories
is assumed to be zero and the robot has no elastic
deformation. Finally, at the start of motion, each of
the three beams of the star is perpendicular to the cor-
responding rigid link (linear rod) of the robot.

At rigid and deformed configurations, the center of
the moving star is called G and G0, respectively. During
the motion analysis, the deformed configuration of the
star is measured with respect to the rigid body coord-
inates attached to the rigid configuration of the star. As
stated earlier, the rigid body coordinate system xyz is
attached to the rigid configuration of the star. Next, for
the beams 1, 2 and 3, three additional rigid body coord-
inate systems are considered as x1y1z1, x2y2z2 and
x3y3z3, respectively. The three rigid body coordinate
systems are each attached to the rigid configuration
of the corresponding beam. Their origins are located
at the midpoint of the corresponding rigid beam. The
direction for each of the xi-axis is along the axis of the
rigid beam i and passes through the center of the pas-
sive prismatic joint. The direction for each of the zi-axis
is normal to the rigid star plane. Elastic displacements
in the directions of xi, yi and zi axes are denoted by ui,
vi and wi, respectively. Finally, it is assumed that input
trajectories of the actuators in the Z-direction are
entirely transferred to them without any error.

Each of the three beams of the star can vibrate in
two transverse directions, yi and zi. The elastic displace-
ment vi takes place in the rigid star plane and the elastic
displacement wi takes place out of the rigid star
plane. In this paper, we refer to vi and wi as in-plane
and out-of-plane transverse vibrations, respectively.

Figure 2. Fixed and rigid body coordinate systems of the 3-PSP robot.
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The in-plane transverse vibration is normal to the beam
axis and lies in the rigid star plane. The out-of-plane
transverse vibration is normal to the rigid star plane.
For simplification, it is assumed that in-plane bending
stiffness for three beams of the star is much higher
(about 100 times) than out-of-plane bending stiffness
and consequently in-plane transverse vibration for the
three beams is neglected. Therefore, vibration is only in
the wi-direction. Note that because in-plane bending
stiffness is assumed to be much higher than out-of-
plane bending stiffness, torsional stiffness is also much
higher (about 50 times) than out-of-plane bending stiff-
ness. Additionally, because the prismatic joint is
located within a spherical joint, one end of the beam
is free to rotate about xi axis and does not experience
any twist load. Therefore, torsional vibration and its
effects on the elastic displacement of the beams are
also neglected. Finally, in order to focus on off-load
behavior of the robot, concentrated inertia or external
load are not added to the robot’s end-effector. Because
each branch of the moving platform is assumed to be a
Euler-Bernoulli beam, the effects of shear deformation
and rotational inertia moment are not considered in
dynamic modeling. The magnitude and the slope
angle of the beam deformation are also assumed to be
small (see theory of Euler-Bernoulli beam).

Additional assumptions are obtained from the main
purpose of this paper, which is to develop a dynamic
model for the robot to be a ground for future works
such as trajectory control. In this research, it is assumed
that input trajectories of the active joints can be
obtained without any significant error by the motor
drive control system and consequently vibration of
the 3-PSP robot at the points I, J and K are assumed
to be zero. Therefore, the rigid star is enforced to track
the rigid configuration obtained from its three input
trajectories. This assumption means that (a) it is the
rigid body motion that induces the flexible body
motion in the absence of initial conditions and external
loads, and (b) that the flexible body motion does not
affect the rigid body motion. Additionally, this assump-
tion allows us to better see the behavior of the flexible
body motion and verify the proposed model.

3. Direct kinematics of the 3-PSP robot

Initial conditions, external loads or inertia forces can
cause a structure to vibrate. In this paper initial condi-
tions and external loads are assumed to be zero and the
agent of vibration is only inertia forces. Inertia forces
appear inmotion equations in terms of accelerations and
velocities of the structure. Depending on the control
strategies for a givenmotion, accelerations and velocities
of rigid motion of a structure are directly calculated
from either the direct or the inverse kinematics of the

assumed rigid structure which are next used in the
dynamic motion equations of the flexible structure.
They can also be indirectly entered in the motion equa-
tions by means of an energy method. In this section,
using the direct kinematics of the 3-PSP robot, the
required terms of accelerations and velocities of the
rigid motion are calculated in order that they can be
used in the motion equations of the flexible structure.
Specifically, in the 3-PSP robot, acceleration and vel-
ocity for an element of the star are calculated from its
rigid motion. Note that the acceleration term in the
motion equation contains both rigid and flexible body
accelerations. The rigid body motion induces the flexible
body motion. By supplying the rigid body motion to the
motion equations, the flexible body motion is obtained.

Given the trajectories of the actuated prismatic joints,
s1ðtÞ, s2ðtÞ and s3ðtÞ, the position trajectory of the work-
ing point of the robot, point G, as well as the normal
vector to the rigid star plane must be determined.
Consider Figure 2. Position vectors of the points I, J
andK in the fixed coordinate systemXYZ are as follows:

OI
�!
¼

0

�d

s1ðtÞ

2
64

3
75 ð1Þ

OJ
�!
¼

þd cosð�=6Þ

þd sinð�=6Þ

s2ðtÞ

2
64

3
75 ð2Þ

OK
�!
¼

�d cosð�=6Þ

þd sinð�=6Þ

s3ðtÞ

2
64

3
75 ð3Þ

vectors IJ
!

, JK
�!

and KI
�!

can be written as

IJ
!
¼ OJ
�!
� OI
�!

JK
�!
¼ OK
�!
� OJ
�!

KI
�!
¼ OI
�!
� OK
�!

8><
>: ð4Þ

Consider Figure 3 which shows points I, J, K and G in
the rigid star plane, the xy plane. Given the vectors IJ

!
,

JK
�!

and KI
�!

