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Abstract. Let A be a Banach algebra and let every module-valued derivation from A
to any Banach A-bimodule be continuous. We show that if {d,,} is a higher derivation
from A to a Banach algebra B with continuous dy, then there exist a continuous left
A-module homomorphism U : *B(A;,B) — B and a sequence {D,,} of module-valued
derivations from A into B (A;, B) such that d,,, = UoD,, (m > 1), and as a consequence
{d} is automatically continuous. We also obtain a partial result concerning innerness
of higher derivations on W*-algebras.
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1. Introduction

Let A and B be algebras. A family of linear mappings {d,, }*_, (k might be co)
from A into B is called a higher derivation of rank k if

m

dp(ab) =Y " dj(a)dp—;(b) (a,b€ A m=0,1,2 k).

J=0

If there is no cause of ambiguity, a higher derivation will be simply denoted by
{d,,}. Tt is obvious that for a higher derivation {d,,}, do is a homomorphism and
d; is a dy-derivation that is, di(ab) = dy(a)d;(b) +dy(a)do(b). A standard example
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of a higher derivation of rank k is {£7-}% _ where D : A — Ais a derivation. A

higher derivation {d,,} is said to be continuous if d,, is continuous for all m > 0.

Higher derivations were introduced by Hasse and Schmidt [5] and algebraists
sometimes call them Hasse-Schmidt derivations. The reader may find more about
the algebraic properties of higher derivations in [1], [4], [5], [15], [18], [21], [19],
[6], [12]. Loy [11], Jewell [9] and Villena [20] proved the automatic continuity of
higher derivations in certain cases. In [7] and [8], the authors proved some results
concerning higher derivations on JB*-algebras and Banach algebras. If {d,,} is a
higher derivation from A to A such that dj is the identity map on A, then d; is
a derivation and {d,,} is called a strong higher derivation. In [10] Jun and Lee
proved the Singer-Wrermer theorem for strong higher derivations. Mirzavaziri in
[13] gives a characterization of a strong higher derivation defined on an algebra.

Let {d,,} be a higher derivation from a Banach algebra A to a Banach algebra
B. Define

(1.1) a.x =do(a)r, r.a =zdy(a) (a€ A x € B).
Since dy is a homomorphism, B is an A-bimodule with respect to the mappings
(a,z) = a.x, (a,z) > x.a, AX B — B.

It is easy to see that B is a Banach A-bimodule provided that dy is continuous.
In section 2 we give a characterization for higher derivations on certain Banach
algebras. We show that if every module-valued derivation on a Banach algebra A
is continuous, then each higher derivation {d,, } from A to a Banach algebra 8 with
continuous dy, is of the form d,, = U o D,,, (m > 1), where U is a continuous left
A-module homomorphism and each D,, is a module-valued derivation. Therefore
{d,,} is continuous. As a consequence every higher derivation from a C*-algebra,
with continuous dy, is continuous. In section 3 we define an inner higher derivation.
We show that if A is a commutative W *-subalgebra of a W*-algebra 91, then each
strong higher derivation from .4 to 91 is inner.

2. Characterization

Let A be a Banach algebra and X a Banach A-bimodule. A linear map S': A — X
is said to be left-intertwining if the map

br— aS(b) — S(ab), A — X,
is continuous for each a € A, and right-intertwining if the map
ar— S(a)b — S(ab), A — X,

is continuous for all b € A. A linear map S : A — X is intertwining if it is both
left- and right-intertwining. For more about these objects see [2, Section 2.7].
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Remark 2.1

(i) Let A and B be Banach algebras. Suppose that {d,,} is a higher derivation
from A into B for which dy is continuous. Consider B as a Banach A-
bimodule as in (1.1). Then it is easy to see that for every integer m > 1,
d, : A —> B is an intertwining map whenever dy, ..., d,,_1 are continuous.

(ii) Let A be a Banach algebra and X a Banach A-bimodule. Consider A4; =
C @ A to be the Banach algebra unitization of A. Even if A is unital,
A; # A and A, is a unital Banach algebra containing A as a closed ideal.
The identity (1,0) of A; will be denoted by 1. Set F = B(A;, X), the
Banach space of all bounded linear operators from A; to X. For a € A and
T € F, define

(a.T)(b) = aT(b), (T.a)(b) = T(ab) (b€ Ay).
Then F is an A-bimodule with respect to the maps
(a,T) —alT, (a,T) — T.a, Ax F — F.

Now, the map
U:T—T1), F— X

is a continuous linear operator and clearly
UT)=aU(T) (a€ A, SeF),

so that U is a left A-module homomorphism.

