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ABSTRACT
The combined impact of rotation and magnetic fields on oscillations of stellar fluids is still
not well known theoretically. It mixes Alfvén and inertial waves. Neutron stars are a place
where both effects may be at work. We aim to solve this problem in the context of the
r-mode instability in neutron stars, as it appears when these modes are coupled to gravitational
radiation.

We consider a rotating spherical shell filled with a viscous fluid of infinite electrical con-
ductivity and analyse propagation of model perturbations when a dipolar magnetic field is
bathing the fluid layer. We perform an extensive numerical analysis and find that the m =
2 r-mode oscillation is influenced by the magnetic field when the Lehnert number (the ratio
of Alfvén speed to rotation speed) exceeds a value proportional to the one-fourth power of
the Ekman number (a non-dimensional measure of viscosity). This scaling is interpreted as
the coincidence of the width of internal shear layers of inertial modes and the wavelength
of the Alfvén waves. Applied to the case of rotating magnetic neutron stars, we find that
dipolar magnetic fields above 1014 G are necessary to perturb the r-mode instability.
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1 IN T RO D U C T I O N

Numerous astrophysical systems exhibit a pulsating behaviour that
can be significantly influenced by both magnetic field and rotation.
Rapidly oscillating Ap (roAp) stars, magnetic white dwarf stars and
neutron stars as well as planetary cores fall into this category.

In neutron stars, however, possible astrophysical implications
of the r-mode instability have motivated extensive investigations
of this mode over the past few years (see Andersson 2003 for a
review). r-modes belong to the class of inertial modes that arise
in rotating fluids due to the Coriolis force. Andersson (1998) and
Friedman & Morsink (1998) showed that these modes easily couple
to gravitational radiation and become unstable, allowing the neutron
stars to lose their angular momentum.

The foregoing instability may however be weakened or even
suppressed by all the dissipative mechanisms which couple to an
r-mode oscillation. Much work has thus been devoted to the anal-
ysis of the various mechanisms that may damp r-modes. Recently,
the vortex-mediated mutual friction of superfluids was investigated

�E-mail: abbassi@ipm.ir (SA); rieutord@irap.omp.eu (MR); rezaniav@
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by Haskell, Andersson & Passamonti (2009) as well as the ef-
fects of hyperon bulk viscosity Haskell & Andersson (2010), but
both effects do not seem to be able to influence the instability at
low temperatures. For these temperatures, the Ekman layer, which
forms below the crust of a neutron star, remains the most important
source of dissipation (Bildsten & Ushomirsky 2000; Rieutord 2001;
Glampedakis & Andersson 2006).

However, it is well known that the magnetic field is an important
component of a neutron star. It is therefore clear that fluid flows may
be significantly influenced by this field and other channels of dissi-
pation for the r-mode instability may exist through this component.
Much work has been devoted to investigation of the modifications
induced by a magnetic field on these modes. Rezzolla, Lamb &
Shapiro (2000) and Rezzolla et al. (2001a,b), for instance, have
shown that a strong magnetic field, beyond 1010 G, may weaken the
r-mode instability sufficiently so as to make the generated gravita-
tional waves undetectable. Mendell (2001) and Kinney & Mendell
(2003) focused on the influence of the magnetic field on the Ekman
layer flow. They concluded that a magnetic field larger than 1012 G
completely suppresses the instability. However, Lee (2005), using
a dipolar magnetic field covering the surface of a neutron star mod-
elled as an N = 1-polytrope, concluded that much stronger magnetic
fields, over 1014 G, are necessary to suppress the instability through
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magnetic perturbations. Besides the suppression of the foregoing
instability, magnetic fields can also directly spin down a neutron
star through classical magnetic braking (i.e. Ho & Lai 2000). More
recently, Cuofano & Drago (2010) and Bonanno et al. (2011) inves-
tigated the role of magnetic field generation by the unstable r-mode,
showing that a very strong toroidal magnetic field can be generated,
which can, in turn, modify the instability.

