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ABSTRACT

Self-similar and semi-analytical solutions are found for the height-averaged equations governing the dynamical
behavior of a polytropic, self-gravitating disk under the effects of winds around the nascent object. In order to
describe the time evolution of the system, we adopt a radius-dependent mass loss rate, then highlight its importance
on both the traditional α and innovative β models of viscosity prescription. In agreement with some other studies,
our solutions represent that the Toomre parameter is less than one in most regions on the β-disk, which indicates
that in such disks gravitational instabilities can occur at various distances from the central accretor. So, the β-disk
model might provide a good explanation of how the planetary systems form. The purpose of the present work
is twofold: examining the structure of a disk with wind in comparison to a no-wind solution and seeing whether
the adopted viscosity prescription significantly affects the dynamical behavior of the disk–wind system. We also
considered the temperature distribution in our disk by a polytropic condition. The solutions imply that, under
our boundary conditions, the radial velocity is larger for α-disks and increases as wind becomes stronger in both
viscosity models. Also, we noticed that the disk thickness increases by amplifying the wind or adopting larger
values for the polytropic exponent γ . It also may globally decrease if one prescribes a β-model for the viscosity.
Moreover, in both viscosity models, the surface density and mass accretion rate diminish as the wind gets stronger
or γ increases.
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1. INTRODUCTION

An accretion disk, a system where the disk feeds the central
object through accretion under the effect of viscous forces,
is believed to be present in very different contexts and over
a wide range of physical scales. In particular, such systems
are found in active galactic nuclei (AGNs), stellar black holes
(X-ray binaries), young stellar objects (YSOs), and quasars
(QSOs). Since the angular momentum is strictly conserved,
there needs to be a process that transports angular momentum
away to prevent it from accumulating on the central object.
The main acceptable possibility for this is the viscosity inside
the disk (see Frank et al. 2002). But the molecular viscosity
is inadequate to transport angular momentum in the disk and
describe luminous accretion disks, so some kind of turbulent
viscosity is required.

Many investigators adopt the so-called α-viscous model
introduced by Shakura (1972) and Shakura & Sunyaev (1973)
that gives the viscosity (ν) at any radius (r) of the disk as
a product of disk pressure scale height (H), the velocity of
the sound (cs), and a parameter α that contains all unknown
physics. Despite a number of successful applications of the
α-prescription, this parameterization suffers from a number of
inconveniences (see Abbassi et al. 2006, hereafter AGS06).
For example, although the α-prescription is based on a kind
of turbulent viscosity, there is no direct physical evidence for
this as the origin of the turbulence.

One of the most significant agents that may influence the
equilibrium structure and dynamical evolution of almost any
kind of disk is self-gravity. It is not merely a matter of
forming systems. In the case of accreting supermassive black
holes, for instance, during most of the evolution, they are

self-gravitating. Historically, accretion disk theory has con-
centrated on the non-self-gravitating case, the effects of self-
gravity having only been discussed occasionally (e.g., Paczyński
1978; Kolykhalov & Sunyaev 1979; Lin & Pringle 1987, 1990).
For simplicity, traditional models of accretion disks assume a
geometrically thin configuration and neglect the self-gravity of
the accreting material, which signifies that only pressure and
the gravitational force of the central object support the vertical
structure of the disk. The study of disk self-gravity has been the
subject of considerable attention in recent years. It can be partly
due to improved observations, which have shown that in several
observed systems the disk mass can be high enough to have
a dynamical role on all scale disks, from AGNs to protostars,
and increased computational resources, which have allowed a
detailed numerical investigation of the development of gravi-
tational instabilities in the nonlinear regime (Lodato 2007 and
references therein).

The structure of self-gravitating disks has been studied
through both the self-similar solutions assuming steady and
unsteady states (Mineshige & Umemura 1996; Mineshige &
Umemura 1997, hereafter MU97; Mineshige et al. 1997, here-
after MNU97; Tsuribe 1999, hereafter TT99; Bertin & Lodato
1999, 2001; Shadmehri & Khajenabi 2006; AGS06; Shadmehri
2009, hereafter MS09) and direct numerical simulations
(Igumenshchev & Abramowicz 1999; Stone et al. 1999;
Torkelsson et al. 2000; Gammie 2001; Rice et al. 2003, 2005,
2010; Rice & Armitage 2009; Cossins et al. 2010; Meru &
Bate 2011). Of these, only little attention has been paid to the
polytropic flows (e.g., MNU97; AGS06).

Some laboratory experiments of Taylor-Couette systems (e.g.,
see Richard & Zahn 1999; Huré et al. 2001) indicate that, al-
though Coriolis force delays the onset of turbulence, the flow is
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ultimately unstable to turbulence for Reynolds numbers larger
than a few thousand. In all kinds of self-gravitating disks, the
Reynolds number is extremely high, so it was thought that the
hydrodynamical-driven turbulent viscosity based on the critical
Reynolds number probably has a significant role in the redistri-
bution of angular momentum in self-gravitating accretion disks.
The resulting hydrodynamically driven turbulence would then
transport angular momentum efficiently. Duschl et al. (2000)
have proposed a generalized viscosity prescription based on
the hydrodynamically driven turbulence at the critical effec-
tive Reynolds number, the β-prescription, which can be applied
for both self-gravitating and non-self-gravitating disks and is
shown to yield the standard α-model in the case of non-self-
gravitating disks (Duschl et al. 2000). They have demonstrated
that, in the case of fully self-gravitating disks, this model may
reproduce the observed spectra of proto-planetary disks very
well and yield a natural explanation for the accretion rate from
the observed metallicity gradients in the disk galaxy. Further-
more, their study has presented that the standard model of thin
accretion disks based on α model leads to inconsistencies if
self-gravity plays an important role. This problem arises from
the parameterization of viscosity in terms of the local sound
speed and the vertical disk scale height.

Following the suggestion of Duschl et al. (2000) for a
β-prescription of viscosity, AGS06 applied this model for a
thin axisymmetric, polytropic, and self-gravitating disk around
a newborn star. Their results are quite different compared with
standard α disks in the outer part of the disks where the self-
gravity becomes important, but, in the inner part of the disks,
their solution converged to that of standard α disks.

The next important possibility for angular momentum re-
moval is an outflow or wind whose existence in many accreting
systems is supported by strong observational evidence (e.g.,
Mobasher & Raine 1989; Whelan et al. 2005; Bally et al. 2007;
Dionatos et al. 2009, 2010). Outflows are generally divided into
two classes, called winds (poorly collimated) and jets (highly
collimated).5 The distinction between two classes is not always
clear and in some cases, both are seen in the same object (see
Murray 2002). It was long apparent that a disk wind/outflow
contributes to loss of mass, angular momentum, and thermal en-
ergy from accretion disks (e.g., Piran 1977; Blandford & Payne
1982; Pudritz 1985; Königl 1989). It also appears to be an almost
universal feature of disk-accreting systems on all astrophysical
scales and frameworks. The footprints of mass loss are observed
around microquasars and YSOs as well as around massive stars
(see chapter by Arce et al. 2007) and even brown dwarfs (e.g.,
Ferrari 1998; Mirabel & Rodrı́guez 1999; Bally et al. 2007;
Whelan et al. 2005; Bourke et al. 2005), implying that the mech-
anism is of importance across the entire stellar mass spectrum
(see review by Pudritz et al. 2007). It is now widely accepted
that winds or outflows have their origin in accretion flows (e.g.,
Blandford & Payne 1982; Fender et al. 2004). Given that the
majority of mass is accreted during earlier embedded phases,
understanding disks at early times is more critical in a general
sense. The initial winds could be blown from collapsar disks at
these early phases, when the central YSO still has only a fraction
of a solar mass (e.g., see Banerjee & Pudritz 2006, 2007).

