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1. Introduction

Accretion disks an important ingredient in our current understanding of many

astrophysical systems on all scales. Accretion of the matter onto a compact object

powers many energetic astrophysical systems, such as cataclysmic variables, X-ray

binaries, and active galactic nuclei. The birth of modern accretion disk theory is

traditionally attributed to the original model presented by Shakura and Sanyev [1]. This

standard geometrically thin, optically thick accretion disk model (SSD) can successfully

explain most of observational features in active galactic nuclei (AGNs) and X-ray

binaries. In the standard thin disk model, the motion of matter in the accretion disk is

nearly Keplerian, and gravitational energy released in the disk is radiated away locally.

An alternative accretion disk model, namely, the advection-dominated accretion flows

(ADAFs), was suggested for the black holes accreting at very low rates [2, 3]. In the

ADAF model, only a small fraction of gravitational energy released in the accretion

flow is radiated away due it’s inefficient cooling, and most of the energy is stored in the

accretion flow and will advected to central accretor. So ADAFs are optically thin and

very hot (compare with standard Shakura & Sanyev disks), which radiated mostly in

the X-ray band. This model can successfully explain X-ray binaries and low luminosity

AGNs.

Although great progress has been made in recent years in increasingly sophisticated

numerical accretion disk simulations, simple analytic disk models still are the only

accessible way of making direct link between the theory and observations. The

theoretical treatment can estimate the spectra and other observational features of

the accretion powered objects. This fact justified the continues effort to improve the

theoretical models for understanding the underlying physics of accretion disks.

One of the most important assumptions in the SSD is that they are geometrically

thin, every where on the disks, the half-thickness H(r) is much smaller than cylindrical

radius, H/r ≪ 1. So the average motion of the flow in the vertical direction must be

negligible compare with the radial motion. This assumption would for the inner regions

of the disks in some specific situations. For example when the accretion rate suppresses

as its critical value, Eddington Luminosity, or when the disk is in the radiation inefficient

regime. In these cases, the inner region of the thick will get geometrically thick, H/r ∼ 1.

Based on these understandings and the concept of advection dominance, two new types

of model was introduced namely the optically thick, radiation pressure supported slim

disk [4] and the optically thin advection dominated accretion flow [3, 4]. ADAFs and

Slim disk were supposed to be a geometrically slim, neither thin nor thick. The reasons

for this restriction comes from the definition of advection parameter, f = Qadv/Qvis,

which is argued by Abramowitcz et al. [4]. Here Qadv and Qvis are the advective cooling

and viscose heating rate per unit area, respectively. Advective parameter should satisfied

in this relation [4]

f ≥ (
H

R
)2.
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Since in advection paradigm f ≤ 1, ADAFs can be a valid model for the disks that

are not thin, but the disk can not be thick either, because the value of f can not exceed

1.

Recently, Gu & Lu [5] (hereafter GL07) and Gu et al [6] (hereafter GU09) addressed

a problem on the vertical thickness of ADAF types disks. They have shown that the

vertical component of gravitational potential was introduced by Hoshi (1997) which was

widly used in slim disk model is valid only for geometrically thin disk with H/R ¹ 0.2.

For a larger thickness it would greatly magnify the gravitational force in the vertical

direction. GL07 have shown that when the vertical gravitational force is correctly

calculated in a cylenderival coordinate with the explicit potential, ψ(R, z), slim this are

much thicker than previously thought. GU09 revisit the problem of the vertical structure

of black hole accretion disks in a spherical coordinates. By comparing the advective

cooling with the viscous heating, they have shown that the ADAFs are geometrically

thick, with half-opening angle ∆θ > 2π/5.

2. The basic equations

We consider a steady state axi-symmetric ( ∂
∂ϕ

= ∂
∂t

= 0) accretion disk in spherical

coordinate (r, θ, ϕ). For simplicity the self-gravity and general relativistic effects have

been neglected and use the Newtonian potential for gravity, ψ = −GM∗

r
, where M∗ is

the black hole mass. also we consider a toroidal configuration for magnetic field. The

basic equation of continuity and momenta are

1

r2

∂

∂r
(r2ρvr) +

1

r sin θ

∂

∂θ
(sin θρvθ) = 0, (1)

vr
∂vr

∂r
+

vθ

r
(
∂vr

∂θ
− vθ) −

v2
ϕ

r
= −

1

ρ

∂p

∂r
−

GM∗

r2
+

1

4πρ
(JθBϕ − JϕBθ), (2)