The aim of this paper is to explore further the channels of dis-
sipation for the unstable m = 2 r-mode of a rotating neutron star,
especially when viscosity and magnetic fields are both present. In-
deed, the possibility that an unstable r-mode of a spherical layer
might develop internal shear layers thanks to the magnetic field
action has not been considered by previous studies (e.g. Lee 2005).
Since fluid layers of different types are expected due to phase tran-
sitions of nuclear matter, the existence of internal shear layers is
also very likely. We shall see that this leads to a threshold value of
around 1014 G for magnetic fields to noticeably perturb the r-mode
instability.

Rotating fluid layers bathed by a magnetic field are however not
specific to neutron stars. They are also found in the planetary core,
like in the Earth’s core. Thus, to make this study of more general
interest, we consider a very simplified model of a neutron star,
neglecting relativistic or superconducting effects. We thus extend
the results of Rieutord (2001) to the case in which a dipolar magnetic
field perturbs the fluid flow (in the limit of very large magnetic
Prandtl numbers). This is meant to be a simple configuration where
combined effects of magnetic fields and viscosity can be studied.

This paper is organized as follows. In Section 2, we recall the
basic physical ingredients of the model, and in Section 3 we briefly
explain the numerical strategy. Numerical results for the m = 2
r-mode coupled with Alfvén waves are discussed in Section 4.
Conclusions are drawn in Section 5.

2 TH E MO D EL

We consider a rotating star modelled as an infinitely electrically
conducting core surrounded by a spherical layer of fluid limited by
an outer solid crust. The ratio of the inner core radius to the outer
radius R is η. The kinematic viscosity and magnetic diffusivity of
the fluid are, respectively, ν and νm.

The star is rotating with a uniform angular frequency of � =
�ez along the z-axis. The core is supposed to be the source of a
permanent axisymmetric magnetic dipole covering the whole layer.
The symmetry axis of the magnetic field is along the z-axis. Note
that such a partition of the star is necessary in order to avoid the
problem of the definition of the magnetic field in the core of the star,
the dipole field being singular at the centre. The fluid in the layer is
taken to be incompressible; thus we eliminate phenomena related to
compressibility such as p-modes (rapid and slow magnetic waves,
when a magnetic field is applied). Classical magnetohydrodynamic
(MHD) approximations are used (e.g. no charge separation and
non-relativistic motions).

2.1 Equations of motion

The shell is bathed by an axisymmetric dipolar magnetic field:

B0 = Bp · R3

(
cos θ

r3
er + sin θ

2r3
eθ

)
, (1)

where (er , eθ , eϕ) are spherical coordinate unit vectors. Bp is the
amplitude of the magnetic field at the surface poles of the star.

The equations of motion for an incompressible rotating fluid can
be written as
∂v

∂t
+ v · ∇v + 2� × v

= −∇p/ρ − ∇	eff + 1

μ0ρ
(∇ × B) × B + ν
v, (2a)

∂B
∂t

= ∇ × (v × B) + νm
B (2b)

∇ · B = 0, (2c)

∇ · v = 0, (2d)

where 	eff = 	 − �2r2sin 2θ /2 is the effective gravitorotational
potential and μ0 is the permeability of a vacuum. Here, v is the
velocity field, B is the total magnetic field (dipole field plus per-
turbation) and νm = 1/(μ0σ ), where σ is the fluid’s electrical
conductivity.

A non-dimensional form of the previous equations can be ob-
tained by introducing the parameters

VA = Bp/
√

μ0ρ, V� = 2�R, Le = VA/V�,

E = ν/(RV�), Em = νm/(RV�), (3)

where VA is the Alfvén speed, V� is rotational speed, E is the
Ekman number and Em is the magnetic Ekman number. Following
Jault (2008), we introduce the Lehnert number, Le, after Lehnert
(1954), which, by definition, measures the ratio of the Alfvén speed
to the rotation speed.

