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ABSTRACT

We have explored the structure of a hot magnetized accretion flow with thermal conduction. The importance of
thermal conduction in hot accretion flows has been confirmed by observations of the hot gas surrounding Sgr A∗
and a few other nearby galactic nuclei. For a steady state structure of such accretion flows, a set of self-similar
solutions is presented. In this paper, we have actually tried to re-check the solution presented by Abbassi et al. using
a physical constraint. In this study, we find that Equation (29) places a new constraint that limits answers presented
by Abbassi et al. In that paper, the parameter space, which is established in the new constraint, was plotted. However,
the new requirement makes up only a small parameter space with physically acceptable solutions. And now in
this paper, we have followed the idea with more effort and tried to find out how thermal conduction influences the
structure of the disks in a physical parameter space. We have found that the existence of thermal conduction will
lead to the reduction of accretion and radial and azimuthal velocities as well as the vertical thickness of the disk,
which is slightly reduced. Moreover, the surface density of the disk will increase when thermal conduction becomes
important in hot magnetized flow.
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1. INTRODUCTION

It is widely believed that many astrophysical objects are pow-
ered by mass accretion onto black holes. Black hole accretion
disk models have been extensively studied over the past three
decades (see Kato et al. 1998 for a review). The standard ge-
ometrically thin, optically thick accretion disk model can be
successfully explained by most of the observational features in
active galactic nuclei (AGNs) and X-ray binaries (Shakura &
Sunyaev 1973). Besides the traditional standard disk model by
Shakura & Sunyaev (1973), there are a number of new disk
classifications including advection-dominated accretion flows
(ADAFs) or radiative inefficient accretion flows (RIAFs) for a
very small mass-accretion disk (Narayan & Yi 1994), and su-
percritical accretion disk or the so-called slim disk, for a very
large mass-accretion rate (Abramowicz et al. 1988). ADAFs are
optically thin and hot (compared to the virial temperature of
the gas in the flows) and radiate mostly in X-ray wave bands
(see Narayan & McClintock 2008). In the ADAF model, only a
small fraction of the gravitational energy released in the accre-
tion flow is radiated away due to inefficient cooling and most
of the energy is stored in the accretion flow and advected to
the black hole. This model can successfully explain the main
observational features of black hole X-ray binaries and low-
luminosity AGNs (LLAGNs; e.g., Narayan & Yi 1994, 1995;
Quataert et al. 1999; Yuan et al. 2003; Ho 2008). The diver-
sity of models indicates that modeling the hot accretion flows
around a black hole is a challenging and controversial problem.
One of the largely neglected physical phenomena in modeling
ADAFs is thermal conduction. Recent observations of hot ac-
cretion flows around AGNs indicate that it should be based on
a collisionless regime (Tanaka & Menou 2006). It is also sug-
gested that accretion in these systems proceeds under a weak
collisional condition. Furthermore, it is proposed that thermal
conduction can be a possible mechanism through which suf-
ficient extra heating is provided in hot ADAFs. So, thermal
conduction seems to have an important role in energy transport

in the accreting materials around a hot accretion disk where
they are nearly completely ionized. Since advection-dominated
disks have high temperatures, the internal energy per particle
is high. This is one of the reasons why advective cooling over-
comes radiative cooling. For the same reason, turbulent heat
transport by conduction in the radial direction is non-negligible
in the heat balance equation. So, it should be important to
consider the role of thermal conduction in an ADAF solution.
Shadmehri (2008), Faghei (2012), Abbassi et al. (2008, 2010),
and Tanaka & Menou (2006) have studied the effect of hot accre-
tion flow with thermal conduction in a semi-analytical method;
the physics of such systems has been studied in simulation mod-
els (e.g., Sharma et al. 2008; Wu et al. 2010). Shadmehri (2008)
has shown that thermal conduction opposes the rotational ve-
locity, but increases the temperature. Abbassi et al. (2008) have
shown that for this problem there are two types of solutions:
high and low accretion rates. They plotted the radial velocity for
both solutions, which revealed that it is influenced by thermal
conduction. In this study, by introducing a new physical condi-
tion, it has been shown that the high accretion rate solutions of
Abbassi et al. (2008) are not exactly correct. Also, some of the
low accretion rate solutions presented there do not have physical
value. With this extra condition, it is possible to find the physi-
cally meaningful parametric space using which we next plotted
the dynamical quantities to investigate how thermal conduction
affects them. Finally, tangled magnetic fields in accretion flows
are likely to reduce the effective mean free path of particles. The
magnitude of this reduction, which depends on field geometry,
is still unknown. In this paper, we will investigate the effect of
thermal conduction on the physical structure of the ADAF-like
accretion flow around a black hole in the presence of a toroidal
magnetic field.