vr
∂vθ

∂r
+

vθ

r
(
∂vθ

∂θ
+ vr) −

v2
ϕ

r
cot θ = −

1

ρr

∂p

∂θ
+

1

4πρ
(JϕBr − JrBϕ), (3)

vr
∂vϕ

∂r
+

vθ

r

∂vϕ

∂θ
+

vϕ

r
(vr +vθ cot θ) =

1

4πρ
(JrBθ−JθBr)+

1

ρr3

∂

∂r
(r3Trϕ),(4)

where vr, vθ and vϕ are the velocity components in a spherical coordinate. Also the

components of the current density, J, are

Jr =
1

r sin θ

∂

∂θ
(Bϕ sin θ), Jθ = −

1

r

∂

∂r
(rBϕ), Jϕ =

1

r
[
∂

∂r
(rBθ)−

∂Br

∂θ
].(5)

In the viscous prescription, we assume that only rϕ-component of the viscous stress

tensor is important, which is

Trϕ = νρr
∂

∂r
(
vϕ

r
), (6)

where ν = αc2sr
vk

is the kinematic viscosity coefficient, α is the constant viscosity

parameter, cs is the speed of sound which is defined as c2
s = p/ρ and also vk = (GM∗

r
)1/2



S. Abbassi and A. Mosallanezhad Vertically thickness of a magnetized advection... 32

is the Keplerian velocity. we do not have any outflow or wind production from the

surface of the disk, so vθ = 0 is a reasonable approximation for the disks with any

thickness [7]. And also by considering only ϕ-component of magnetic field, Bϕ 6= 0, the

third component of current density become zero, Jϕ = 0. With the above assumptions,

our main equations are reduced to

1

r2

∂

∂r
(r2ρvr) = 0, (7)

vr
∂vr

∂r
−

v2
ϕ

r
= −

1

ρ

∂Pg

∂r
−

GM∗

r2
−

Bϕ

4πρr

∂

∂r
(rBϕ), (8)

v2
ϕ cot θ =

1

ρ

∂Pg

∂θ
+

Bϕ

4πρ sin θ

∂

∂θ
(Bϕ sin θ), (9)

vr
∂vϕ

∂r
+

vrvϕ

r
=

1

ρr3

∂

∂r
(νρr4 ∂

∂r
(
vϕ

r
)). (10)

3. Self-similar solutions

The self Similar Solutions can not able to describe the global behavior of the accretion

flows, because in this method there are not any boundary conditions. however as long

as we are interested the solutions near the boundaries, it would benefit to have overall

dynamical behavior of the solutions. Following [3], we will adopt the self-similarity in

the radial direction as

vr(r, θ) = rΩK(r)V (θ) (11)

vϕ(r, θ) = rΩK(r)Ω(θ) (12)

cs(r, θ) = rΩK(r)C(θ) (13)

ρ(r, θ) = ρ0ρ(θ)(r/r0)
−3/2 (14)

Where ΩK(r) =
√

GM∗/r3 is Keplerian angular velocity, ρ0 and r0 provide

convenient units with which the equations can be written in non-dimensional forms.

Also we consider that the radio of magnetic pressure to the thermal pressure, β, is

spatially constant [8, 9]

β =
pm

pg

=
B2

ϕ

8πp
(15)

The above similarity solution will satisfy in the main MHD equations. They will

satisfy in continuity equation automatically and the components of momentum equation

are reduced to be

1

2
V 2 +

5

2
(1 + β)C2 + Ω2 − 2βC2 − 1 = 0 (16)

(1 + β)
C2

p

∂p

∂θ
= (Ω2 − 2βC2) cot θ (17)
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V = −
3

2
αC2 (18)

We have four unknown quantities, namely V , Ω, C and p which they are appeared

in the three above equations. This is becauce we do not use the energy equation. we

will assume that the energy equation form in radial direction is

qvis = qadv + qrad (19)

Where qvis is viscous heating rate per volume, qrad is the radiative cooling rate per

volume and qadv is the advection energy by accretion materials per unit volume and they

are expressed as

qadv = −
5 − 3γ

2(γ − 1)

pvr

r
(20)

qvis =
9

4

αpv2
ϕ

rvK

(21)

And also Qvis, Qrad and Qadv represent local values of energy transport by viscous

heating, radiation cooling and advection respectively. Then Qadv and Qvis are given by

the vertical integration

Qadv =
∫ π

2
+∆θ

π

2
−∆θ

qadvr sin θdθ (22)

Qvis =
∫ π

2
+∆θ

π

2
−∆θ

qvisr sin θdθ (23)

Where ∆θ is the half-opening angle of the disk. Due to complication in calculating

the radiation process in a global ADAF solutions [3], Qadv = fQvis was used as an

energy equation, where f was given as a constant. One of our goal is that how f varies

with the thickness of the disk and how this parameter is effected by magnetic field. To

do this, we further assume a polytropic relation, p = Kργ, in the vertical direction,

which is often adopted in the vertically integrated models of geometrically slim disks

[10]. We admit that the polytropic assumption is a simple way to close the system, and

then enable us to calculate the dynamical quantities.