By linearizing magnetohydrodynamic equations (2) to the kinetic
u and magnetic b perturbations, one can study infinitesimal pertur-
bations from the equilibrium. We assume that these perturbations
have a time dependence of the form eλt, where λ = τ + iω (τ is
the damping rate, ω is the pulsation and i2 = −1), and we use the
following non-dimensional variables:

v → V�u(r)eλt ,

B → Bp B(r) + Bpb(r)eλt ,

ρ → ρo, (4)

where u(r) and b(r) are now first-order non-dimensional quantities.
Therefore, equations (2) reduce to the following set of equations:

λ∇ × u + ∇ × (ez × u)

= Le2∇ × [(∇ × b) × B] + E∇ × 
u, (5a)

λb = ∇ × (u × B) + Em
b, (5b)

∇ · u = 0, (5c)

∇ · b = 0, (5d)

where B denotes the permanent dipolar magnetic field and we used
∇ × B = 0. Here we take the curl of the momentum equation in
order to eliminate the pressure term.

2.2 Boundary conditions

Six boundary conditions are required to solve equations (5)
uniquely. On the inner boundary r = ηR(η < 1), the magnetic
field perturbations have only tangent components because the core
is assumed to be infinitely conducting. On the surface r = R, the
total magnetic field vector matches the external field which is the
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dipolar potential, as there are no currents in the external vacuum.
As for the velocity field, we may use either stress-free or no-slip
boundary conditions.

As for the magnetic field, different conditions apply to the inner
and outer boundaries. On the interior, the perturbation to the electric
field is perpendicular to the conducting core, and the perturbation
to the magnetic field is tangent. This gives the following three
equations:

br = 0, (6a)

Em

r

∂

∂r
(rbθ ) = −uθBr, (6b)

Em

r

∂

∂r
(rbϕ) = −uϕBr . (6c)

However, actually only equation (6b) or (6c) together with equa-
tion (6a) is needed (see Reese, Rincon & Rieutord 2004).

The magnetic field perturbations outside the star (r > R) are
derived from a potential that does not diverge at infinity:

bext = ∇φ, (7)

The boundary conditions at the surface of the star are only the
continuity of the magnetic field there. These conditions are easily
expressed after expansion of the fields in spherical harmonics (see
Appendix A).

Equations (5), together with boundary conditions, define a gen-
eralized eigenvalue problem, where λ is the eigenvalue and (u, b)
is the eigenvector which can be computed numerically.

2.3 The case of neutron stars

In neutron stars, typical values for the various physical quantities
are

Bp ∼ 1012G, ρ ∼ 1017 kg m−3, R ∼ 10 km, (8a)

� = 2πνs ∼ 1900 rad s−1, (8b)

σ ∼ 5.2 × 1017 ohm−1m−1, ν ∼ 0.32 m2 s−1, (8c)

νm ∼ 1.5 × 10−12 m2 s−1. (8d)

Here, the values of σ and ν are given for temperature T ∼ 108 K
(Baym et al. 1969; Flowers & Itoh 1976, 1979). Therefore, VA ∼
2.8 × 102 m s−1, V� ∼ 3.8 × 107 m s−1, so that

Le ∼ 7.5 × 10−6, E ∼ 8.4 × 10−13, Em ∼ 4 × 10−24.

We note that the magnetic Prandtl number ν/νm = E/Em ∼ 1011 is
extremely large. This means that the diffusion of magnetic pertur-
bations is a negligible source of dissipation. As a consequence, we
may simplify the set of equations (5) by setting Em = 0. In this case,
the magnetic perturbation is readily given by the fluid flow, namely

λb = ∇ × (u × B).

Hence, the set of equations reduces to

λ∇ × u + ∇ × (ez × u)

= Le2

λ
∇ × {[∇ × ∇ × (u × B)] × B} + E∇ × 
u, (9a)

∇ · u = 0. (9b)

This system is completed by boundary conditions solely on the ve-
locity. Indeed, the magnetic field is completely frozen in the fluid

and magnetic perturbations only represent the oscillations of the
dipole field lines. Interestingly, boundary conditions on the mag-
netic field (6a) show that if Em = 0 then uθ = uϕ = 0. This means
that on the inner core boundary, no slip boundary conditions can
be applied. This is expected since the core is assumed to be at rest
and no motion of the field lines is allowed. We also assume no-slip
boundary conditions (u = 0) on the outer boundary to take the crust
into account.