, the locus of the point G on the rigid star
plane such that angles ffIGJ, ffJGK and ffKGI each
equals 120 degrees are on three arcs of three circles
on the rigid star plane. The cross section for any two
of these arcs identifies the working point of the robot,
point G. For example, by specifying positions of the
points I and J and the amount of angle ffIGJ ¼ 120�,
the position of point G will fall on the circular arc I G

^

J.
Also, by specifying positions of points J and K and the
amount of angle ffJGK ¼ 120�, the position of point G
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will fall on the circular arc J G
^

K. Therefore, the inter-
section of the arcs I G

^

J and J G
^

K provides position of
point G. Then angle ffKGI also equals to 120�.

For the direct kinematics, first, radiuses of the men-
tioned arcs are obtained using the geometry of the cen-
tral angle, inscribed angle and triangle. For example, in
Figure 3, consider the circle with center point CIJ. Since
the inscribed angle ffIGJ equals 120�, the central angle
ffICIJJ in triangle �ICIJJ also equals 120�. Then for the
isosceles triangle �ICIJJ, we have j IC

�!
IJj ¼ ðjIJ

!
j=2Þ=

sinð120�=2Þ ¼ jIJ
!
j=

ffiffiffi
3
p

, or RIJ ¼ jIJ
!
j=

ffiffiffi
3
p

. This calcula-
tion can also be performed for the circle with center
points CJK and CKI. Therefore we have

RIJ ¼ IJ
!
��� ���= ffiffiffi

3
p

, RJK ¼ JK
�!��� ���= ffiffiffi

3
p

, RKI ¼ KI
�!��� ���= ffiffiffi

3
p

ð5Þ

Using the cross product of vector IJ
!

by vector JK
�!

, the
normal unit vector of the rigid star plane is obtained in
the fixed coordinate system XYZ as

N̂star ¼
IJ
!
� JK
�!

IJ
!
� JK
�!��� ��� ð6Þ

Note that in this paper cross and dot products are
shown with � and �, respectively. Position vectors
for the arc centers containing the vectors IJ

!
, JK
�!

and
KI
�!

can be written as

OC
�!

IJ ¼ 0:5 OI
�!
þ OJ
�!� �

þ 0:5 tan �=6ð ÞIJ
!
� N̂star

OC
�!

JK ¼ 0:5 OJ
�!
þ OK
�!� �

þ 0:5 tan �=6ð Þ JK
�!
� N̂star

OC
�!

KI ¼ 0:5 OK
�!
þ OI
�!� �

þ 0:5 tan �=6ð Þ KI
�!
� N̂star

ð7Þ

The position of point G is located on the intersection of
three circular arcs which also lay on the rigid star plane.
Consider three spheres with origins at CIJ, CJK and CKI

and radiuses RIJ, RJK and RKI, respectively. Then, the
intersection of the spheres and the rigid star plane iden-
tify three circles which also contain the circular arcs
I G

^

J, J G
^

K and KG
^

I, respectively. Therefore, we can
write:

OG
�!
� OC
�!

IJ

��� ��� ¼ RIJ

OG
�!
� OC
�!

JK

��� ��� ¼ RJK

Figure 3. Circles on the rigid star plane which are used to obtain point G.
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OG
�!
� OC
�!

KI

��� ��� ¼ RKI

OG
�!
� OI
�!� �

� N̂star ¼ 0 ð8Þ

The last row in equation (8) identifies the rigid star
plane. By solving equation (8), which only has one
answer, the position vector OG

�!
is obtained. Then, by

taking a time derivative, acceleration of point G in the
XYZ coordinate system, aG, is obtained as

aG ¼
d2

dt2
OG
�!� �

ð9Þ

Now using a common rotation theory for three-
dimensional rigid bodies presented by Greenwood
(2003), angular velocity of the rigid motion of the star
is obtained. First, overall rotation matrix, C, can be
written as

C ¼

i� I i� J i� K

j� I j� J j� K

k� I k� J k� K

2
64

3
75 ð10Þ

in which ði, j, kÞ are unit vectors of the rigid body coord-
inate system xyz and ðI, J,KÞ are unit vectors of the
fixed coordinate system XYZ. According to the defin-
ition of the xyz coordinate system for the 3-PSP robot,
the y-axis is in the opposite direction of vector GI

�!
and

the z-axis is in the same direction as the normal vector
of the rigid star plane. Note that GI

�!
¼ OI
�!
� OG
�!

and
the vectors OI

�!
and OG

�!
are obtained from equations

(1) and (8), respectively. Therefore, according to the
definition of the xyz coordinate system, the overall
rotation matrix C can be written as

C ¼

N̂star �
GI
�!
GI
�!��� ���

0
@

1
AT

� GI
�!
GI
�!��� ���

0
@

1
AT

N̂star

� �T

2
666666666664

3
777777777775

ð11Þ

in which the superscript T denotes transpose of a matrix
or vector. An asymmetric matrix, ~u, containing compo-
nents of the angular velocity vector, u, is defined as

~u¼

0 �!z !y

!z 0 �!x

�!y !x 0

2
64

3
75, u¼ !xiþ!yjþ!zk ð12Þ

The matrix ~u is obtained from the Poisson equation as
follows (Greenwood, 2003):

_C ¼ � ~uC ) ~u ¼ C _CT ð13Þ

Therefore, using equations (12) and (13) the angular
velocity vector of the rigid star, u, is obtained. By
taking the first derivative of angular velocity u, angular
acceleration _u can be obtained. As shown in Figure 2,
xp1, xp2 and xp3 represent positions of the three passive
prismatic joints in the rigid body coordinate systems,
x1y1z1, x2y2z2 and x3y3z3, respectively. Because the
vibration amplitude and the slope angle of deformation
are small, the distance between point G and G0 is very

small compared with the length of the vectors GI
�!

, GJ
�!

and GK
�!

. Therefore, the length of the vectors G0I
�!

, G0J
�!

and G0K
��!

are assumed to be equal to the length of
the vectors GI

�!
, GJ

�!
and GK

�!
, respectively.