The accretion flows lose their mass by winds as they accrete
onto the central object. Here, it is found that the mass loss
rate is dependent on the radius of disk and stellar mass, and in

5 In this work, we will mainly focus on winds. The study of rather energetic
winds or jets, whose speeds are sometimes comparable to that of light, is
beyond the scope of the present study.

order to study the dynamics of the disk-wind system, we shall
describe the shape of this dependence by a power law. In the
simplest standard model of star formation without wind (Shu
1977; Terebey et al. 1984), collapse proceeds in an inside-out
fashion, beginning in the center of the core, moving outward at
the speed of sound, and giving rise to a constant mass accretion
rate of ∼2 × 10−6 M� yr−1. Of course, many modifications to
this model have been explored in recent decades (Dunham &
Vorobyov 2012). As a result of mass loss, the accretion rate
is no longer constant in radius, and has a power-law depen-
dence on it, with the power-law index treated as a parameter of
order unity (e.g., Blandford & Begelman 1999; Abbassi et al.
2010). In the earliest phase of stellar evolution, average accre-
tion rates are very high (nearly larger than 10−6 M� yr−1) and
disk winds accompany accretion with a wind mass loss rate
scaled as ∼×0.1 the accretion rate (Gorti & Hollenbach 2009).
Our understanding of the engine that powers the winds is, how-
ever, still limited. As for the generation mechanisms of the disk
winds, there are several important ingredients, such as the elec-
tric field generated by the relative separation between ions and
electrons, effects of magnetic fields, collisionless versus com-
plications (such as the effects of electron–positron pairs), and
coupling with the radiation field in the disk winds (Takahara
et al. 1989). Accordingly, to date, various driving sources of
winds are proposed, including thermal, radiative, and magnetic,
among others.

In the vast majority of studies, authors readily suppose that
interstellar gas is isothermal and its pressure is proportional to
the density. On account of isothermal collapse, the gas had to
be assumed to be already clumpy and at very low temperatures
(a few × 10 K). But undeniably, the first and most powerful
break from this isothermality comes from protostellar radiation
at the preliminary phases of star formation (Hansen et al. 2012).
Examples include massive protostars that are capable of heating
an entire cloud (Krumholz et al. 2007; Cunningham et al. 2011;
Myers et al. 2011), and in lower levels, low-mass protostars,
which of course may not have the same long-range influence as
massive kinds. In the present paper, we presume the pressure to
be proportional to the power of density (polytropic condition),
instead of being proportional to the density alone (isothermal
condition). Then, we compare the collapse of a polytropic gas
disk with that of an isothermal one. We shall concentrate on the
disk structure in the presence of rotating outflows or winds near
newborn objects. However, since these winds are presumably
launched by massive accretion disks (which is definitely true in
early stages of protostellar evolution), we also pay heed to the
possible influences of self-gravity on disk–wind system.

The influence of winds on accretion disks has been investi-
gated by several authors (e.g., Meier 1979, 1982; Fukue 1989;
Takahara et al. 1989; Knigge 1999, hereafter CK99; Xie & Yuan,
2008; MS09; Kawabata & Mineshige 2009; Dotan & Shaviv
2011; Abbassi et al. 2010). In these studies, the accretion disk
is usually height integrated and the configuration of the accre-
tion flow is assumed rather than calculated. Jiao & Wu (2011)
solved the full hydrodynamic equations to get the configuration
of the accretion flow. CK99 derived the radial distribution of the
dissipation rate and effective temperature across a Keplerian,
steady-state, mass-losing accretion disk, using a simple para-
metric approach. MS09 studied the influence of the winds on
the time evolution of isothermal, self-gravitating accretion disks
by adopting a power-law mass loss rate because of the existence
of wind. The work by MS09 considered both mass and angular
momentum loss due to the wind/outflow and provides a basis
for the present work.
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In accord with earlier discussion, viscosity, self-gravity, and
also outflows are among the most important physical agents
in accretion-dominated stages of star formation. Although a
considerable amount of work has gone into any pair of these, no
study has combined all three with non-isothermal circumstances
using similarity approach. To the best of our knowledge, the
simultaneous solutions for a viscous (with two prescriptions),
self-gravitating, polytropic, and mass-losing disk have not yet
been reported.

Now, we are interested in considering the possibility that
winds could affect the global properties of polytropic self-
gravitating accretion disks. Indeed, the present work is an
attempt to provide a more thorough survey of solutions for two
viscosity models with polytropic condition and wind, adopting
different values of input parameters. As in CK99 and MS09,
the parametric model adopted here to describe the mass loss is
simple, yet sufficiently general to be applicable to many types
of dynamical disk-plus-wind models. The paper is organized
as follows: In the next section, we describe a basic physical
approach for setting up the analytical part of our model. We did
not consider the driving mechanisms of the wind. In Section 3,
we first attempt to reduce our similarity equations in a slow
accretion limit. Then, assigning both proposed models for
viscosity, we find two sets of ordinary differential equations
and explore their solutions in Section 4. A summary on the
properties of our solutions and their implications is given in
Section 5.

2. GENERAL FORMULATION

2.1. Basic Equations

Let us suppose a geometrically thin accretion disk surround-
ing a central object that has not yet been completely formed.
Thus, the radial component of the gravitational force is mainly
provided by the self-gravity of the disk itself. The disk we are
concerned with in this paper has a symmetry over the rotation
axis and is turbulent, having an effective turbulent viscosity.
Besides the above-mentioned effects, we consider a wind em-
anating from disk surface and set up fundamental governing
equations in the cylindrical polar coordinates (r, ϕ, z) centered
on the accreting object with the equatorial plane of disk at z = 0.
The equations of continuity, radial momentum, and conservation
of angular momentum, respectively, read (e.g., CK99; MS09)
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+
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2πr

∂Ṁw

∂r
,

(3)
where vr, vϕ , Ω, ρ, σ , p, and ν are the radial, rotational and
angular velocities, volume density, surface density, gas pressure,
and kinematic viscosity of the disk, respectively. Other variables
are set out in detail in the following discussion.

Insofar as we require all quantities of the flow variables to
depend only on radius and time, we have integrated them in the
vertical direction, following the thin disk approximation. So,
rather than dealing with quantities per unit volume (such as the
density ρ), we deal instead with quantities per unit surface (such
as the surface density σ = ∫ +∞

−∞ ρdz).