Dales and Villena in [3, Theorem 2.1 | proved that F is a Banach A-
bimodule. Also in the same theorem it has been shown that each left-
intertwining map S : A — X is of the form S = U o D, where U is defined
as above and D : A — F = B(A;, X) is a derivation defined by

D(a)(B,b) = S(Ba + ab) — a.S(b) (BeC, abe A).

Theorem 2.2 Let A be a Banach algebra for which every derivation from A
into an arbitrary Banach A-bimodule is continuous. Suppose that {d,} is a
higher derivation from A to a Banach algebra B with a continuous dy. Then
there exists a sequence {Dpy}m>1 of derivations from A to B(Ay, B) such that
dm =UoD,, (m>1), whereU :B(A;,B) — B is the continuous left A-module
homomorphism defined by U(T) = T(1) for all T € B( Ay, B). Moreover, {d,,} is
automatically continuous.

Proof. By continuity of dy, B is a Banach A-bimodule with module operations
defined in (1.1). Therefore d; is a module-valued derivation to a Banach A-
bimodule and also an intertwining by Remark 2.1 (7). Now, by Remark 2.1 (ii)
there exists a derivation Dy : A — B(A;,B) such that dy = U o D;, where
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U :9B(A,B) — Bis defined by U(T) = T(1) (T € B(A;, B)) which is a conti-
nuous left 4-module homomorphism. Continuity of d; is obvious by the assump-
tion. Now by induction assume that for i = 1,...,m — 1, d; = U o D;, where each
D; is a derivation from A to 2B(.A;, B) which is continuous by the hypothesis and
U :%B(A,B) — B is as before. Now we have dy,dy, ..., d,,—1 are continuous and
hence d,, is an intertwining map and again by Remark 2.1 (ii) it is of the form
U o D,,, where U is as before and D,, : A — B(A;, B) is a derivation. Since by

the assumption each D,, is continuous, the last assertion follows easily. .

Corollary 2.3 Ewvery higher derivation {d,,} from a C*-algebra to a Banach al-
gebra, with continuous dy, is continuous.

Proof. Since every module-valued derivation from a C*-algebra is continuous
[14], then by Theorem 2.2 we have the result. n

We recall that a derivation ¢ from a Banach algebra A to a Banach A-
bimodule X is said to be inner if there exists x € & such that §(a) = ax — za
(a € A). A Banach algebra A for which every bounded module-valued derivation
to an arbitrary Banach A-bimodule is inner is called super-amenable [16].

Corollary 2.4 Let A be a super-amenable Banach algebra satisfying the hypoth-
esis of Theorem 2.2. Then for every higher derivation {d,,} from A to a Banach
algebra B, with continuous dy, we have d,, = U o 6,, (m > 1), where each 6, is
an inner derivation from A to B(Ay, B) and U is defined as in Remark 2.1 (ii).

3. Inner higher derivations

We recall the definition of an inner higher derivation from [15].

Definition 3.1 Let A and B be Banach algebras and let {d,, } be a higher deriva-
tion from A into B. Then {d,,} is called inner if for each m € N, there are
Uy, ..., Uy, € B such that

dp(a) = do(a)u, — Z Um—id;(a) (a € A, meN).

Note that if dy is continuous, then the inner higher derivation {d,,} is also conti-
nuous.

Example 3.2 If {d,,} is a higher derivation from a unital Banach algebra A to a
Banach algebra B such that do(A)B = 0, then {d,,} is inner. To see this, suppose
a € A and let e be the identity element of A. Then

m

dy(a) = dy(ea) = Z di(e)dm—i(a) = di(e)dm_1(a)+.. . +dpn_1(e)di(a)+d,,(e)dy(a).

=0
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For 1 <i < m put u; = —d;(e), then we have

dp(a) = do(a)ty, — upmdo(a) — upm—_1di(a) — ... — urdy,—1(a).
Therefore {d,,} is inner.

It is well known that every derivation from a W*-algebra 91 to itself is inner
[17, Theorem 2.5.3]. Also by [17, Corollary 2.5.4], if A is a C*-subalgebra of
B(H) where B(H) is the C*-algebra of all bounded linear operators on a Hilbert
space H, then every derivation § : A — A is inner when we consider it as a
derivation from A to B(H) . More precisely, there exists © € B(H) such that
d(a) = ax —xa (a € A).

Proposition 3.3 Let M be a commutative W*-algebra and {d,,} a strong higher
derivation from 9 to M. Then each d,, (m > 1) is zero.

Proof. By [17, Theorem 2.5.3] the result is obvious. .