Consequently:

xp1 ¼ GI
�!��� ���� L=2, xp2 ¼ GJ

�!��� ���� L=2,

xp3 ¼ GK
�!��� ���� L=2

ð14Þ

Upon obtaining rigid acceleration of the point G, equa-
tion (9), the rigid acceleration of each point or element
of the moving platform can be obtained. As shown in
equation (10), the overall rotation matrix C can be used
as a rotation matrix from XYZ coordinate system to
xyz coordinate system. Additionally, rotation matrixes
from xyz coordinate system to the x1y1z1, x2y2z2 and
x3y3z3 coordinate systems are shown with R1, R2 and
R3, respectively. Due to the definition of the mentioned
rigid body coordinate systems, the above rotation
matrices can be written as follows:

R1 ¼

0 �1 0

1 0 0

0 0 1

2
64

3
75,

R2 ¼

cosð�=6Þ sinð�=6Þ 0

� sinð�=6Þ cosð�=6Þ 0

0 0 1

2
64

3
75,

R3 ¼

� cosð�=6Þ sinð�=6Þ 0

� sinð�=6Þ � cosð�=6Þ 0

0 0 1

2
64

3
75

ð15Þ

Consider Figure 2 and an element on the beams 1, 2
or 3. Assume that coordinates of this element in the
related coordinate system xiyizi is xi 0 0

� �T
.

Therefore the distance of the element from point G is
ðxi þ L=2Þ. Multiplying inverse of the rotation matrixes
R1, R2 and R3 by ðxi þ L=2Þ 0 0

� �T
the position of
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the element in the xyz coordinate system is obtained as
follows:

r1 ¼

0

�ðxi þ L=2Þ

0

2
64

3
75,

r2 ¼

ðxi þ L=2Þ cosð�=6Þ

ðxi þ L=2Þ sinð�=6Þ

0

2
64

3
75,

r3 ¼

�ðxi þ L=2Þ cosð�=6Þ

ðxi þ L=2Þ sinð�=6Þ

0

2
64

3
75

ð16Þ

Rigid acceleration components of the element in the xi,
yi and zi directions are axiðxi, tÞ, ayiðxi, tÞ and aziðxi, tÞ,
respectively. Therefore, for the element in the rigid
body coordinate xiyizi, it can be written:

axiðxi, tÞ

ayiðxi, tÞ

aziðxi, tÞ

2
64

3
75 ¼ Ri CaG þ u� u� rið Þ þ _u� ri½ �,

i ¼ 1, 2, 3 ð17Þ

Note that the rigid acceleration components of the
element axiðxi, tÞ, ayiðxi, tÞ and aziðxi, tÞ depend on the
position of the element and time trajectory of the three
inputs of the robot. The component axiðxi, tÞ is in the
axial direction of the beam number i and the compo-
nents ayiðxi, tÞ and aziðxi, tÞ are in its transverse direc-
tions. These accelerations are used in motion equations
of the beams. To consider the effect of the gravity in the
motion equations, we must add gravitational acceler-
ation to rigid acceleration of the star. Therefore, for the
motion equations, we use aG � gð Þ instead of aG in
equation (17) in which g ¼ 0 0 �9:81

� �T
ðm=s2Þ.

4. Constraint equations for center point
of the moving star

In Figure 4, unit vector N̂0star represents the normal
vector on the deformed moving star at point G0 in the
rigid body coordinate system xyz. Next, consider unit
vectors ûi, v̂i and ŵi of the rigid body coordinate system
xiyizi. Each of these unit vectors (ûi, v̂i, ŵi) are defined in
the xyz rigid body coordinate system. Note that ŵi is
equal to the unit vector k. Parameter �Gi represents the
angle between the axis xi and the neutral axis of the beam
i at point G0. The following equation can be written:

tan �Gið Þ ¼
@wi

@xi

����
xi¼�L=2

, i ¼ 1, 2, 3 ð18Þ

As assumed in Section 2, elastic displacement of the
moving star is only in wi-direction and therefore the
neutral axis of the beam i is located in xizi plane. We
can decompose the unit vector N̂0star to two compo-
nents. First, its image on the plane xizi which is called
~N0xizistar and second, its normal component to the plane
xizi which is in yi-direction and is called ~N0yistar. Note that
the component ~N0xizistar is normal to the neutral axis of the
beam i at point G0 then using the component ~N0xizistar we
can write

~N0xizistar � ûi ¼ ~N0xizistar

��� ��� cosð�Gi þ �=2Þ
¼ � ~N0xizistar

��� ��� sinð�GiÞ, i ¼ 1, 2, 3 ð19Þ

~N0xizistar � ŵi ¼ ~N0xizistar

��� ��� cosð�GiÞ, i ¼ 1, 2, 3 ð20Þ

Dividing equation (19) by equation (20), gives

~N
0xizi
star � ûi
~N
0xizi
star � ŵi

¼ � tanð�GiÞ, i ¼ 1, 2, 3 ð21Þ

Because the component ~N0yistar is normal to the vectors ûi
and ŵi then

~N0xizistar � ûi ¼ ~N0xizistar þ
~N0yistar

� �
� ûi ¼ N̂0star� ûi, i¼ 1,2, 3

ð22Þ

~N0xizistar � ŵi ¼ ~N0xizistar þ
~N0yistar

� �
� ŵi ¼ N̂0star� ŵi, i¼ 1,2,3

ð23Þ

Substituting equations (22) and (23) into equation (21)
and using ŵi ¼ k gives

N̂0star � ûi

N̂0star � k
¼ � tanð�GiÞ, i ¼ 1, 2, 3 ð24Þ

Note that the three unit vectors û1, û2 and û3 are each
along axis x1, x2 and x3 respectively. These unit vectors
are all in the rigid star plane and make an angle of 120�

with each other. Therefore, we have û1 þ û2 þ û3ð Þ ¼ 0.
Summing three equations of (24), we have

tan �G1ð Þ þ tan �G2ð Þ þ tan �G3ð Þ

¼ �
N̂0star

N̂0star � k

 !
� û1 þ û2 þ û3ð Þ ¼ 0 ð25Þ

Finally, using equation (18) and equation (25), an
important constraint between the slopes of the
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three beams at their junction point G0 is
obtained as

@w1

@x1

����
x1¼�L=2

þ
@w2

@x2

����
x2¼�L=2

þ
@w3

@x3

����
x3¼�L=2

¼ 0 ð26Þ

Additionally, because all three beams are connected at
point G0, two additional constraints can be written
between the elastic displacements of the three beams as

w1 �
L

2
, t

	 

¼ w2 �

L

2
, t

	 

¼ w3 �

L

2
, t

	 

ð27Þ

5. Motion equation and applying the
constraints

The dynamics of parallel robots can be viewed as
both direct and inverse problems. In the direct

dynamics, motor torques/forces are supplied and the
resulting robot motion is obtained. Conversely, in the
inverse dynamic problem, the motion of the robot is
supplied and required motor torques/forces are
obtained. In this section, a dynamics model of the
3-PSP parallel robot is developed which can be
used for both the direct and inverse dynamic
problem.