In Equation (2), we have the radial component of the
gravitational acceleration due to the self-gravity (cf. Saigo &
Hanawa 1998; TT99),

gr = − ∂Φ
∂r

= − 2πG

∫ ∞

0

∫ ∞

0
J1(kr)J0(kr ′)σ (r ′)kdkdr ′, (4)

derived from the axisymmetric Poisson equation adapted for a
thin disk in cylindrical space (Nomura & Mineshige 2000),

1

r

∂

∂r

(
r
∂Φ
∂r

)
+

∂2Φ
∂z2

= 4πGσ (r)δ(z). (5)

Here, functions J1 and J0 are the Bessel functions of the first
kind, and δ(z) is the Dirac delta function. As usual, G is
the universal gravitational constant, and Φ is the gravitational
potential contributed by the material of mass:

Mr(r) = 2π

∫ r

0
σ (r ′)r ′dr ′, (6)

inside of the disk within cylindrical radius r.
Since the gaseous disk is not rotating as a solid body, in

the azimuthal equation of motion (Equation (3)) we have the
shear viscosity whose presence allows the transport of angular
momentum from the faster inner fluid elements to the slower
outer ones. Regardless of mechanisms that might contribute to
the initiation of an outflow from the surface of an accretion
disk, mass loss rate by wind/outflow is represented by Ṁw in
Equations (1) and (3), and it is newly included in our analysis,
whereas the Euler equation (2) does not change anymore despite
inclusion of the wind. It is easy to perceive that merely the
vertical component of wind velocity would make the gas escape
from a surface of the disk. In fact, we have

Ṁw(r) = 2
∫ r

0
σ̇w(r ′)2πr ′dr ′, (7)

where σ̇w = ρv+
z is mass loss rate per unit area from each disk

face, picking ρ = ρ|z=0 as a midplane density of the disk and
v+

z (=−v−
z ) � 0 as mean vertical velocity at the disk surface,

i.e., at the base of a wind. A factor of two, appearing outside the
integral, is for taking into account the ejection from both disk
faces. Determining the wind velocity at its base is complicated
because it depends on the vertical structure of the disk, which in
turn depends on the detailed variation of the unknown viscosity
with height. Furthermore, the opening angle for the wind flow
needs to be determined using the geometry of the accreting flow
and the pressure gradient in the wind in the radial direction
(Misra & Taam 2001). Because v+

z is unknown to us, we will
compensate for this by constructing a library of wind solutions
for a wide range of wind model parameters with v+

z entangled
therein.

The rightmost term of Equation (3) is the outflow sink added
term, which represents angular momentum transferred by the
wind. Here, it is assumed that matter ejected at radius r on
the disk carries away the angular momentum (lr)2Ω, where
Ω = vϕ/r is the angular frequency associated with lever-arm,
lr , at radius r. Thus, l = 0 corresponds to a non-rotating disk
wind and l = 1 to outflowing material that carries away the
specific angular momentum (r2Ω) it had at the point of ejection.
This latter would be the most fitting value for radiation-driven

3



The Astrophysical Journal, 765:96 (14pp), 2013 March 10 Abbassi, Nourbakhsh, & Shadmehri

outflows (e.g., Murray & Chiang 1996; Proga et al. 1998;
Feldmeier & Shlosman 1999; Feldmeier et al. 1999). Moreover,
0 < l < 1 hints at the family of disk winds that carry away less
angular momentum than possessed by the wind material before
it left the disk surface. Centrifugally driven MHD disk winds
(magnetocentrifugal winds for short) are corresponding to l > 1
and can remove a lot of angular momentum from the disk (e.g.,
Blandford & Payne 1982; Cannizzo & Pudritz 1988; Emmering
et al. 1992; Pelletier & Pudritz 1992; Pudritz et al. 2007). In
this case, we have l = rA/r , where rA is the Alfvén radius
(CK99). The angular momentum that is observed to be carried by
rotating flows (e.g., DG Tau) is a consistent fraction of the excess
disk angular momentum, from 60%–100% (e.g., Bacciotti 2004)
due to the high extraction efficiency mentioned above. As we
will discuss later in Section 5, it is an observationally well-
known result that in many systems, Ṁw/Ṁacc ∼ 0.1, with Ṁacc
being the mass accretion rate introduced in Section 2.2. This
is faithful to the fact that lever-arm coefficients under the latter
picture are often found in numerical and theoretical works to
be l = rA/r ∼ 3—the observations of DG Tau being a perfect
example (see a review by Pudritz et al. 2007).

In light of the temperature distribution during the collapse,
we employ a polytropic relation between pressure and density
of accreting gas:

p = Kρ1+(1/n) = Kργ , (8)

where K is a constant set by the entropy of the gas and n is
known as the polytropic index for the process of interest. It is
customary to replace γ by 1 + (1/n) and call it an effective
adiabatic index. We should imply here that in actual accretion
flows that can be represented by polytropes, neither K nor n
may be constant in space or time, and γ (= d ln p/d ln ρ) does
not necessarily equal 1 + (1/n) (e.g., Goldreich & Weber 1980;
Yahil 1983). But concerning accretion flows in this paper, we
shall confine attention to an abstract case where each γ has
certain fixed amount across the disk. The underlying polytropic
exponent γ is somehow an adjustment screw by which we can
tune how much the temperature varies throughout the flow.
The temperature increases more rapidly toward the center of
polytropic gaseous disks with larger values of γ (see MNU97).
As γ approaches unity, the temperature tends to be uniform all
around the disk, and consequently all values in the disk tend
to those of isothermal case. The values in the disk, such as
geometrical thickness, depend critically on γ (see Saigo et al.
2000). According to Omukai & Nishi (1998), the polytropic
relation with γ ≈ 1.1 is a good approximation to a collapsing
metal-free gas cloud (see also Matsuda et al. 1969; Carlberg
1981). If cs is the local mean sound speed in a barotropic disk,
it satisfies

c2
s = dp

dρ
= Kγργ−1. (9)

Using the last two equations, the pressure force per unit mass
on the right-hand side of Equation (2) becomes

− 1

ρ

∂p

∂r
= −c2

s

ρ

∂ρ

∂r
≈ −c2

s

σ

∂σ

∂r
. (10)

From the hydrostatic equilibrium equation in the vertical direc-
tion,

c2
s

σ

∂σ

∂z
+

∂Φ
∂z

= 0, (11)

and the Poisson equation (5), we can obtain the vertical extent
of the disk at any radius, as

H = cs

(4πGρ)1/2
= c2

s

2πGσ
, (12)

the half-thickness of the disk, where we assume that the
differential of the gravitational potential in the radial direction
is negligible compared with that in the vertical direction (e.g.,
Nomura & Mineshige 2000). Here, as stated, the azimuthal
integration leads to

σ (r) =
∫ +H

−H

ρ(r, z)dz ≈ 2ρ(r, 0)H (r). (13)

Last, in this subsection we apply the latest changes in our
fundamental Equations (1)–(3) and rewrite them as

∂σ

∂t
+

1

r

∂

∂r
(rσvr) + 2σ̇w = 0, (14)

∂vr

∂t
+ vr

∂vr
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− j 2
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= −c2

s
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+ vr
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∂r
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r3σν

∂
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(
j

r2

)]
− 2j

σ
(l2σ̇w), (16)

where the angular momentum j is replaced by rvϕ . We used
Equation (7) to obtain the radial derivative of mass loss rate,
i.e., our auxiliary equation

∂Ṁw

∂r
= 4πrσ̇w. (17)

The solutions of the last four equations give us an inclusive
overview of the evolution process in infant stellar objects, which
strongly depends on the chosen viscosity model and partly
on the strength of existing wind. Therefore, the study of the
dynamical behavior of the accretion disks is postponed until
more information about the viscosity and also the mechanisms
through which the mass and angular momentum can be carried
away by the wind is available.