The small value of the Lehnert number suggests that the coupling
between the r-modes and the magnetic field is quite weak. We
readily see from the simplified perturbation equations (9) that the
influence of the Lorentz force will be noticeable compared to the
viscous force, if Le ≥ √

E. Noting that the Lorentz operator and
the viscous operator are both of second order, we observe that no
length-scale comes into this inequality. This means that it is valid
both in the Ekman boundary layers and in the bulk of the layer.
From the numbers that characterize neutron stars, it is obvious that
the inequality is met. This means that the magnetic field influences
the flow more than the viscosity and possibly changes the instability
of the r-modes. A more detailed calculation is therefore necessary
to assess the effect. We shall see that the previous inequality is not
stringent enough and a larger Lehnert number is necessary to affect
the instability. We now turn to a numerical study of this problem.

3 N U M E R I C A L M E T H O D

3.1 Spherical harmonic projection

To solve the eigenvalue problem expressed by equations (5), we
project the set of equations on the spherical harmonics in a similar
way as in Rieutord (1987, 1991). We expand the perturbed velocity
and magnetic fields into poloidal and toroidal components:

v =
∞∑

�=0

�∑
m=−�

u�
m(r)Rm

� + v�
m(r)Sm

� + w�
m(r)Tm

� , (10a)

b =
∞∑

�=0

�∑
m=−�

a�
m(r)Rm

� + b�
m(r)Sm

� + c�
m(r)Tm

� , (10b)

where the radial functions {u�
m, v�

m} ({a�
m, b�

m}) and {w�
m} ({c�

m}) are
the poloidal and toroidal parts of the velocity (magnetic) fields,
respectively. Rm

� , Sm
� and Tm

� are the vectorial spherical harmonics

Rm
� = Ym

� er , Sm
� = r∇Ym

� , Tm
� = r∇ × Rm

� . (11)

The harmonic decomposition of equations (5), (6a) and (7) is given
in Appendix A.

Equations (5) reduce to a generalized eigenvalue problem

[A] = λ[B], (12)

where [A] and [B] are differential operators with respect to the
variable r only. The eigenvector associated with λ can be written as

λm(r) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

...

u�
m(r)

c�
m(r)

w�+1
m (r)

a�+1
m (r)

...

(13)

where � runs from m to ∞.
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3.2 Classification and symmetries

Because of the axisymmetry of background fields, the different val-
ues of m of the spherical harmonic decomposition are not coupled.
An additional simplification comes from the symmetry with respect
to equator which permits the separation of symmetric and antisym-
metric modes. A more detailed discussion of these points can be
found in Reese et al. (2004) in the case of pure Alfvén modes. In
the present case, the Coriolis acceleration removes the symmetry
m/ − m, which exists for pure Alfvén modes. Moreover, in the ax-
isymmetric case, poloidal and toroidal components of the fields are
coupled.

3.3 Numerical aspects

The numerical resolution of the equations is described in Reese
et al. (2004). We just recall here that the equations governing the
radial functions u�

m, v�
m,w�

m, a�
m, b�

m, c�
m are discretized using the

Gauss–Lobatto grid and the resulting eigenvalue problem is solved
either with a QZ method or with the Arnoldi–Chebyshev algorithm,
depending on whether we solve the complete spectrum or a few
eigenvalues.

4 r- MODES–ALFV É N WAV E S C O U P L I N G

r-modes are a subclass of inertial modes which are purely toroidal.
In the case of a non-magnetic and inviscid incompressible fluid,
exact analytical solutions exist (Rieutord & Valdettaro 1997) and
the associated velocity field can be written as

u = α�R(r/R)�T �
�, (14)

where α is an arbitrary constant. The mode’s frequency in the frame
corotating with the fluid is given by

ω = −2�/(m + 1). (15)

Here, we shall focus on the m = 2 r-mode, which is the most un-
stable when coupled to gravitational radiation, and track its eigen-
frequency and damping rate as the magnetic field is increased.