Sharifnia and Akbarzadeh (2014a), have presented
a motion equation for planar vibrational motion of a
Euler-Bernoulli beam with a prismatic joint in virtual
form. Similar to the present study, the authors
assumed both the vibration amplitude and the slope
angle of elastic displacements to be small in their
analytical model. In the present research, the same
motion equation is developed and relevant constraint
equations are applied to the motion equation using
Lagrange’s multipliers. For an element of the flexible
star at xi position, the motion equation in the

Figure 4. Magnified view of the elastic displacement of point G.

Sharifnia and Akbarzadeh 1103

 by guest on February 17, 2016jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com/


zi-direction can be written as

�
@2wi

@t2
� wi !

2
x þ !

2
y

� �	 

þ
@2

@x2i
EI
@2wi

@x2i

	 
�

þ
@

@xi
� L� xið Þaxi

xi þ L

2
, t

	 

@wi

@xi

	 
�
�wi xið Þ

¼ ��azi xi, tð Þ�wi xið Þ þ Fpidirac xi � xpi
 �

�wi xpi
 �

i ¼ 1, 2, 3 ð28Þ

in which parameters L, EI and � represent the beam
length, bending rigidity and mass per length, respect-
ively, and have the same values for all the three beams
of the star. Note that the magnitude of the vector ! is
the same in the xiyizi and xyz rigid body coordinate
systems. Additionally, their zi-axis are in the same dir-
ection. Therefore, we have ð!2

x þ !
2
yÞ ¼ ð!

2
xi þ !

2
yiÞ. The

expression @2wi=@t
2 is the relative acceleration of the

element in the xiyizi rigid body coordinate system in
the zi-direction. Similarly, the expression �wið!

2
xþ !

2
yÞ

is the relative acceleration of the element due to its
elastic motion and rigid rotational motion in the
xiyizi rigid body coordinate system in the zi-direction.
Therefore, the expression �ð@2wi=@t

2 � wið!
2
x þ !

2
yÞÞ is

the inertia force due to the elastic motion of the elem-
ent. The expression @2 EI@2wi=@x

2
i

 �
=@x2i represents the

result of shear forces at two sides of the element.
The term of @ � L� xið Þaxi xi, tð Þð@wi=@xiÞ½ �=@xi represents
the result of axial inertia forces on two sides of the
element in the zi-direction. The expression �aziðxi, tÞ
represents the inertia force due to the rigid motion of
the element in the zi-direction. The parameter Fpi is the
result of normal contact forces applied to the beam i at
xi ¼ xpi by the prismatic joint in the zi-direction. For
virtual deflection of �wi xið Þ, the sum of the virtual
works of the mentioned inertia forces and the shear
force must be equal to the virtual work of the force
Fpi. Using this equilibrium condition, the motion equa-
tion (28) is obtained for the beam element. For more
details please see Sharifnia and Akbarzadeh
(2014a). Additionally, parameters xpi, aziðxi, tÞ and
axi xi þ Lð Þ=2, tð Þ are determined by equations (14) and
(17). All friction forces are assumed to be negligible.

The term of @ � L� xið Þaxi xi, tð Þð@wi=@xiÞ½ �=@xi used in
motion equation (28) can be expanded as follows:

@

@xi
� L� xið Þaxi

xi þ L

2
, t

	 

@wi

@xi

	 


¼ ��axi
xi þ L

2
, t

	 

@wi

@xi
þ � L� xið Þ

@axi
xiþL
2 , t

 �
@xi

@wi

@xi

þ � L� xið Þaxi
xi þ L

2
, t

	 

@2wi

@x2i
� 0 ð29Þ

The values of the above expression are negligible due to
the assumption of a small slope angle for the elastic dis-
placement of the beams (Sharifnia and Akbarzadeh,
2014a). Consequently, compared with the other terms
of equation (28), the expression mentioned in equation
(29) may be neglected.

To apply the constraint equations (26) and (27) into
the motion equation, they are written in the form of
virtual displacement as

MG

 
�
@w1

@x1

����
x1¼�L=2

 !
þ �

@w2

@x2

����
x2¼�L=2

 !

þ �
@w3

@x3

����
x3¼�L=2

 !!
¼ 0 ð30Þ

VG1 �w1 �
L

2

	 

� �w2 �

L

2

	 
	 

¼ 0

VG3 �w3 �
L

2

	 

� �w2 �

L

2

	 
	 

¼ 0

8>>><
>>>: ð31Þ

in which the parameter MG is the proper Lagrange’s
multiplier that represents a bending moment for all
the three beams at point G0. The parameters VG1 and
VG3 are proper Lagrange’s multipliers that represent
shear forces for beams 1 and 3 at the point G0, respect-
ively. As can be seen from equation (31), virtual work
of VG1 and VG3 are VG1�w1 �L=2ð Þ and VG3�w3 �L=2ð Þ

due to the virtual displacements of �w1 �L=2ð Þ and
�w3 �L=2ð Þ, respectively. In addition, their virtual
work is �VG1 � VG3ð Þ�w2 �L=2ð Þ in which the coeffi-
cient of virtual displacement of �w2 �L=2ð Þ represents
the value of V2G. Therefore VG2 ¼ �VG1 � VG3. This
shows the equilibrium of shear forces at the point G0,

VG1 þ VG2 þ VG3 ¼ 0 ð32Þ

By means of equation (32) an external load in the
z-direction can be applied in the presented model. If
an external vertical force, Vext, is applied in point G,
then instead of equation (32) there is