2. THE BASIC EQUATIONS

We are interested in analyzing the structure of a magnetized
ADAF where thermal conduction plays an important role in
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energy transportation. We only consider the toroidal component
of the magnetic field and suppose that the gaseous disk is
rotating around a compact object of mass M∗. Thus, for a
steady axisymmetric accretion flow, i.e., ∂/∂t = ∂/∂φ = 0, we
can write the standard equations in the cylindrical coordinates
(r, φ, z). In addition, we vertically integrate the flow equations
and therefore all the physical variables only become functions
of radial distance r. Moreover, relativistic effects are neglected
and Newtonian gravity in the radial direction is taken into
account. The disk is supposed to be turbulent and possesses
an effective turbulent viscosity ν. We adopt the α-prescription
for the viscosity of a rotating gaseous disk. As for conservation
of energy, it is assumed the energy generated due to viscosity
dissipation is balanced by the radiation, thermal conduction,
and advection cooling (e.g., Narayan & Yi 1994; Abbassi et al.
2008, 2010). The equation of continuity reads

1

r

∂

∂r
(rΣVr ) = 2ρ̇H, (1)

where Vr is the accretion velocity (Vr < 0), Σ = 2ρH is the
surface density at a cylindrical radius r, ρ̇ is the mass loss rate
per unit volume, and H is the disk’s half-thickness. The equation
of motion in the radial direction is
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where vϕ, cs , and cA are the rotational velocity of the disk, sound
velocity, and Alfvén velocity of the gas, respectively. The sound
speed and the Alfvén velocity are defined as c2

s = pgas/ρ and
c2
A = B2

ϕ/4πρ = 2pmag/ρ, where pgas and pmag are the gas
and the magnetic pressures, respectively.

The vertically integrated angular momentum equation be-
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where α is the viscosity parameter, Ω(= vϕ/r) is the angular
velocity, and Ωk is the Keplerian angular velocity, respectively.

By integrating over z of the hydrostatic balance, one obtains
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s , (4)

where β = Pmag/Pgas = 1/2(cA/cs)2, which indicates the
importance of magnetic field pressure compared to gas pressure
(Akizuki & Fukue 2006; Abbassi et al. 2008, 2010). Two cases
can be considered. Case 1: where the pressure is assumed to be
the gas pressure (thermal pressure; which is the choice of this
paper) and case 2: when the pressure is assumed to be the total of
the magnetic plus gas pressure. Therefore, in case 2 we replace
α with α(1 + β) in all of the equations. Next, the dynamical
properties of the disk for different values of β is demonstrated.
The energy equation considering cooling and heating processes
in an ADAF can be found as follows. We assume that the energy
generated due to viscous dissipation and the heat conducted into
the volume are balanced by the advection cooling and energy
transport by thermal conduction. Thus,
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(5)

On the right-hand side of the energy equation we have

Q+ − Q− + Qcond = Qf + Qcond,

where Qcond = −∇ · Fs represents energy transfer due to
the thermal conduction and Fs = 5Φsρc3

s is the saturated
conduction flux (Cowie & Mackee 1977) in the direction of the
temperature gradient. Φs , the dimensionless coefficient, is less
than unity. Finally, since we consider the toroidal component for
the global magnetic field, the induction equation can be written
as

d

dr
(VrBϕ) = Ḃϕ, (6)

where Ḃϕ is the field escaping/creating rate due to magnetic
instability or the dynamo effect. Now we have a set of MHD
equations that describe the structure of magnetized ADAFs. The
solutions to these equations are strongly correlated to viscosity,
magnetic field strength β, the degree of advection f, and the
thermal conduction parameter φs for the disks. We seek a self-
similar solution for the above equations. In the next section, we
will present self-similar solutions to these equations.