We are far from a proof of Sakai’s result [17, Theorem 2.5.3] for higher deriva-
tions, but we can prove some partial results concerning higher derivations on
W*-algebras.

We recall the well known Markov-Kakutani theorem.

Theorem 3.4 Let K be a non-empty conver compact subset of a locally convex
space and let S be a commutative semigroup of continuous affine maps on K.
Then S has a fized point.

Theorem 3.5 Let M be a W*-algebra with identity element e and {d,,} a strong
higher derivation from 9M to M. Let A be a commutative W*-subalgebra of N
containing e. Then for each m € N there are ug = e, uy, ..., Uy, n DM such that

m—1
dp(a) = au, — Z Um—idi(a) for all a € A and
i=0

[l < Al + Num—rl[lldall + - 4 [Jua][l|dml]-

Proof. By [17, Lemma 2.5.1] the result holds for m = 1. Now suppose that for
each j € {1,...,m — 1} there exist up = e,uy,...,u; in M such that, d;(a) =

j
auj — Z u;_;d;(a) for all @ € A and
i=0

tmetll < Nt 4+ Tetmslllds |+ - + s sl

Let A" be the group of all unitary elements in A. Since each element of A is
a finite linear combination of elements in A", so it is enough to show that the
result holds for A“. For a € A", define T,(x) = [ax — dp(a) — upm_1di(a) — ... —
udy_1(a)la™  (z € 9M). Then each T, is an affine map. If a,b € A", then we
have
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T.Ty(x) = T, [(bx — dp(b) — tp—1d1(b) — ... — uldm,l(b))b_l}

= (ab:z:b_l — ad,, (D)™ — aty,_1dy ()b — ... — auyd,, 1 (b)b71

—dp(a) — upm_di(a) — ... —urdy,_1(a ))a

= (abz — dy,(ab) + d(a )b+dm 1(a)di(b) + ... + di(a)dp—1(b))(ab) ™

— U —1d1 () (ab) ™' — auy,_oda(b)(ab) ™! — ... — auyd,, 1 (D) (ab)™?

—dp(a)a™ —up_1di(a)a™ — Uy, _sds(a)a 1 o= Uy _o(a)a™t —uyd,, 1 (a)a™t.

Now, by the induction hypothesis, we have

T.Ty(x) = abx(ab)™ — dy(ab)(ab)™ — (aum—1 — dn—1(a))di(b)(ab)~*
— ... — (auy — di(a))dpm-1(b)(ab) ™ — up—1di(a)a™ — wp_adz(a)a™

— o= Usdy o(a)a™t —uyd,,_1(a)at = abz(ab)™t — d,,(ab)(ab)™?

— (aum_l — QU1 + Uy 10+ Upy_2di(a) + ...+ uldm_g(a))dl(b)(oab)_1
— ... — (aug — wia + uga)dp—1(b)(ab) ™ — wy_1di(a)a”

— Up_odo(a)a™ — ... — usd,,_s(a)a™ — uyd,,_1(a)a™?

= abxz(ab)™" — dn(ab)(ab) ™" — tp—1 (ady (b) + di(a)b) (ab) ™

— Upm—2 (d1 (a)d1 (b) + dg(a)b + Gdg(b)) (ab)_l

— .=y (ady—1(b) + di(a)dp—2(b) + ... + dp—2(a)di (b) + din_1(a)b) (ab) !
= (abz — dn(ab) — wp_1d1(ab) — wp_2ds(ab) — ... — urd,,_1(ab)) (ab)~*
= Tab(l‘) = Tba(I) = TbTa(CL‘).

Let o denote the weak operator topology on 9t and let K, be the o-closed
convex hull of {7T,(0) : a € A"}. Since each T, is o-continuous and T,T,(x) =
Twp(z) (a,b € A%, x € M), it is easy to show that T,(K,,) C K,,. On the other
hand

1T (0)] I(=dm(a) = um-1rdi(a) = ... — urdm-1(a))a™"||

< ldmll + Nwm-alllldall + - -« + [Jus|[ | dm-1]],
and it follows that

sup ]l < Ndmll + N[l o] + - - 4 [Je [}l ]l

Therefore, K,, is o-compact and {T, : a € A"} is a commutative semigroup of o-
continuous affine maps on K,,. Thus by Theorem 3.4 there is an element u,, € M
such that

To(tm) =ty (a € A").

Therefore

and clearly
[t < Nl + Ntm—1llldall + - . + [Jua][l|dm—1 ]l

Corollary 3.6 If A is a commutative W*-subalgebra of a W*-algebra 9 con-
taining the identity element, then each strong higher derivation from A to I is
mner.
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