VG1 þ VG2 þ VG3 ¼ Vext ð32aÞ

Additional constraints are written for displacement of
points on the star where the prismatic joints are
located, as follows:

Fpi�wi xpi
 �

¼ 0 i ¼ 1, 2, 3 ð33Þ

Note that the constraint equation (33) is already
applied in the motion equation (28). As mentioned ear-
lier, the Lagrange multiplier Fpi is resultant of normal
contact forces that the prismatic joint applies to the
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beam at xi ¼ xpi. The effect of the physical length of the
passive prismatic joints on the vibrational behavior of
the flexible links was previously studied by Sharifnia
and Akbarzadeh (2014a,b). When the ratio of exciting
load per stiffness of the links is high, a longer length of
the passive prismatic joint significantly increases the
stiffness of the flexible link. In the present paper, the
bending stiffness of the flexible beams of the star is
relatively high, so that the physical length of the pris-
matic joints does not influence the vibrational behavior
of the beams.

Consider Figure 5. Normal contact forces that the
prismatic joint i applies to the beam i can be modeled as
a distributed force on the beam (Figure 5(a)). This dis-
tributed force can be simplified by the resultant contact
force Fpi (equation (33)) and two moments, MR

pi and
ML

pi, (Figure 5(b)). Next ML
pi is decomposed into result-

ant of the two moments Mpi ¼ML
pi �MR

pi and
ML0

pi ¼MR
pi (Figure 5(c)). Therefore, virtual work of

the two equal moments ML0
pi and MR

pi applied by the
rigid passive prismatic joint can be written as

MR
pi�

@wi

@xi

����
xi¼x

R
pi

 !
�ML0

pi �
@wi

@xi

����
xi¼x

L
pi

 !

¼ML0
pi �

@wi

@xi

����
xi¼x

R
pi

�
@wi

@xi

����
xi¼x

L
pi

 !

¼ML0
pi xRpi � xLpi

� �
�
@2wi

@x2i

����
xi¼xpi

 !

¼ Npi�
@2wi

@x2i

����
xi¼xpi

 !
	 0

) Npi�
@2wi

@x2i

����
xi¼xpi

 !
¼ 0 ð34Þ

in which xRpi and xLpi are two unspecified locations for
the two moments ML0

pi and MR
pi. Equation (34) imposes

a constraint of zero curvature at the location of the
passive prismatic joints and is applied in the dynamic
model for each passive prismatic joint. The Lagrange’s
multiplier Npi ¼ML0

pi ðx
R
pi � xLpiÞ causes curvature of the

beam i at point xi ¼ xpi to vanish. Figure 6 shows a free
body diagram for the moving star and one of the three
legs of the robot. Note that couples and forces are
shown by the double-arrow and single-arrow vectors,
respectively.

Next, the effect of rotational moment of inertia for
the passive prismatic joints on the beam in the dynamic
model can be considered. The angle of the passive pris-
matic joint with respect to xi-axis is called �pi.
Therefore, an additional constraint at point xi ¼ xpi
can be written as

�pi ¼
@wiðxi, tÞ

@xi

����
xi¼xpi

¼
@wi

@xi
xpi, t
 �

) Mpi ��pi � �
@wi

@xi
xpi
 �	 


¼ 0 i ¼ 1, 2, 3 ð35Þ

in which Mpi is a Lagrange’s multiplier and represents
the resultant moment that the rigid prismatic joint
applies on the corresponding beam. According to con-
straint equation (35), the angular positions of the pas-
sive prismatic joints, �pi, are included in the dynamic
model. Then, to solve for �pi, motion differential equa-
tions for angular motion of the passive prismatic joints
are obtained by considering Euler equations, the virtual
work principle and equation (35) as follows:

Ipyy
d2�pi
dt2
þ _!yi

	 

þ ðIpxx � IpzzÞ!zi!xi

	 

��pi ¼Mpi��pi

�Ipyy
d2�pi
dt2
þ _!yi

	 

þ ðIpxx � IpzzÞ!zi!xi ¼Mpi

i ¼ 1, 2, 3 ð36Þ

in which Ipxx, I
p
yy and Ipzz are principal moments of inertia

for each passive prismatic joint in the xiyizi coordinate
system and _!yi is the yi-component of angular acceler-
ation of the rigid star. The above differential equation
(36) is a motion equation for the rotational motion of
the passive prismatic joints and must be simultaneously
solved with the other motion and constraint equations.
Neglecting the small terms of the equation (29) and

Figure 5. Dynamic model of the passive prismatic joint.
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applying the constraint equations (30) up to (35) with
relevant Lagrange’s multipliers, the motion equation
for each beam of the moving platform, equation (28),
can be obtained as

�
@2wi

@t2
� wi !

2
x þ !

2
y

� �	 

þ
@2

@x2i
EI
@2wi

@x2i

	 
� �
�wi xið Þ

¼ ��azi xi, tð Þ�wi xið Þ þ Fpidirac xi � xpi
 �

�wi xpi
 �

�Mpidirac xi � xpi
 �

�
@wi

@xi
xpi
 �

þNpidirac xi � xpi
 �

�
@2wi

@x2i
xpi
 �

þ VGidirac xi þ
L

2

	 

�wi �

L

2

	 


þMGdirac xi þ
L

2

	 

�
@wi

@xi
�
L

2

	 

i ¼ 1, 2, 3 ð37Þ

Figure 6. (a) Free body diagram of the moving star; (b) free body diagram for one of the three legs.
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In order to obtain the vibration response of the 3-PSP
robot, the motion equations, equation (36) and equa-
tion (37), must be simultaneously solved with the con-
straint equations (30) up to (35). Upon solving these
equations, the vibration response and Lagrange’s
multipliers i.e. constraint forces are determined.