3. SELF-SIMILAR SOLUTIONS

In order to have a better understanding of the physical pro-
cesses taking place in our disks, we seek self-similar solutions of
the above equations. The self-similar method has a wide range
of applications for the full set of MHD equations, although it is
unable to describe the global behavior of accretion flows since
no boundary conditions have been taken into account. However,
as long as we are not interested in the behavior of the flow near
the boundaries, these solutions are still valid. In the self-similar
model, the velocities are assumed to be expressed as follows:

Vr (r) = −c1αVk(r) (7)

Vϕ(r) = c2Vk(r) (8)

c2
s = c3V

2
k (9)

c2
A

B2
ϕ

4πρ
= 2βc3

GM

r
, (10)

where

Vk(r) =
√

GM

r
(11)

and the constants c1, c2, and c3 are determined later from the
main MHD equations. We obtain the disk half-thickness H as

H

r
=

√
c3(1 + β) = tan σ. (12)

Hence, a hot accretion also has a conical surface, whose opening
(half-thickness) angle is σ . Assuming the surface density Σ to
be in the form of

Σ = Σ0r
s, (13)

we obtained, e.g.,

ρ̇ = ρ̇0r
s− 5

2 (14)

Ḃϕ = Ḃ0r
s−5

2 . (15)

By substituting the above self-similar solutions into the
equations of the disks, we obtain the following system of

2



The Astrophysical Journal, 750:57 (8pp), 2012 May 1 Ghasemnezhad, Khajavi, & Abbassi

dimensionless equations, to be solved for c1, c2, and c3. In
case 1,
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It is evident from the above equations that there is no mass
loss for s = −1/2, while there is mass loss when s > −1/2.
On the other hand, the escape and creation of magnetic fields
balance one another for s = 3. Although outflow is one of
the most important processes in accretion theory (see Narayan
& Yi 1995; Blandford & Begelman 1999; Stone et al. 1999
and also some recent work like Xie & Yuan 2008; Ohsuga &
Mineshige 2011), we choose a self-similar solution in our model
in which ρ̇ = 0 and Ḃφ ∝ r−11/4 (s = −1/2), thus ignoring
the effect of wind and outflow on the structure of the disk.
After some algebraic manipulations, we obtain a fourth-order
algebraic equation for c1:
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1 − (2B + A2)c1 + 1 = 0, (21)

where the coefficients depend on the input parameter as
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This algebraic equation shows that the variable c1, which
determines the behavior of radial velocity, only depends on α,
Φs , β, and f. Using c1 from this equation, the other variables
(i.e., c2 and c3) can be determined easily:

c2
2 = 4c1

9f

[
1

γ − 1
− 1

2

]
+

20Φs

9f α

(
s − 3

2

)[
1

3(s + 1)

] 1
2

c
1
2
1

(25)

c3 = c1

(
1

3(s + 1)

)
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As stated above, we are solving the problem in the case where
there is no wind, s = −1/2. When s = −1/2 the expressions
for c1 and c2 are found to be

c2
2 = 2c1
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3
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Abbassi et al. (2008) have found two types of solutions that
represent high and low accretion rates. These two rates act
differently toward the saturated thermal conduction parameter,
φs . As stated in the introduction, the main aim of this paper is
to add another physical condition. This new requirement limits

the solutions of c2
2 � 0. From the above equation, c2

2 � 0 and
γ = 5/3, we have

√
c1 � 1

α

√
200

3
φs. (29)

Therefore, the (φs, α) parametric space could be found as
follows:

α −
√

200

3c1
φs � 0. (30)