2.2. Self-similar Scaling

The basic Equations (14)–(16) are troublesome to solve in real
space, albeit approximately. For a sense of how they might be
solved, it is useful to transform them to their non-dimensional
forms, which first involve adopting an appropriate similarity
variable. In this way, with the aid of K and G as the constitutive
dimensional parameters, we pose a dimensionless similarity
variable x ≡ fscr with

fsc = K−1/2Gγ−1/2(±t)γ−2, (18)

being the inverse length dimensional scale factor (e.g., MNU97;
Yahil 1983; AGS06). Using such a combination of radius r
and time t, all hydrodynamic variables must therefore only be
functions of x and solutions will have the spatial structure at
all times because of self-similarity. Once the core formation
epoch is an origin of time (t = 0), we take the plus sign in the
parenthesess so as to gain positive time (t > 0) solutions. Hence,
bearing in mind the chain rule for transformation (r, t) → (x, t ′),
the derivatives will turn into

∂

∂r
→ K−1/2Gγ−1/2(t ′)γ−2 ∂

∂x
, (19)

4



The Astrophysical Journal, 765:96 (14pp), 2013 March 10 Abbassi, Nourbakhsh, & Shadmehri

∂

∂t
→ ∂

∂t ′
+ (γ − 2)

x

t ′
∂

∂x
. (20)

From now on, we are allowed to write t instead of t ′ and d/dx
instead of ∂/∂x, since we require that all time-dependent terms
should disappear in the self-similar forms of equations. Now, it
is convenient to draw up a list of useful real quantities correlated
with their self-similar kinds:

ρ(r, t) = (4πγ )−1/γ G−1t−2Σ2/γ (x) (21)

p(r, t) = (4πγ )−1KG−γ t−2γ Σ2(x) (22)

cs(r, t) = (4π )1−γ /2γ γ 1/2γ K1/2G1−γ /2t1−γ Σγ−1/γ (x) (23)

vr(r, t) = K1/2G1−γ /2t1−γ Vr(x) (24)

vϕ(r, t) = K1/2G1−γ /2t1−γ Vϕ(x) (25)

v+
z (r, t) = K1/2G1−γ /2t1−γ V +

z (x) (26)

j (r, t) = KG1−γ t3−2γ J (x) (27)

σ (r, t) = (2π )−1K1/2G−1+γ /2t−γ Σ(x) (28)

H (r, t) = (4π )1−γ /γ γ 1/γ K1/2G1−γ /2t2−γ Σγ−2/γ (x) (29)

ν(r, t) = KG1−γ t3−2γ ν ′(x) (30)

Mr(r, t) = K3/2G1−3γ /2t4−3γMx(x) (31)

Ṁr(r, t) = K3/2G1−3γ /2t3(1−γ )Ṁx(x) (32)

Ṁw(r, t) = K3/2G1−3γ /2t3(1−γ )Ṁw(x) (33)

σ̇w(r, t) = (4π )−1K1/2G−1+γ /2t−γ−1Σ(x)Γ(x), (34)

where
J (x) = xVϕ(x), (35)

Mx(x) =
∫ x

0
Σ(x ′)x ′dx ′, (36)

Ṁw(x) =
∫ x

0
Σ(x ′)Γ(x ′)x ′dx ′, (37)

Γ(x) = (4π )γ−1/γ γ −1/γ Σ2(1−γ )/γ (x)Λ(x), Λ ≡ ΣV +
z . (38)

Also, the velocity of the constant x surface seen from the rest
frame (r, t) is

vrest(r, t) = dr

dt

∣∣
x = K1/2G1−γ /2t1−γ Vrest(x),

Vrest(x) = (2 − γ )x. (39)

For later convenience, we define the comoving velocity as

V ≡ Vr − Vrest = Vr + (γ − 2)x. (40)

It is useful to rewrite mass conservation equation (1) in terms of
enclosed mass Mr (Equation (6)), i.e.,

∂Mr

∂t
+ vr

∂Mr

∂r
+ Ṁw = 0,

∂Mr

∂r
= 2πrσ. (41)

Then, introducing Ṁacc as the mass accretion rate, we have
Ṁacc = Ṁr + Ṁw, in such a way that

Ṁacc = −2πrσvr. (42)

A minus sign in this expression obviously shows that when the
radial velocity of the gas flow is directed inward, accretion may
take place. Self-similarity leads to

Ṁacc(r, t) = K3/2G1−3γ /2t3(1−γ )Ṁacc(x), (43)

Ṁacc = ΣxVr

3γ − 4
. (44)

2.3. Basic Equations in Self-similar Space

After some replacements with the contributions of the pre-
vious subsection, it is now possible to recast the differential
equations (14)–(17) from partial (PDEs) into ordinary ones
(ODEs). The non-dimensional similarity equations are then de-
rived as

d

dx
(ΣV x) + (Γ − 3γ + 4)Σx = 0, (45)

V
dV

dx
+

2b2

Σ
dΣ
dx

− J 2

x3
−Gx − (2γ −3)V +(γ −2)(γ −1)x = 0,

(46)

V
dJ

dx
− 1

Σx

d

dx

[
ν ′x3Σ

d

dx

(
J

x2

)]
+(l2Γ−2γ +3)J = 0, (47)

dṀw

dx
= ΣxΓ, (48)

where, for conciseness of notation, we introduced b2 =
(4πγ )1−γ /γ Σ2(γ−1)/γ , and the similarity gravitational field in
radial direction is

Gx(x) = −
∫ ∞

0

∫ ∞

0
J1(kx)J0(kx ′)Σ(x ′)kx ′dkdx ′. (49)

Clearly, the effect of wind or outflows appears by the term
Γ. When we set this parameter equal to zero, the fourth
equation can be left out and the other ones reduce to those
that appeared in MNU97 for the α-case or AGS06 for the
β-case (see Section 3.2). Although full numerical solutions to
these equations would now be possible, it is more instructive to
proceed by analyzing the model in some restrictive cases, such
as one on the slow accretion limit.
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3. REDUCTION OF BASIC EQUATIONS

3.1. Helpful Approximations

In this subsection, we examine two useful approximations
and see how they reduce and simplify our equations without
much loss of generality of the problem.

First, it seems favorable to ignore some terms such as pressure
gradient force and the acceleration term in the cold and slow ac-
cretion limit, which implies Vϕ 
 1, Σ 
 1, and |Vr| � 1.
This estimate has been widely used by many authors to simplify
formulas (e.g., MU97, MNU97, TT99, AGS06, MS09). Fur-
thermore, because in our model the wind velocity is expected to
be smaller than radial inflow velocity, one can handily assume
Ṁw � 1 as another implication of this limit, whose consistency
with the results can be readily verified by reader. We will also
check that Ṁw does not exceed the accretion rate, Ṁacc. From a
different but equivalent point of view, the slow accretion approx-
imation is applicable for rotationally supported disks when the
viscous timescale is much longer than the dynamical timescale
(TT99; AGS06).