As seen in equation (37) for the beam i, the normal
force Fpi and the moment Mpi are obtained from the
vibrational motion equation. The additional normal
force and moment of the passive prismatic joint, F0pi
and M0pi, can be obtained from rigid body dynamics
of the moving star. As assumed before, the moving
star has no in-plane vibration, i.e. the star is assumed
to be rigid in the rigid star plane. For the rigid star, the
axes of the rigid body coordinate system xyz are also
principal axes for the moment of inertia. Assuming a
total mass of m and beams length of L for the rigid star,
gives

Ixx ¼
1

6
mL2, Iyy ¼

1

6
mL2, Izz ¼

1

3
mL2, m ¼ 3�L

ð38Þ

In the rigid star plane (see Figure 6), using the Euler
equations the following can be written:

Izz _!z þ Iyy � Ixx
 �

!x!y ¼Mz

) mL2=3
 �

_!z ¼ F0p1 xp1 þ L=2
 �

�M0p1

þ F0p2 xp2 þ L=2
 �

�M0p2 þ F0p3 xp3 þ L=2
 �

�M0p3

ð39Þ

in which M0pi ¼ ½I
p
zz _!zi þ ðI

p
yy � IpxxÞ!xi !yi þ d�pi=dt

 �
�.

Also, using the Newton’s second law in the rigid star
plane gives

Fð Þxy¼m aGð Þxy

)
F 0p1�F 0p2 sin �=6ð Þ�F 0p3 sin �=6ð Þ ¼m C aG�gð Þð Þ� i

þF 0p2 cos �=6ð Þ�F 0p3 cos �=6ð Þ ¼m C aG�gð Þð Þ� j

(

ð40Þ

Using the three equations, equation (39) and (40), the
remaining three forces of the passive prismatic joints
are obtained. Additionally, having the mass of the pas-
sive prismatic joint, mp, the mass of the passive spher-
ical joint, ms, and the mass of the rigid link (linear rod)
of the robot, ml, required driving forces, Fai, can be
determined as follows:

mp þms þml

 �
€si tð Þ þ gð Þ ¼ Fai � FpiN̂star

� K� F0pi C�1R�1i 0 1 0
� �T� �

� K

g ¼ 9:8ðm=s2Þ and i ¼ 1, 2, 3

ð41Þ

Upon obtaining Fai, the inverse dynamics problem of
the 3-PSP robot is completed. It should be noted that
the same formulation allows the direct dynamics prob-
lem of the robot to be solved. This may be accom-
plished by specifying the driving forces, Fai, in
equation (41) and solving a new set of motion equa-
tions (36), (37) and (41) simultaneously with the con-
straint equations (30) up to (35).

6. Solution of the motion equations

In this section, the ‘‘constrained assumed modes
method’’ previously used by Sharifnia and
Akbarzadeh (2014a,b) is also used to solve the derived
motion equations of the 3-PSP parallel robot. Different
motions of the robot can induce different acceleration
and inertia forces and consequently different boundary
conditions at the junction point of the substructures of
the moving platform. Therefore, in order to solve the
dynamic equations of the robot, two different types of
mode shapes for the three Euler-Bernoulli beams are
used for three different motion types. Using a combin-
ation of mode shapes of the Euler-Bernoulli beam,
transverse vibration of the three beams of the star can
be written as

wi xi, tð Þ ¼
XN
m¼1

�im tð Þ’mðxiÞ i ¼ 1, 2, 3 ð42Þ

in which ’mðxiÞ represents mode shape function of
Euler-Bernoulli beam and is

’m xð Þ ¼ Am sin �mxð Þ þ Bm cos �mxð Þ

þ Cm sinh �mxð Þ þDm cosh �mxð Þ

)
EI

�

	 

@4’m
@x4
¼ lm’m, lm ¼ !2

m ¼
EI

�
�4m

ð43Þ

Then, the variation of transverse vibration is written as

�wi xi, tð Þ ¼
XN
m¼1

’mðxiÞ��im tð Þ i ¼ 1, 2, 3 ð44Þ

Substituting equations (42), (43) and (44) in the motion
equation (37) gives

XN
m¼1

’m xið Þ €�im tð Þ þ lm � !2
x þ !

2
y

� �� �" XN
m¼1

’m xið Þ�im tð Þ

#



XN
j¼1

’j xið Þ��ij tð Þ
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¼ �azi xi, tð Þ
XN
j¼1

’j ðxiÞ��ij tð Þ þ
Fpi

�
dirac xi � xpi

 �



XN
j¼1

’j xpi
 �

��ij tð Þ �
Mpi

�
dirac xi � xpi

 �



XN
j¼1

’0j ðxpiÞ��ij tð Þ þ
Npi

�
dirac xi � xpi

 �



XN
j¼1

’00j ðxpiÞ��ij tð Þ þ
VGi

�
dirac xi þ

L

2

	 




XN
j¼1

’j �
L

2

	 

��ij tð Þ þ

MG

�
dirac xi þ

L

2

	 




XN
j¼1

’0j �
L

2

	 

��ij tð Þ i ¼ 1, 2, 3 ð45Þ

Considering orthogonality of mode shapes, the above
equations are integrated along the length of the beams.
Next, separating the equations due to coefficients
��ij tð Þ, the following ordinary differential equations
are obtained:

€�ij tð Þ þ lj� !2
xþ!

2
y

� �� �
�ij tð Þ

¼ �
XN
m¼1

Z L

0

azi xi, tð Þ’j xið Þdxi
 �

þ
Fpi

�
’j xpi
 �
�
Mpi

�
’0j xpi
 �

�
Npi

�
’00j xpi
 �
þ
VGi

�
’j �

L

2

	 

þ
MG

�
’0j �

L

2

	 

j¼ 1, . . . ,N and i¼ 1, 2, 3 ð46Þ

Note that equation (46) includes 3N number of inde-
pendent motion equations. In addition, using equations
(42), (43) and (44), the constraint equations, equation
(30) up to (35), can be written as

XN
j¼1

’0j �
L

2

	 

�1j tð Þ þ �2j tð Þ þ �3j tð Þ
 �

¼ 0 ð47Þ

PN
j¼1

’j �
L

2

	 

�1j tð Þ � �2j tð Þ
 �

¼ 0

PN
j¼1

’j �
L

2

	 

�3j tð Þ � �2j tð Þ
 �

¼ 0

8>>><
>>>: ð48Þ

VG1 þ VG2 þ VG3 ¼ 0 ð49Þ

XN
j¼1

’j ðxpiÞ�ij tð Þ ¼ 0 i ¼ 1, 2, 3 ð50Þ

XN
j¼1

’00j ðxpiÞ�ij tð Þ ¼ 0 i ¼ 1, 2, 3 ð51Þ

�pi �
XN
j¼1

’0jðxpiÞ�ij tð Þ ¼ 0 i ¼ 1, 2, 3 ð52Þ

To obtain the unknown parameters �ij tð Þ and �pi tð Þ, the
motion equations (36) and (46) must be solved together
with the constraint equations (47) up to (52). In add-
ition, the solution provides the constraint forces/
moments or the Lagrange’s multipliers.