By combination of the polytropic relation and the definition of the sound speed

c2
s = p/ρ, the polar component of Euler equation, (Eq.17), becomes

dC2

dθ
= (

γ − 1

γ
)(

1

1 + β
)(Ω2 − 2βC2) (24)

This equation with Eq.16 and Eq.18 can be solved for V , Ω and C. A boundary

condition is required for solving the differential equation 24, which is set to be cs = 0

at the surface of the disk, because both density and pressure are zero at the surface of

the disk,(ρ = p = 0).

Then Qvis and Qadv is obtained from Eq.23 and Eq.22 respectively. So we can

calculate the advection parameter, fadv = Qadv

Qvis

.
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4. Discussion and conclusions

In this paper first, we have obtained numerical solutions of equation (16-18) and (24)

by considering viscosity parameter (α) and magnetic field parameter (β). The behavior

of the solutions shows as the four panels in figure.1 . The top left panel displays the

dimensionless redial velocity V (θ) as a fixed disk’s half-opening angle ∆θ, for different

values of magnetic field parameter, β. it is obvious that V (θ) is zero at surface of the

disk( this is a boundary condition) and reach to the maximum value at the equatorial

plane (θ = π/2). It is seen that the profiles of V (θ) decrease with increasing of magnetic

field parameter β and achieve in maximum values at the equatorial plane.

In the right top panel of figure.1, we plot the angular velocity, Ω(θ). According to

this figure, Ω(θ) decreases in all profiles , when it near to the equatorial region from

the surface of the disk, It means that Ω(θ) has a maximum in the surface of the disk.

Moreover, the same as redial velocity, as β increase, the profiles of angular velocity

decrease toward the fixed half-opening angular, ∆θ. It is clear from equation(18),the

variation of sound speed is similar to variation of redial velocity and we show the sound

speed similarity function, C(θ) in the bottom left panel of figure 1. As it is expected,

the velocity similarity functions V (θ), Ω(θ) and C(θ) are sub-Keplerian.

And the Bottom right panel of figure.1 displays the density similarity function,

ρ(θ). we show that the density decrease with increasing the different values of magnetic

parameter, β, and it is zero at the surface of the disks and reach to the maximum value

at the equatorial plane.

The main aim of this investigation was to show the variation of the advection factor,

fadv with the disk’s half-opening ∆θ for different values of magnetic parameter, β and the

fixed value of radio of specific heats γ = 4/3 and viscosity parameter α. In our opinion,

the difference results from different assumption, i.e, Narayan & Yi [11] assumed an

anergy advection factor, f ′

adv in advance, whereas we solve for energy advection factor,

fadv self-consistently based on polytropic relation in the vertical direction. In addition

we assumed that the radio of magnetic pressure to gas pressure, β = pm/pg has a fixed

value. so we make improvement over GL07 and GX09 .Our results are shown in figure.2.

It is seen that advection dominated (fadv > 0.5) is possible, but only for ∆θ > 2π/5.

Therefore advection-dominated disks must be geometrically thick rather than slim as

previously supposed.

The key concepts of slim and ADAF disk models is advection dominance. This

concept was introduced rather as an assumption, whether and under what physical

conditions can it be realized have not been clarified. Here the main results of our

work was to have shown that in order for advection to be dominated, the disk must be

geometrically thick. And also by increasing the magnetic parameter β, the half-opening

angle ∆θ become smaller than before.
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Figure 1. The self-similar solutions of V (θ), Ω(θ), C(θ) and ρ(θ) as a function of

polar angel θ corresponding to α = 0.1, γ = 4/3, ∆θ = 0.25π and β = 0, 1, 5, 10
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Figure 2. Variation of the advection factor fadv with the disk’s half-opening angle ∆θ

for diffrent values of magnetic feild, β = 0, 3, 7, 10 corresponding to α = 0.1, γ = 4/3
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