Next, to avoid the integro-differential equation arises from
substitution of Equation (49) into Equation (46), we use a
monopole approximation to compute the radial gravity field
consistent with the mass distribution. Adopting this approxima-
tion under the restrictions of the slow accretion limit leaves (cf.
TT99)

Gx ≈ −ΣV

(3γ − 4)x
. (50)

Except near the outer edge, this neglect of higher multipole
orders is not expected to introduce any significant error as
long as the surface density profile is steeper than 1/r (e.g.,
MU97; MNU97; Li & Shu 1997; Saigo & Hanawa 1998; TT99;
Krasnopolsky & Königl 2002; AGS06; MS09).

In the slow accretion limit, the third and fourth terms in
Equation (46) dominate and the others could be canceled (e.g.,
MNU97; AGS06). Then, by making use of last relation, we can
demonstrate a radial force balance supplied by two terms in
Equation (46),

−J 2

x3
+

ΣV

(3γ − 4)x
= 0, (51)

leading to

J =
(

ΣV

3γ − 4

)1/2

x. (52)

One can take a logarithmic derivative of J with respect to x, and
get

d ln J

d ln x
= 1 +

1

2

d ln Σ
d ln x

+
1

2

d ln |V |
d ln x

. (53)

After some algebraic manipulations, Equation (45) takes the
form

d ln Σ
d ln x

= −1 − d ln |V |
d ln x

+ (3γ − Γ − 4)
x

V
, (54)

and then can be substituted in Equation (53) to obtain

d ln J

d ln x
= 1

2
+

(
3γ − Γ − 4

2V

)
x. (55)

To proceed, from this point on, the kinematic coefficient of
viscosity ν ′ needs to be assigned as a function of our similarity
variable x.

3.2. Viscosity Prescription

For the viscosity ν ′, we shall apply two different representa-
tions. The first and obvious one is the α-prescription introduced
by Shakura & Sunyaev (1973), and the resulting polytropic
α-disk plus wind will be formulated in the next subsection. As
mentioned in Section 1, the α-viscosity is not a unique choice
and we also employ the so-called β-viscosity introduced by
Duschl et al. (2000) thereafter.

3.2.1. α-model Solution

In the case of the α-prescription, as suggested by MNU97
we adopt ν ′

α = α′x�, with α′ and � being free parameters. So,
the viscosity coefficient is a function of x only. Substituting this
prescription into Equation (47), we can inquire into a dynamical
evolution of the disk.

Equations (54) and (55) help us to simplify Equation (47) and
after some mathematical manipulations we can finally obtain a
desired first-order ODE for α-viscous disks as

dVr

dx

∣∣∣∣∣
α

= 1

ν ′
α

[Vr + (2l2 − 1)xΓ][Vr + (γ − 2)x]2

3Vr − (3γ − 2)x + 2xΓ

+
Ax2 + BVrx + 3(2� − 1)V 2

r

2x[3Vr − (3γ − 2)x + 2xΓ]
, (56)

where for the sake of brevity we have used

A = 4(2� + 3) − 4(� + 3)γ − 3Γ2

+ [2�(γ − 2) + 6γ ]Γ − 2(2 − γ )x
dΓ
dx

,

B = 6(� + 2)γ − 8(2� + 1) + 2(� − 4)Γ + 2x
dΓ
dx

.

Clearly, the effect of wind/outflow appears as the term Γ. If we
set this parameter equal to zero, we can find Equation (34) of
MNU97, which matches the solution without wind. Considering
� = 1 and γ = 1 for an isothermal case, the equation reduces
to Equation (19) of MS09. If we continue by setting Γ = 0, we
could easily obtain Equation (18) of MU97.

3.2.2. β-model Solution

As we discussed in Section 1, we are also willing to use
the so-called β-prescription as an alternative model for a self-
gravitating disk, which is introduced by Duschl et al. (2000) and
is used by AGS06 in the form

ν ′
β = β ′xVϕ = β ′J, (57)

with β ′ being a free parameter. It is worth noting that the Duschl
et al. (2000) β-viscosity recovers the Shakura & Sunyaev (1973)
α-viscosity for non-self-gravitating disks, if one requires the
turbulence to be not supersonic (which makes sense and is in
agreement with Shakura & Sunyaev’s parameterization, but still,
it is an additional condition one should mention). Likewise, with
the aid of Equation (55) and the last equation, from Equation (47)
we can derive the single first-order ODE for β-viscous disks as

dVr

dx

∣∣∣∣
β

= 1

ν ′
β

[Vr + (2l2 − 1)xΓ][Vr + (γ − 2)x]2

3Vr − (3γ − 2)x + 2xΓ

+
CVr + Dx

3Vr − (3γ − 2)x + 2xΓ
, (58)

6
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where again for brevity we have written

C = 3(2 − γ ) + 5(3γ − Γ − 4) + x
dΓ
dx

,

D = (2 − γ )

(
7Γ − x

dΓ
dx

− 18γ + 22

)
− 2(3γ − 4)2.

As above, one may ignore the influence of wind in β-model, by
adopting Γ = 0, and this time recover Equation (32) of AGS06.

The ordinary differential Equations (56) and (58) along
with Equations (48) and (54) are the main equations of our
analysis that we can solve numerically using the forth–fifth-
order Runge–Kutta–Fehlberg scheme. By exploiting asymptotic
solutions as boundary conditions for our equations, we will
investigate the effects of physical parameters on the structure of
the disk–wind system.

4. NUMERICAL ANALYSIS

In our model, there is a set of the input parameters such as s,
l, Λ0, γ , α′, and β ′. Thus, a clear physical picture of our model
is obtained only by an extensive parameter study. Here, we first
obtain appropriate boundary conditions, and the possible effects
of our different input parameters are explored in the subsequent
subsections.

4.1. Boundary Conditions

Our derived ODEs require boundary conditions to be solved
numerically. Thus, at the first step, we derive asymptotic
solutions for Vr. Our first limit is near the origin of the disk
where x → 0, and the second one is in the outer part of the disk,
i.e., x → ∞, which is toward the parent cloud. As a result for
the α-model, we have

lim
x→0

Vr,α ∼ − (4� + 6) − (2� + 6)γ

3 − 2�

×
[
x − 9(4 − 3γ )x3

(2� − 3)(6�2 − 2� − 15)ν ′
α

]
(59)

lim
x→+∞ Vr,α ∼ − Aν ′

α

2x(γ − 2)2
− (2l2 − 1)xΓ. (60)

For the β-model, it can be written as

lim
x→0

Vr,β ∼ −5γ − 6

6γ − 7

[
x − (γ − 1)2x3

(6γ − 7)ν ′
β

]
(61)

lim
x→+∞ Vr,β ∼ − Dν ′

β

x(γ − 2)2
− (2l2 − 1)xΓ. (62)

As γ approaches unity, the results approach the isothermal case,
again as expected. Although to start the integration one can
assume Vr = 0 at x = 0, we should avoid the singularity
by avoiding the origin. The above asymptotic behaviors help
us to determine an appropriate boundary condition at a small
neighborhood of the singular point x = 0. To have a surface
density profile, we can integrate the surface density equation
(Equation (54)) from the outer boundary, i.e., x = 1, toward the
center of the disk for a given Σ(x = 1) = Σout. Besides this, we
demand a series of modes in which the accretion rate at the outer
edge (i.e., the inflow rate from the parent cloud) is kept constant,
which appears as a natural requirement (MS09). Thus, our main

boundary conditions are Vr = 0 at x = 0 and Ṁacc = Ṁinfall
at x = 1. So, Ṁinfall is another input parameter to be assigned
to our model. For the profile of mass loss rate, we prescribe a
basic power-law form for Λ as Λ = Λ0x

s , with Λ0 and s being
the free parameters. Note that in the case of isothermal collapse,
one derives Λ = Γ, and the wind parameters reduce to those of
MS09.