7. Numerical results

In this section, three case studies each with a different
motion trajectory for the moving star are considered as
follows:

Case study 1: Rectilinear translation in the Z-direction,
as

s1 tð Þ ¼ s2 tð Þ ¼ s3 tð Þ ¼ 0:5þ t2

Case study 2: Rotation about and translation along the
y-direction, as

s1 tð Þ ¼ 0:5, s2 tð Þ ¼ 0:5þ t2, s3 tð Þ ¼ 0:5� t2

Case study 3: Rotation about the line JK and transla-
tion normal to the line JK, as

s1 tð Þ ¼ 0:5, s2 tð Þ ¼ 0:5þ t2, s3 tð Þ ¼ 0:5þ t2

Note that as stated in Section 3, the gravitational accel-
eration is also considered in the above case studies. As
mentioned before, at the start of motion for all three
cases, the xy plane (the rigid star plane) is parallel to the
XY plane and also the z and Z-axis are collinear.
Therefore, at the start of motion we have s1 0ð Þ ¼
s2 0ð Þ ¼ s3 0ð Þ ¼ 0:5 and xp1ð0Þ ¼ xp2ð0Þ ¼ xp3ð0Þ ¼
�L=2þ d. For each of the three case studies, two dif-
ferent groups of mode shapes are used to solve the
motion equations. To do this, consider the working
point of the star, point G, and assume two different
boundary conditions of slide and free. For the free
ends of the beams, points A, B, and C, we use only
the free boundary conditions. Therefore, the first
group uses slide–free mode shapes, and the second
group uses free–free mode shapes. Finally, the results
of the approximate analytical solution are compared
with the results of a commercial FEM software. For
each case study, the numbers of the slide–free and
free–free mode shapes used in the approximate analyt-
ical solution are 36 and 50, respectively and the number
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Figure 10. Case study 1: beam shapes at t¼ 0.5 s – deformation axis is magnified.

Figure 7. Case study 1: elastic displacement of point G.

Figure 8. Case study 1: elastic displacement of points A, B and C.

Figure 9. Case study 1: amount of the three driving forces.
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of the elements in the FEM solution is 600. A spatial
two-node linear beam element is used in the FEM solu-
tion. Let parameters a and b represent the thickness and
width of each beam in the zi and yi directions, respect-
ively. The physical properties of the 3-PSP robot are as
a ¼ 0:003ðmÞ, b ¼ 0:03ðmÞ, E ¼ 200
 109ðN=m2Þ,
I ¼ 6:75
 10�11ðm4Þ, � ¼ 0:702ðkg=mÞ, d ¼ 0:18ðmÞ,

L ¼ 0:5ðmÞ, Lp ¼ 0:03ðmÞ, mp þms þml ¼ 0:2ðkgÞ
and Ipxx ¼ Ipyy ¼ Ipzz ¼ 2
 10�4ðkg:m2

Þ. The simula-
tion time used in the three case studies is 0.5 seconds.
The consumed CPU time for the approxi-
mate analytical method is approximately 10 min-
utes versus 65 minutes for the commercial FEM
software.

Figure 11. Case study 2: elastic displacement of point G.

Figure 12. Case study 2: elastic displacement of points A, B and C.
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7.1. Case Study 1

For case study 1, the robot has a symmetric configur-
ation and a rectilinear translation in the Z-direction.
Additionally, the gravitational acceleration is in the
Z-direction. The vibration of the working point of the
robot, point G, is shown in Figure 7.

Additionally, vibration of the free ends of the beams,
points A, B and C, are considered. Figure 8 shows the
elastic displacement for point A. In case study 1, trans-
verse vibration of points B and C is identical to that of
point A and therefore is not separately shown.

The amount of the three driving forces, Fai, in case
study 1 is shown in Figure 9. Because of the symmet-
rical motion, the values of all three driving forces are
equal. Also note that, if the robot is assumed to be all
rigid, then because of the symmetric configuration/
motion and constant input acceleration, it is a simple
task to calculate the necessary driving forces for case
study 1 as Fai ¼ 3 mp þms þml þ �L

 �
€si tð Þ þ gð Þ

� �
=3 ¼

6:5018ðNÞ. The three actuator forces remain constant
during the motion. However, in the flexible case, as

shown in Figure 9, vibrational motion of the robot
has a significant effect on the values of the driving
forces.

As shown in Figures 6–8, for case study 1, analytical
results and FEM results closely follow each other.
Additionally, the accuracy of the responses obtained
using the slide–free and free–free mode shapes are
nearly identical. The deformed shape of the three
beams of the star obtained at t ¼ 0:5s using the slide–
free and free–free mode shapes are shown in Figure 10.
Note that xi ¼ �0:25 represents the working point,
point G0, where all three links are joined and the
slope of all three beams becomes zero.

7.2. Case Study 2

In case study 2, the rigid star rotates about and trans-
lates along the y-axis. Additionally, the existence of the
gravitational acceleration in the Z-direction acts as if
the robot is moving in the Z-direction. Therefore, the
moving star experiences a more general motion. Elastic
displacement of point G is shown in Figure 11.

Figure 13. Case study 2: amount of the three driving forces.
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Next, elastic displacements for the free ends of the
three beams, points A, B, and C, are shown in
Figure 12. For each of the points, the results of the
free–free mode shapes are closer to the FEM results
than the slide–free results.