A numerical solution to this equation is presented in Figure 1 for
a variety of values of the viscosity parameter α and the thermal
conduction parameter φs . These solutions may be considered
either as flows with a fixed value for the viscosity parameter
and a sequence of increasing thermal conduction parameters
or a sequence of different values of viscosity parameter α in a
fixed thermal conduction regime. These plots show that the new
physical condition places a constraint on the physically valid
parametric space. As a result, we used this extra condition to
check the validity of the solutions presented by Abbassi et al.
(2008). Tanaka & Menou (2006) and Abbassi et al. (2008) have
shown that for a very small φs their solutions coincide with
the original one-dimensional ADAF solutions; but, by adding
the saturated conduction parameter, φs , the effect of thermal
conduction can be better seen while approaching 0.001–0.01.
On the other hand, the widely accepted values of α are between
0.01 and 0.1. So, we have to plot our solutions in this range. The
dark areas in Figure 1 are where we are looking for regions of
the parametric space that are physically acceptable. Another aim
of this study was to re-check the solution presented by Abbassi
et al. (2008) and to further study the effect of heat conduction
and magnetic fields on the structure of ADAFs. Figure 1 shows
that for larger values of α we should choose a large φs in order to
ensure a physically valid solution. The calculations are carried
out in a range of viscosities, thermal conduction, and magnetic
field parameters. The calculated global structures of some
ADAFs with different parameters are plotted in Figures 2–7.

Figure 2 shows how the coefficient Ci depends on the
magnetic field parameter β for different values of advection
parameter f. Radial velocity is determined by C1, which is shown
in the upper panel. In ADAFs, the radial velocity is generally less
than the free fall velocity on a point mass, but it becomes larger
if the advection parameter f is increased and such behavior is
consistent with the previous analytical solutions (e.g., Akizuki
& Fukue 2006; Abbassi et al. 2008, 2010). For a given f, both
the radial and rotational velocities increase as the disk becomes
more magnetized (i.e., a larger β). A magnetized disk must rotate
faster than when there is no magnetic field present because of the
effect of magnetic tension. It is clear that increasing the magnetic
field strength increases radial velocity (the accretion rate) in the
accretion flows. Radial velocity of the disk is more sensitive
to the variations of f when the disk is more magnetized. The
rotational velocity behaves the same for different values of f but
it shifts slightly up when the parameter β increases. The standard
ADAFs become thicker when the disks are advective f ∼ 1, but
by adding the magnetic field strength, the vertical thickness is
increased significantly for a given f. In Figure 3, we investigate
the role of saturated thermal conduction in radial, toroidal, and
the vertical thickness of accretion flows. Increasing the thermal
conduction coefficient φs will decrease the radial velocity. It will
also have a large effect on the rotational velocity of accretion
flows (middle panel). Furthermore, it will also decrease the
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Figure 1. Parameter space for thermal conduction parameter φs as a function of viscosity parameter α. The dark section of the plot shows the physically accepted area
of the parametric space.
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Figure 2. Numerical coefficient Ci as a function of advection parameter f for several values of viscosity parameter α. All of these figures were set up for α = 0.07 and
φs = 0.003.

sound speed and therefore vertical thickness of the disks (lower
panel). In Figures 4 and 5, we plotted the coefficient Ci with
thermal conduction parameter φs for different values of β and
f. Tanaka & Menou (2006) have shown that for a very small
φs their solutions coincide with the original ADAF solution
(Narayan & Yi 1994), but by adding the saturated conduction

parameter φs , the effect of thermal conduction can be better seen
while approaching 0.001–0.01. On the other hand, the widely
accepted values of α are between 0.01 and 0.1. So, we have to
plot our solutions in this range. We can see that for a given set of
input parameters, the solution reaches a non-rotating limit at a
specific value of φs . We cannot extend the solution for values of
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Figure 3. Numerical coefficient Cis as a function of advection parameter f for several values of thermal conduction parameter φs . All of these figures were set up for
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this limit for φs because Equation (25) gives a negative value for
C2

2 , which is clearly not valid. The values of this limitation on
φs increase by adding a magnetic field parameter β (Figure 4,
middle panel) and advection parameter f (Figure 5, middle panel)
smoothly. In fact, the higher values of β and f will allow the
disk to have a physical rotating solution for larger φs . As is seen
in the lower panels of Figures 4 and 5, by increasing β and f ,
the vertical thickness of the disks in a given φs will increase. But
the vertical thickness in a fixed β or f will decrease globally as
φs increases. It would be expected that in high φs , disks become
thin as was predicted by Abbassi et al. (2010) and Shadmehri
(2008).