Now applying boundary conditions for our two systems of
ODEs, we can obtain some profiles for hydrodynamic vari-
ables. Figures 1–8 show radial distributions for some important
physical variables with parameterized values as a function of the
similarity variable x. For instance, one would immediately de-
duce that the radial velocity increases meaningfully at the outer
part of the disk because of the wind. In order to make an eas-
ier comparison between surface densities, the ratio (σ − σ0)/σ0
versus x is shown in all figures, and its negative value means that
the surface density generally reduces in the presence of the disk
wind. In the figures, we see that the mass accretion rate plainly
decreases in comparison with the no-wind solution. It is also an
easy task to compare α- with β-disks. In the outer part of the
disk—where the self-gravity is influential—the behavior of the
solutions predicted by the β viscosity model shows much less
radial velocity compared with that of the α viscosity model, in
either the wind or no-wind case. Moreover, it is apparent from
the figures that winds could lessen the rotational velocity of the
disk. Wind solutions imply that the amount of reduction to the
rotational velocity is more significant for β-disks than it is for
α-disks under our restrictive boundary conditions.

4.2. Role of Mass Loss Index s

Figures 1 and 2 show the effect of adopting various values
for the mass loss power-law index s on the profiles of the
physical variables. Each curve is labeled by corresponding
index s. Also, we adopt α′ = 0.1, � = 1, β ′ = 10−3,
Ṁinfall = 2.0 × 10−6 M� yr−1, Λ0 = 0.1, and l = 1 (i.e.,
rotating wind). Our adopted value for Ṁinfall is also compatible
with the mean values inferred in embedded protostars (e.g.,
Königl & Pudritz 2000). The surface density and the rotational
velocity for the no-wind solution are represented by σ0 and v0,ϕ ,
respectively. In order to make an easier comparison, the ratio
(σ − σ0)/σ0 as a function of variable x is shown in Figures 1
and 2 (middle, left). Since the similarity radius is smaller than
unity, for smaller values of parameter s (consider Λ = Λ0x

s)
the wind becomes stronger and more mass is extracted from the
disk. Therefore, surface density reduction is more significant for
smaller values of s.

The rotational velocity profiles are presented as a function
of the similarity variable in Figures 1 and 2 (top, middle).
Generally, when the exponent s decreases, the flow will rotate
slower than that without winds. So, the viscous dissipation per
unit mass in the flow is expected to be smaller in the presence of
a wind. Also, the radial velocity profiles in Figures 1 and 2 (top,
left) represent significant deviations from the no-wind solution.
In the outer parts of a disk, the radial velocity is approximately
uniform in the no-wind case. But, as the wind plays its crucial
role at the outer parts of the disk, we have much larger radial
velocity in comparison to the no-wind solution. Wind velocity v+

z

at the surface of the disk is shown in Figures 1 and 2 (top, right).
β-disks have considerably less v+

z than α-disks. As the wind gets
stronger, its velocity at the surface of the disk increases, which
is quite predictable.

The accretion rate profiles, Ṁacc, are shown in Figures 1
and 2 (middle, middle). Accretion rate for the no-wind solution

7
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Figure 1. Profiles of the physical variables for α′ = 0.1, � = 1.0, Ṁinfall = 2.0 × 10−6 M� yr−1, and s = 0.1, 0.3, 0.5, 0.7 with Λ0 = 0.1 and l = 1 (i.e., rotating
wind) at γ = 1.1. Surface density and the rotational velocity for the no-wind solution are represented by σ0 and v0,ϕ . Each curve is labeled by a corresponding s. The
no-wind solution is shown by dashed curves.

(A color version of this figure is available in the online journal.)

Figure 2. Profiles of the physical variables for β ′ = 10−3, Ṁinfall = 2.0 × 10−6 M� yr−1, and s = 0.1, 0.3, 0.5, 0.7 with Λ0 = 0.1 and l = 1 (i.e., rotating wind) at
γ = 1.1. Surface density and the rotational velocity for the no-wind solution are represented by σ0 and v0,ϕ . Each curve is labeled by a corresponding s. The no-wind
solution is shown by dashed curves.

(A color version of this figure is available in the online journal.)
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Figure 3. Profiles of the physical variables for α′ = 0.1, � = 1.0, Ṁinfall = 2.0 × 10−6 M� yr−1, and l = 0.0, 0.5, 1.0, 1.5 with Λ0 = 0.1 and s = 0.7 at γ = 1.1.
Surface density and the rotational velocity for a no-wind solution are represented by σ0 and v0,ϕ . Each curve is labeled by a corresponding l. The no-wind solution is
shown by dashed curves.

(A color version of this figure is available in the online journal.)

Figure 4. Profiles of the physical variables for β ′ = 10−3, Ṁinfall = 2.0 × 10−6 M� yr−1, and l = 0.0, 0.5, 1.0, 1.5 with Λ0 = 0.1 and s = 0.7 at γ = 1.1. Surface
density and the rotational velocity for the no-wind solution are represented by σ0 and v0,ϕ . Each curve is labeled by a corresponding l. The no-wind solution is shown
by dashed curves.

(A color version of this figure is available in the online journal.)
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Figure 5. Profiles of the physical variables for α′ = 0.1, � = 1.0, Ṁinfall = 2.0 × 10−6 M� yr−1, and Λ0 = 0.1, 0.05, 0.01 with l = 1.0 and s = 0.7 at γ = 1.1.
Surface density and the rotational velocity for the no-wind solution are represented by σ0 and v0,ϕ . Each curve is labeled by a corresponding Λ0. The no-wind solution
is shown by dashed curves.

(A color version of this figure is available in the online journal.)

Figure 6. Profiles of the physical variables for β ′ = 10−3, Ṁinfall = 2.0 × 10−6 M� yr−1, and Λ0 = 0.1, 0.05, 0.01 with l = 1.0 and s = 0.7 at γ = 1.1. Surface
density and the rotational velocity for the no-wind solution are represented by σ0 and v0,ϕ . Each curve is labeled by a corresponding Λ0. The no-wind solution is
shown by dashed curves.