4.1 The critical Lehnert number

Since we assumed an infinite magnetic Prandtl number, we noted
that the boundary conditions on the inner core boundary are of no-
slip type. This means that for Le → 0 the damping rate follows the
law derived in Rieutord (2001), namely

τ = − 35

27/2

1 + η6

1 − η7
I2

√
E, with I2 	 0.804.

If η = 0.35, τ = −2.494
√

E.
In Fig. 1, we plot the damping rates for various Ekman and

Lehnert numbers. The curves show that when the Lehnert number is
increased, that is when the magnetic field is increased, the (absolute
value of the) damping rate first decreases before rising rapidly. We
define a critical Lehnert number, Lec, such that |τ (Le ≥ Lec)| ≥
|τ (Le = 0)|. When τ is plotted as a function of the rescaled Lehnert
number, namely Le/Lec, all the curves superpose.

For later use, we fit this curve with a simple polynomial in
x = (Le/Lec)2/3, namely |τ | = ax4 + bx2 + 2.45 with a =
1.67 and b = −1.63. The precise shape of the fit is not crucial
as long as the values of the minimum and the growth beyond it are
respected.

Figure 1. Top: absolute value of the damping rate of the m = 2 r-mode as a
function of the Lehnert number for various Ekman numbers in [10−7, 10−4].
Bottom: the curves τE(Le) are rescaled by the critical Lehnert number. The
solid line shows the fit |τ |= ax4 + bx2 + 2.45 with a = 1.67 and b = −1.63.
In both panels, η = 0.35.

Figure 2. Dependence of the frequency on the m = 2 r-mode as a function
of the Lehnert number for various Ekman numbers in [10−6, 10−4].

Figure 3. The critical Lehnert number as a function of the Ekman number
for various aspect ratios η. The straight line shows the E1/4 law.

In Fig. 2 we show the variations of the frequency of the r-mode
with both the Ekman number and the Lehnert number. The curves
have been rescaled so as to show a minimized dependence on the
parameters. This plot suggests some scaling laws for ω − ω0, no-
tably that ω 	 ω0 + ω1Le4, ω1 > 0 for weak magnetic fields. The
asymptotic analysis of the behaviour of ω is quite cumbersome and
beyond the scope of this paper.

We show in Fig. 3 that the critical Lehnert number varies quite
closely as E1/4. Actually, a good fit is Lec = 1.78E1/4. Magnetic
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Figure 4. Top: in a meridional plane of the shell, the kinetic energy (right)
and viscous dissipation (left) of the m = 2 r-mode when a weak magnetic
field is present (small Lehnert number). Bottom: a view of the associated
magnetic perturbation. Right: the magnetic energy associated with the os-
cillation. Left: the associated current. Here, E = 10−6, Le = 10−3 and η =
0.35.

fields will therefore modify the dynamics of the oscillations when
Le ≥ Lec.

The E1/4 scaling law of the critical Lehnert number beyond which
a magnetic field is influential is rather surprising in view of the
discussion in Section 2.3. We can understand this scaling if we
consider the nature of r-modes when perturbed by a dipolar mag-
netic field. The magnetic and velocity perturbations, as well as
their gradients, are displayed in Fig. 4. It is clear that the magnetic
perturbation is concentrated along the shear layer emitted at the
critical latitude, namely arcsin(1/3) = 19.5◦. Such shear layers are
a feature of viscous inertial modes which is due to a singularity
of the boundary layer at this latitude (e.g. Rieutord & Valdettaro
2010).

By analysing the scale of this layer, as shown in Appendix B, we
find that when Le � √

E, its thickness scales like Le/E1/4, showing
that when Le reaches E1/4, the interaction between the magnetic
field and the r-mode becomes strong, presumably emphasizing a
resonance between the oscillating shear layer and an Alfvén wave.
From the diminishing of the damping rate, we conclude that the
dissipative layers slightly thicken, which is understandable since
the magnetic field tends to oppose shear.