The amount of the driving forces, Fai, are shown in
Figure 13. As can be seen from this figure, the

frequency of the responses obtained from the slide–
free mode shapes is incorrect.

As shown in Figures 10–12, analytical results for the
free–free mode shapes closely follow the FEM results.
The accuracy of the responses obtained using the free–
free mode shapes are significantly better than the slide–
free case. This is due to that fact that the slide–free

Figure 14. Case study 2: beam shapes at t¼ 0.5 s – deformation axis is magnified.

Figure 15. Case study 3: elastic displacement of the point G.
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mode shapes have the zero slope condition at their slide
end and, therefore, incorrectly induce a zero slope con-
dition at point G. Note that in case study 1, because of
the symmetric motion of the star, the zero slope condi-
tion at point G was correct.

Finally, using the slide–free and free–free mode
shapes, the deformed shape of the three beams of the
star at t¼ 0.5s are obtained and shown in Figure 14.
Note that due to unsymmetrical motion, the slope of
the beams at point G is expected to be nonzero for the
majority of the motion. Therefore, the choice of free–
free mode shapes which do not force the slope of the
beams at point G to be zero is correct.

7.3. Case Study 3

In case study 3, the input trajectories are set so that we
have a symmetric motion with respect to the YZ plane
(see Figure 2). The line JK translates along the Z-dir-
ection and rotates about the line JK. The gravitational
acceleration is also in the Z-direction. This is a more
general case study with respect to the case studies 1 and

2, which better illustrates the effect of the selected mode
shapes on the accuracy of the vibrational responses.
Elastic displacement of point G for case study 3 is
shown in Figure 15.

Similar to the two previous case studies, elastic dis-
placement for the free ends of the three beams, points
A, B, and C, are also calculated and shown in
Figure 16. Similar to case study 2, results obtained
from the free–free mode shapes are more accurate
than those of the slide–free mode shapes and more clo-
sely follow the FEM results. Because of the symmetric
motion, elastic displacements of points B and C are
identical.

The amount of the driving forces, Fai, are calculated
and shown in Figure 16. Results obtained from the
free–free mode shapes are more accurate than those
of the slide–free mode shapes. As shown in Figure 17,
because of symmetric motion with respect to the YZ
plane, the driving forces Fa2 and Fa3 are identical.

As shown in Figures 14–16, for case study 3 and
similar to case study 2, the accuracy of the responses
obtained using the free–free modes are more than

Figure 16. Case study 3: elastic displacement of points A, B and C.
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the slide–free modes. Additionally, analytical results for
the free–free mode shapes closely follow the FEM
results. As mentioned earlier, the slide–free mode
shapes incorrectly induce a zero slope condition at
point G of the star which results in inaccurate
responses.

The deformed shape of three beams of the moving
platform obtained at t ¼ 0:5 s using the slide–free and
free–free mode shapes are shown in Figure 18 for case
study 3. Note that similar to unsymmetrical motion in
case study 2, using the free–free modes the slope of all
beams at point G is nonzero and the slide–free
mode shapes cannot satisfy this boundary condition
at point G.

8. Discussion on mode shape selection

The assumed mode method provides simplicity in sol-
ving vibrational motion equations. The traditional
AMM typically requires some qualitative information
about the geometrical conditions of the system motion,

i.e. geometrical boundary conditions. This information
helps researchers to better select the type of assumed
mode shapes. However, for certain points in some
structures, the use of traditional boundary conditions
for mode shapes may not be correct. In such cases, one
solution is to use the mode shapes with free boundary
conditions together with proper geometrical con-
straints. The free boundary conditions mean that geo-
metrical boundary conditions are unspecified (free) and
natural boundary conditions are specified (usually
zero).

For example, in the case of the presented 3-PSP par-
allel robot with a moving platform made of three flex-
ible beams, the point G does not have any specific
geometrical boundary conditions. Therefore, use of
modes with free geometrical conditions at point G
together with the proper geometrical constraints
resulted in obtaining the correct solution for the pre-
sented analytical model. On the other hand, using the
slide geometrical conditions at point G resulted in an
unacceptable solution.

Figure 17. Case study 3: amount of the three driving forces.
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9. Conclusion

In the present study, an analytical model and its
approximate analytical solution were presented for
dynamic and vibration analysis of a 3-PSP parallel
robot with a flexible moving platform having three
passive prismatic joints. In-plane bending stiffness
for three beams of the moving star was assumed to
be much higher than out-of-plane bending stiffness
and consequently in-plane transverse vibration for
the three beams was neglected. Direct kinematics
was developed for acceleration analysis of the rigid
robot. For dynamic modeling, the passive prismatic
joints and junction point of the three flexible beams
were modeled using a new set of geometric
constraints. Additionally, a previously developed con-
strained motion equation for a planar Euler-Bernoulli
beam having a prismatic joint was further developed
for the three beams of the star. Next, an approximate
analytical method was developed for solving the
motion equations of the robot. To investigate the
model’s efficiency, three input trajectories and two

different groups of mode shapes were considered.
Elastic displacements of free end points and the junc-
tion point of the three flexible beams of the star as
well as the driving forces of the robot were compared
with the FEM results. It was shown that accurate
results were obtained using the free–free
mode shapes and therefore the analytical model is
correct.

The main contributions of this paper are: (1)
Presenting an analytical model and its approximate
analytical solution for dynamics and vibration of the
3-PSP parallel robot; (2) Obtaining the direct kine-
matics solution of the 3-PSP parallel robot; (3)
Simultaneously solving the inverse/direct dynamics
and vibration of the robot. Additional contributions
of this paper are: (4) Presenting a new set of geometric
constraints for dynamic modeling of the passive pris-
matic joints as well as presenting a new set of geometric
constraints for the junction point of the three beams;
(5) Investigating the effect of the selected assumed
mode shapes on the accuracy of the approximate ana-
lytical solution.

Figure 18. Case study 3: beam shapes at t¼ 0.5 s – deformation axis is magnified.
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