(A color version of this figure is available in the online journal.)
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Figure 7. Profiles of the physical variables for α′ = 0.1, � = 1.0, Ṁinfall = 2.0 × 10−6 M� yr−1, and γ = 1.0, 1.1, 1.2 with Λ0 = 0.1, l = 1.0, and s = 0.7. Surface
density and the rotational velocity for the no-wind solution are represented by σ0 and v0,ϕ . Each curve is labeled by a corresponding γ . The no-wind solution is shown
by dashed curves.

(A color version of this figure is available in the online journal.)

Figure 8. Profiles of the physical variables for β ′ = 10−3, Ṁinfall = 2.0 × 10−6 M� yr−1, and γ = 1.0, 1.1, 1.2 with Λ0 = 0.1, l = 1.0, and s = 0.7. Surface density
and the rotational velocity for the no-wind solution are represented by σ0 and v0,ϕ . Each curve is labeled by a corresponding γ . The no-wind solution is shown by
dashed curves.

(A color version of this figure is available in the online journal.)
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is represented by the dashed curves. Generally, the accretion
rate decreases at all parts of the disk in the presence of the
wind. Nevertheless, the accretion rate is not very sensitive to
the variations of the exponent s. The ratio of the mass loss
rate by wind to the accretion rate, i.e., the mass loss efficiency
Ṁw/Ṁacc, is plotted in Figures 1 and 2 (middle, right). The
mass loss due to the wind is negligible, except for strong winds,
e.g., for s = 0.1, in the innermost region of the disk. Our input
parameters were chosen so that mass loss efficiency is less than
one at all radii of the disk. Here, the larger mass loss efficiencies
appear at large radii, i.e., outer part of the disk. For stronger
winds that correspond to smaller values of s, a larger fraction of
the mass is carried away by the wind.

The profiles of disk aspect ratio, H/r , for various values of
exponent s are presented in Figures 1 and 2 (bottom, left). They
demonstrate that in general α-disks are thicker than β-disks
and both of them are thicker in the presence of wind with all
adopted values for s. In Figures 1 and 2 (bottom, middle), we
can see the distribution of angular momentum per unit mass,
i.e., j/Mr = j , along the similarity radius of the disk, x, for
different exponents s. As winds emanate from the disk, this
fraction would be larger, particularly for smaller values of s.
One would see the same behavior in a β-disk that typically has
the lower values. Although there is an angular momentum loss
due to the wind, the accompanying mass loss is high enough to
keep j increasing as the wind becomes stronger.

4.3. Role of Dimensionless Lever-arm l

Possible effects of an angular momentum extraction due to
the wind are explored in Figures 3 and 4 by adopting various
values of the input parameter l. We assume α′ = 0.1, � = 1.0,
β ′ = 10−3, Ṁinfall = 2.0 × 10−6 M� yr−1, and l = 0.0, 0.5,
1.0, 1.5 with Λ0 = 0.1 and s = 0.7. Obviously, when we have
l = 0, angular momentum is not extracted by the wind. This
case corresponds to a non-rotating wind, and the disk loses only
mass because of the wind. However, as mentioned in MS09, it
can be shown that for l2 < 1/2 the mass of the disk increases in
the presence of the winds, though obviously this has no physical
meaning. This is partly due to the limitations of the similarity
method: There is not a self-consistent solution for any given
set of the input parameters. More importantly, our model is
valid just in the slow accretion limit, which implies Vϕ 
 1,
and so it is very unlikely to accept that winds are lunched
without extracting a certain amount of angular momentum from
the disk (MS09). Although we have represented solutions with
l = 0, 0.5 in Figures 3 and 4 for the sake of comparison, as in
MS09, we think these solutions are not physically acceptable.
Profiles of surface densities for each viscosity model are shown
in Figures 3 and 4 (middle, left). We can see again the reduction
to the surface density because of the wind. Rotational velocity
of the disk decreases because of the angular momentum removal
from the disk as l becomes larger (top, middle in figures).
Although the radial velocity in the innermost part the disk does
not change because of the wind, in comparison to the no-wind
solution, the existence of a rotating wind enhances the radial
velocity at the outer part of the disk (top, left). The typical
behavior of wind velocity v+

z is also sensitive to the amount
of the extracted angular momentum (top, right). The accretion
rate profile (middle, middle) shows that it decreases due to the
existence of a rotating wind. However, for a large �, where more
angular momentum is carried away by the wind, as long as the
surface density and the rotational velocity are reduced at all
regions of the disk, the radial velocity of the accretion flow at

the outer part of the disk increases significantly (cf. MS09). We
also plotted the specific disk angular momentum j as a function
of x so that one can see its behavior for α and β disks assuming
γ = 1.1 for different values of l. Here, it is informative to
compare solutions for l = 0, 0.5 with those for l = 1.0, 1.5. It
can be inferred from the disk aspect ratio profile (bottom, left)
that the more angular momentum is removed from the disk, the
thicker it gets.

4.4. Role of Factor Λ0

One of the prominent input parameters in our model is
Λ0, the possible effects of which are explored in Figures 5
and 6. We assume that α′ = 0.1, � = 1.0, β ′ = 10−3,
Ṁinfall = 2.0 × 10−6 M� yr−1, and Λ0 = 0.1, 0.05, 0.01 with
l = 1.0 and s = 0.7. The surface density and the rotational
and radial velocities substantially decrease with Λ0. The wind
velocity at the surface of the disk is significantly affected by the
parameter Λ0 (top, right). As a result, the mass accretion rate
and the wind mass loss rate respectively decrease and increase
with the parameter Λ0. Further, j increases in both viscosity
models, as wind becomes stronger by adopting larger values
of Λ0.

4.5. Effect of Disk Self-gravity

The effect of the disk self-gravity in this paper is limited
to providing the radial gravitational field to keep the disk in
centrifugal equilibrium. On the other hand, it is predicted that in
the outer part of accretion disks around QSOs, self-gravity has a
dominant role. This effect is investigated by Toomre (1964). As
a simplest indicator for gravitational stability of the solutions,
we can use the Toomre criterion,

Q = csκ

πGσ
, (63)

where

κ = Ω
(

4 + 2
d log Ω
d log r

)1/2

(64)

is the epicyclic frequency at which a fluid element oscillates
when perturbed from circular motion. In a nearly Keplerian
disk, κ ≈ Ω. For axisymmetric disturbances, disks are stable
against the gravitational fragmentation when Q> 1; local grav-
itational instability occurs when Q < 1. Now, we rewrite our
gravitational instability parameter in the self-similar form as

Q = 2
√

2(4π )1−γ /2γ γ 1/2γ Σ−1/γ x−2J

(
d ln J

d ln x

)1/2

. (65)

By setting γ = 1, we recover Equation (18) of TT99, viz.,
Q = (2

√
2J

√
d ln J/d ln x)/Σx2. In all figures (bottom, right),

we have shown the distribution of the Toomre Q-value for some
parameters.