When the Lehnert number is much larger than its critical value,
the r-mode is completely destroyed, leaving the place to small-scale
(very dissipative) Alfvén waves (see Fig. 5).

4.2 Influence of the magnetic field on the instability

We now turn to the physical consequences of the inequality

Le ≥ 1.78E1/4.

It may be transformed into a constraint on the magnetic field, namely

B ≥ Bcrit = 1.78
√

μ0ρ2�RE1/4.

Figure 5. The same as in Fig. 4 but with a critical Lehnert number. Note how
the dipolar magnetic field now features the various parts of the oscillation.

Figure 6. The critical angular velocity normalized by �K = (2/3)
√

πGρ

for various values of the magnetic field. The solid line shows the case with
no magnetic field.

We now introduce the scaled angular velocity �∗ = �/
√

πGρ and
the temperature dependence of the kinematic viscosity as in Bildsten
& Ushomirsky (2000), namely ν = 1.8f /T 2

8 m2 s−1, where f is a
parameter of the order of unity and Tn = T/10n. We thus find

Bcrit = 7.1 × 1014 �∗3/4

T
1/2

9

G.

This critical magnetic field is very high, showing that only hot and
slowly rotating neutron stars might be affected by the magnetic
field. To visualize this effect, it is useful to consider the window of
instability in the (T , �∗) plane as in Rieutord (2001) or Bildsten &
Ushomirsky (2000).
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In order to calculate the boundaries of the window, we need to
approximate the curves in Fig. 1 with some analytical function. We
thus use the polynomial derived above.

In the (T , �∗) plane, the window boundary gives the critical
angular velocity beyond which the r-mode instability exists. We
therefore need to solve

γgw + γbulk + γmi = 0,

where we take the growth rate of the mode due to gravitational radi-
ation γgw = 0.306 s−1 �6

∗ from Lindblom, Owen & Morsink (1998)
and the damping by bulk viscosity γbulk = −2.2 × 10−12 s−1 T 6

9 �2
�

from Lindblom, Mendell & Owen (1999). The expressions for γgw

and γ bulk have been derived using an n = 1-polytropic model for
the neutron star; however, we expect that the density distribution
influences the damping rate of the mode with a factor of the order
of unity, thus not changing the order of magnitude of the magnetic
fields. We can thus simply estimate the critical rotation rate for
various values of the temperature and magnetic field.

As expected from the value of the critical magnetic field, we
see in Fig. 6 that there is a significant reduction of the instability
window only when the field exceeds 1014 G, which is rather high.
However, we note that for lower values (e.g. 1013 to 4 × 1013 G),
the magnetic field slightly widens the instability window. This is
the consequence of the slight reduction of the damping rate around
the critical Lehnert number that appears in Fig. 1.

5 C O N C L U S I O N S

In this paper we have investigated the dynamics of the m = 2 r-mode
in a spherical shell when the fluid is bathed by a dipolar magnetic
field. The main theoretical result of this work is that magnetic fields
have a negligible influence on the r-mode unless they exceed a
critical value such that the Lehnert number is of the order of the
one-fourth power of the Ekman number. A physical interpretation
of this scaling law may be obtained by observing that at this critical
value, the wavelength of Alfvén waves is similar to E1/4R, which
is precisely one of the typical thicknesses of shear layers of inertial
modes (e.g. Rieutord, Georgeot & Valdettaro 2001).

We have also shown that when the magnetic field is slightly below
the critical value, the damping rate of the mode is slightly reduced
because of the thickening of the various layers due to the frozen
field limit.

As to neutron stars and the famous instability of inertial r-modes
when coupled to gravitational radiation, we conclude that, as far as
dipolar fields are concerned, only fields over 1014 G may seriously
affect the instability. Thus, with a quite different approach, which
includes the specific shear layers of r-modes, we can confirm the
result of Lee (2005), obtained with singular perturbations, that for
typical values of 1012 G, magnetic fields are unimportant.