As the level of thermal conduction is increased, more heat
flows outward from the hot inner regions, resulting in a local
increase of the gas temperature relative to the original ADAF
solutions. Simultaneously, the gas adjusts its angular velocity
and increases its inflow speed to conserve its momentum
balance. We have found that the level of advection, f, will
significantly modify the structure of the disk. The breakdown
of the solutions, when C2

2 → 0, occurs at lower values of
φs . Clearly, thermal conduction can significantly affect the
structure and the properties of the hot accretion flows. In order
to understand the role of thermal conduction better, it is useful
to study it in a more realistic two-dimensional case, without
height integrations. But at this stage we are going to find out
how thermal conduction affects the structure of the disks with
a simple analysis. It would be interesting to show how the
surface density, radial velocity, and accretion rate, which are all
observable, change with the radius of the disk when the thermal
conduction plays an important role. To show how surface density
is affected by our input parameters, we use

Ṁ = 2πrΣ(−vr ), (31)

where the accretion rate is consistent with the continuity
equation (Equation (1)). Assuming Ṁ ≈ 10−8 M
 yr−1 and
M = 10 M
 and by using the self-similar solution for vr , we
have

Σ = Ṁ

2πC1α
√

GM
r− 1

2 . (32)

As seen in Figures 6 and 7, we plotted the surface density Σ,
and radial velocity as a function of r. As expected, the absolute
values of surface density and radial velocity will decrease as one
moves out farther in the disk. In Figure 6, it is evident that surface
density is increased when thermal conduction plays an important
role. But by adding the advection parameter, Σ will decrease
significantly. By adding viscous and advection parameters, the
absolute values of the radial velocity will increase in a fixed r,
as expected. Thermal conduction has the same effect and causes
high radial velocity when it has an important role. Compared to
other physical parameters, the magnetic field, β, does not have
a significant effect on surface density and velocity gradients.

4. SUMMERY AND CONCLUSION

In this paper, we studied an accretion disk in the advection-
dominated regime by considering a purely toroidal magnetic
field and in the presence of thermal conduction. Some ap-
proximations were made in order to simplify the main equa-
tions. We assumed an axially symmetric, static disk with the
α-prescription of viscosity. We also ignored the relativistic ef-
fects and self-gravity of the disk. Considering the weak colli-
sional nature of a hot accretion flow (Tanaka & Menou 2006;
Abbassi et al. 2008), a saturated form of thermal conduction
was adopted as a possible mechanism for energy transportation.
We have accounted for this possibility by allowing the saturated
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Figure 7. Radial velocity vr (m s−1) as a function of the radius (r) of the disk (in unit of rg) for several values of φs, f, β, and α parameters.
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thermal conduction constant, φs , to vary in our solutions. A
set of similar solutions was presented for such a configuration.
Also, following those presented by Abbassi et al. (2008), we
re-examined the validity of their solutions by adding another
physical condition. They had found two types of solutions: low
and high accretion rate solutions, which had different behav-
iors toward thermal conduction parameters. We found that the
high accretion rate solution presented by Abbassi et al. (2008)
is not physically valid. Also, our newly imposed condition puts
some physical constraint on low accretion rate solutions. As a
result, in order to have a physically valid solution, only a small
part of the parameter space should be considered. After assur-
ing the validity of our solutions by using the proper values of
input parameters α, β, φs, and f , we investigated the influence
of thermal conduction on the structure of accretion flows. It is
shown that the surface density increases when thermal conduc-
tion plays an important role. Also, thermal conduction has the
same effect on radial velocity. However, there exist some limi-
tations to our solutions. One is that the self-similar hot accretion
flow with conduction is a single-temperature structure. Thus, if
one uses a two-temperature structure for the ions and electrons
in the disks, it is expected that the ions and electron temperatures
decouple in the inner regions, which will modify the role of con-
duction. The other limitation of our solution is the anisotropic
character of conduction in the presence of a magnetic field.
Balbus (2001) has argued that the structure of the hot flows
could be affected by the anisotropic character of thermal con-
duction in the presence of a magnetic field. Although our pre-
liminary self-similar solutions are too simplified, they clearly

improve our understanding of the physics of ADAFs around
a black hole. To have a realistic picture of an accretion flow,
a global solution is needed rather than a self-similar one.
In our future studies, we intend to investigate the effect of ther-
mal conduction on the observational appearance and properties
of a hot magnetized flow.
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