To make an easier comparison, the Toomre parameter for a
case without wind/outflow is also represented. The solutions
indicate that the Toomre parameter increases with winds or
outflows, except for the cases where l = 0, 0.5, which give
unphysical solutions, as we discussed previously. Generally in
an α-model, except for the inner part of the disk, the Toomre
parameter is still larger than one, especially when winds are
present. However, in the case of the β-prescription for viscosity,
we see that Q is below the instability threshold (i.e., Qthr ≈ 1) in
most regions of the disk, even in the presence of a typical wind
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(but in some cases, e.g., for l = 1.5). Manifestly, one will not
have any trouble adjusting the input parameters for β-disk to be
locally unstable in various distances from the central accretor,
and so the β-disk model might be a good nominee for the origin
of planetary systems (e.g., AGS06).

4.6. Role of Polytropic Exponent γ

Another important input parameter of our model is γ, the
possible effects of which are examined in Figures 7 and 8.
We assume that α′ = 0.1, � = 1.0, β ′ = 10−3, Ṁinfall =
2.0 × 10−6 M� yr−1, Λ0 = 0.1, and γ = 1.0, 1.1, 1.2 with
l = 1.0 and s = 0.7. As it is shown there, the radial velocity,
surface density, vertical wind velocity, mass accretion rate,
and mass loss efficiency significantly decrease with γ in both
viscosity models. There is also a reduction of the rotational
velocity in the presence of wind, and as γ increases in α-model
or decreases in β-model, this reduction seems to be greater
under our restrictive boundary conditions. The disk aspect ratio
H/r , angular momentum per unit mass j , and also the Toomre
instability parameter Q (introduced in Section 4.5) are highly
affected by the given parameter γ and increase considerably
with it. Thus, aside from the adopted viscosity prescription, the
disks with larger values of γ are thicker and gravitationally more
stable.

5. SUMMARY AND OUTLOOK

In the present study, we have examined the influences of
hydrodynamical winds from a geometrically thin disk rotat-
ing around the central object, taking into account the self-
gravitational field of the disk gas with the α- and β-models for
its viscosity. We used the self-similar method to obtain the di-
mensionless form of the fluid equations, and then reduced them
in the slow accretion limit. In order to describe the evolution of
our disk, we derived two sets of ODEs for two available models
of viscosity. We solved them numerically, by exploiting natural
requirements and asymptotic solutions near the origin and near
the outer edge, as the boundary conditions. Of course, it is im-
portant to keep in mind that we had the limitations of selecting
the parameter γ as the essence of the differential equations, and
the fact that we seek only physical solutions (see MNU97 for
constraints).

Some fraction of the accreted material and their angular
momentum can be carried away by the wind. At the inner part
of the disk, wind does not considerably alter the dynamical
behaviors of the disk. However, at the outer part, where the
wind appears more efficient, all physical variables would be
much modified by wind. We present the ratio of the total
mass loss rate by wind with the mass accretion rate at each
radius of the disk in all figures. There is some observational
evidence of different systems showing that this ratio is around
0.1 (e.g., Königl & Pudritz 2000), which is in agreement with
our results. Additionally, all the figures show consistency with
our assumptions due to the slow accretion limit (Section 3.1).

In spite of the simplicity of our model in treating the wind
and the disk itself, we think the presented semi-analytical results
give us a better understanding of such a complicated system.
Basically, we had three main input parameters to control the
physical properties of the wind in a phenomenological way,
i.e., s, l, and Λ0, and another input parameter related to the
thermodynamics of the disk, i.e., γ . We did an extensive
parameter study for a wide range of input parameters, and the
main results are summarized as follows.

1. Radial dependence of the mass loss by wind was prescribed
by a power law with exponent s. As this profile of mass loss
becomes steeper with the radius, the accretion velocity is
enhanced, in particular at the outer layers of the disk. Addi-
tionally, the radial velocity increases with Λ0. Naturally, in
both viscosity models, if we keep all the input parameters
fixed and decrease s (because 0 < x < 1) or increase Λ0,
then more mass is extracted from the disk by the wind. This
means that more angular momentum is extracted by the
wind in addition to the turbulent viscosity, which implies
a larger radial velocity. The solutions clearly show this be-
havior. Depending on the wind mechanism, the value of l
is adopted in our model. A larger l implies more efficient
angular momentum extraction by the wind, which leads to
a more stable disk with larger radial velocity.

2. As the wind becomes stronger, the disk loses more mass,
and so one should normally expect a reduction of the
surface density of the disk. Consistent with this physical
expectation, we showed that in the presence of wind, surface
density decreases by decreasing s or increasing l or Λ0 in
both viscosity prescriptions.

3. In the model, the accretion rate depends on the radial
velocity and the surface density. Although radial velocity
increases, surface density reduces in the presence of wind.
As we analyzed the solutions of α and β disks, the accretion
rate reduces as the wind becomes stronger. Reduction to the
accretion rate is not very sensitive to the value of s, though
parameters l and Λ0 have a more significant effect on this
reduction.

4. Since the structure of the disk is modified in the presence
of wind according to the solutions, we also studied grav-
itational stability of the disk via the Toomre parameter.
As the wind gets stronger, we see that Toomre parameters
become larger, which implies a more stable disk. How-
ever, the dependence of the Toomre parameter on the wind
parameters is not the same. For example, the Toomre pa-
rameter is not very sensitive to the exponent s. As is shown
in the figures, the gravitational instabilities in β-disks are
more pronounced than in α-disks, even in the presence of
wind. So, it might be anticipated that the β-model can bet-
ter describe the planet formation around newborn stars. In
the case of proto-planetary disks, β-prescription yields the
spectra that are considerably flatter than those due to non-
self-gravitating disks, which is in a better agreement with
observations (Abbassi & Ghanbari 2009).

5. As may be inferred from the figures, β-disks typically have
an aspect ratio H/r smaller than α-disks, and thus fall into
the thin disk regime to a greater degree. However, this ratio
increases as wind gets stronger, irrespective of the viscosity
prescription.

6. We also found that the thermodynamics of the disk have a
vital role even in our simplified picture in which a polytropic
equation of state is used. With increasing γ , there are
reductions to radial velocity, surface density, accretion rate,
and mass loss efficiency, but the angular momentum per
unit of mass increases. Moreover, the disk is geometrically
thicker and gravitationally more stable as γ increases.

The differences between α and β models of viscosity pre-
scription were predicted by Duschl et al. (2000) and indeed are
confirmed by our results. In a global overview, as in AGS06,
we have shown that in the outer part of the disk, where the
self-gravity has an influential function, these models behave dif-
ferently, though they are somehow similarly affected by wind.
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In the real accretion disks, there are several important processes
other than viscosity and wind that are also expected to trans-
port angular momentum outward. It is also immediately clear
that the changes in the boundary conditions affect the structure
of the solutions. Many questions remain about the wind itself.
For example, how is it driven and where does it leave the disk?
However, we did not consider the driving mechanisms of the
wind. Given these facts, the treatments in the paper are very
simplified, but sufficiently general to describe many disk–wind
systems. All told, we believe that in order to obtain a better phys-
ical picture of such systems, more careful treatment is required
and the analysis must be as deep as possible.

The authors thank the anonymous referee for the careful
reading of the manuscript and his/her insightful and constructive
comments. E.N. also wishes to thank S.A. and M.S., who
supervised him on this project. This work has made extensive
use of NASA’s Astrophysical Data System Abstract Service
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