This result does not therefore invalidate the scenario of Rezzolla
et al. (2001b), which suggests that the non-linear development of the
r-mode instability may generate a strong toroidal field from a pre-
existing poloidal field. This mechanism was recently investigated in
some details by Cuofano & Drago (2010) in the context of accreting
neutron stars such as low-mass X-ray binaries. Neglecting viscosity,
these authors show that magnetic fields above 1012 G can reduce
the r-mode instability. From these results and ours, we estimate that
accounting for viscosity will require fields 10 times stronger, namely
above 1013 G. However, the details of the interaction between r-
modes and a toroidal field in a spherical fluid layer are poorly

known: only a few works (e.g. Schmitt 2010 and references therein)
have investigated this question in the context of the MHD of the
liquid core of the Earth, where the magnetic Prandtl number is
very low. The case relevant to neutron stars still deserves detailed
investigations.
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A P P E N D I X A : SP H E R I C A L H A R M O N I C
E X PA N S I O N O F TH E M H D EQUATI O N S

In this appendix, we expand each term of equations (5) in the
spherical harmonics in the base of (Rm

� , Sm
� , T m

� ). The different parts
of the equation have been published elsewhere. The Lorentz force
and the induction equation may be found in Rincon & Rieutord
(2003) while the projection of the Coriolis acceleration or its curl
are found in Rieutord (1987) and Rieutord & Valdettaro (1997).
For completeness, we give here the result of casting the projection
of these forces into a single equation. The equation of vorticity
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yields

λwl = im

�(� + 1)
wl + Al

l−1x
l−1 ∂

∂x

(
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m

xl−2

)
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While the induction equation gives

λra�
m = imBrw

�
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and the mass and flux conservation reads as

v�
m = 1

�(� + 1)r

d

dr

(
r2u�
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)
, (∇ · v = 0), (A3)

b�
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, (∇ · b = 0), (A4)

In these equations, we introduced the following operators:


� = 1

r

d2

dr2
r − �(� + 1)

r2
,

D� = 1

r

d

dr
r
� = 1

r

d3

dr3
r − �(� + 1)

r

d

dr

1

r
,

and coupling coefficients

αl
l−1 = αl−1

l =
√

l2 − m2

(2l − 1)(2l + 1)
,

βl
l−1 = (l − 1)αl

l−1, βl
l+1 = −(l + 2)αl

l+1,

γ k
l = {[k(k + 1) + l(l + 1) − 2]/2k(k + 1)}αk

l ,

Al
l−1 = Al−1

l = αl
l−1/l

2,

Bl
l−1 = Bl−1

l = (l2 − 1)αl
l−1.

All the differential equations need to be completed by boundary
conditions; for the velocity field, no-slip conditions read

u�
m = 0,

du�
m

dr
= 0 and w�

m = 0

on both boundaries. These conditions are sufficient when Em = 0.

A P P E N D I X B : B O U N DA RY-L AY E R A NA LY S I S
F O R T H E C R I T I C A L L E H N E RT N U M B E R

We now consider Cartesian coordinates adapted to the geometry of
the shear layer as shown in Fig. 4 (bottom) (as materialized by the
region with high b2). z is the coordinate normal to the shear layer
assumed to contain the rapid spatial variations.

The dynamics inside this layer verifies

λu + ωez ∧ u = −∇p + Le2

λ

(
∇ × ∂u

∂z

)
× ez + E
u,

where we assumed that the background magnetic field is along ez

and that the shear layer makes an angle arcsin ω with the rotation
axis (hence the factor ω in front of the Coriolis acceleration). After
taking the curl of this equation, considering only the rapid variations
along ez, and taking its x and y components, we find

λ(λ + iω)∂zu = (Le2 − λE)∂3
zu,

with u = ux + iuy .
Noting that for the r-mode λ = −iω + τ0

√
E, we find that if

u ∝ exp(−z/z0), then

z0 ∼ (1 + i)
Le

E1/4
.

This result shows that there is a change of scale in the flow when
the Lehnert number reaches values O(E1/4).
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