بررسى عددى تأثير پارامترهاى هندسى يك ميكروپֵپ لزجتى بر دبى خروجى و توليد آنتروپی

1 - دانشجوى دكترى، مهندسى مكانيك، دانشگاه فردوسى مشهد، مشهد
2 - استاد، مهندسى مكانيك، دانشگاه فردوسى مشهد، مشهد

Abstract

ميكروپمپهای لزجتى به دليل طراحى و ساخت ساده و نيز كاربردهاى فراوانشان در زمينههاى مختلف صنعتى و پزشكى مورد توجه محققان S2 = مىتوان به بررسى تأثير همزمان تغيير قطر روتورها بر دبى و توليد آنترويى و همحچنين استخراج پارامترهایى هندسى بهينیه بر اساس تحليل آنترويى اشاره نمود.

Numerical Investigation of the Effects of Geometrical Parameters of a Viscous Micro-pump on the Flow Rate and Entropy Generation

Hojjat Khozeymeh Nezhad, Hamid Niazmand*
Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
* P.O.B. 91775-1111 Mashhad, Iran. niazmand@um.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 02 September 2014
Accepted 24 December 2014
Available Online 10 February 2015

Keywords:

Viscous Micropump
Geometrical Parameters
Circular Rotor
Finite Volume Method
Entropy Analysis

Abstract

Viscous micro-pumps have attracted researchers' attention due to their simple design and fabrication and many applications in various industrial and medical fields. Therefore, a wide range of numerical and experimental studies has focused on this topic. In the present paper, a numerical study has been performed to investigate the effect of geometrical parameters of a viscous micro-pump on the flow rate and entropy generation. The governing equations have been solved using the finite volume method. The present research has been carried out for three geometrical parameters of micro-pump including eccentricity (ε), sizes (S) of rotors and also their distance from each other (L) in the range of 0.1 to $0.9,1.5$ to 3.5 and 0.85 to 4.5 , respectively. The results show that by increasing ε, the micro-pump flow rate also increases. On size variation effects, it is observed that decreasing the downstream rotor diameter while keeping constant the upstream rotor diameter, decreases the flow rate exponentially. By increasing L, a steep increase in flow rate is initially observed, which becomes almost constant when rotors are sufficiently far apart. With regard to entropy analysis, with increasing ε, the ratio of Rs also increases. However more complex variations of RS are observed for other examined geometrical parameters due to the relatively complex micro-pump flow patterns. Also in this paper, for obtaining the maximum flow rate at the minimum frictional dissipation, optimal geometrical parameters are extracted. In this regard, the values of $\mathrm{L}=2, \varepsilon=0.5, \mathrm{~S}_{1}=1.5$ and $\mathrm{S}_{2}=2.5$ are selected as the optimum geometrical parameters of viscous micro-pump. Finally, it should be noted that the effect of simultaneous variations of the rotors diameters on the flow rate and entropy generation and, moreover, obtaining the optimal geometrical parameters based on the entropy analysis, are among the novelties of the present paper.

ميكروپمپ لزجتى را بهصورت عددى مورد بررسى قرار دادند. آنها در كار

 گرديد يك مقدار بحرانى براى آن وجود دارد كه تا تا آن مقدار، تقارن جرين

 لزجتى با روتور منفرد دايروى در نظر كر كرفتند. آنها اتأثير پار امترها هندسى را بر نرخ جريان عبورى و توان مصرفى رونى روتور مورد بر برسى قراي

 افزايش خارج از مركزى روتور كاهش پید

 مى كنند. جيانفنگ و همكاران [10]، براى اولين بار تأثير فرورفتگى زير رير روتور

 يكسان بوده است و تأثير همزمان قطر متفاوت روتور ها بر عملكر دير ميكر ديكرويمپ لزجتى كه در اين مقاله منظور دبى بى بعد خروجى از آن مى انشاشد در هيج يكـ

5- Scale coefficient

1 - مقدمه
پیيشرفتهاى اخير در فناورى ساخت وسايل ميكروسيالى باعث توسعه

 مكانيكى شامل جابهجايى مثبت، لزجتى ${ }^{4}$ و و .. مىباشند.

 نيروى خالص وابسته به قرارگيرى خارج از از مركز روت روتور مى ارياشد. وقتى روتور
 پايين آن متفاوت بوده و همين اختلاف تنش باعث حركت سيرد مرال درون ريزمجرا مى گردد.
 ريزمجراى اين نوع از ميكرويمپها صورت گرفتها

 اين كار به بررسى تأثير پارامترهاى هندسى مختى
 در ريزمجرا، بها ازاى يكى مقدار خارج از از مركزى ثار ثابت، در كا كانالى با با ارتفاع حدود

مر كزى به دست آمده است.

فاتهاوانگً و حسن [2]، با استفاده از نرمافزار فلوئنت تأثير شكلهماى

 دارند بالاترين دبى خروجى از ميكرويمپ
يانگَ و همكاران [4]، با استفاده از روش لتيس بولتزمن عملكرد يك
1- Electroosmotic (EO)
2- Electrohydrodynamics (EHD)
3- Magnetohydrodynamics (MHD)
4 - viscous micropump

در اين مقاله تأثير تغيير پارامترهاى هندسى بىبعد (1) تا (3) بر عملكرد
 CO9، تغيير مى كنند. بايستى ذكر گردد كه در اين شبيهسازى فرضيات ذيل در نظر كرفته شده است: 1- مساله آرام و پايا است. 2- سيال نيوتنى با خواص ثابت می

 ميكروپِپهاى لزجتى در حدود 10 تا 200 ميلىمتر مكعب بر ثانيه متغير مى مـاشد.

3 - معادلات حاكم

قوانين حاكم بر اين مساله به تر تيب بقاى جرم

(4) -(6) نوشته مى
$\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$
$\rho\left(u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right)=-\frac{\partial p}{\partial x}+\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)$
$\rho\left(u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}\right)=-\frac{\partial p}{\partial y}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)$
كه در آن x و y به ترتيب مختصات كارتزين در جهت افت افقى و عمودى، u و و بهترتيب مولفههاى سرعت در راستاى x و و x

 مى شود لذا براى اين منظور ارتفاع ريزمجرا (h)، به عنوان مقيان

 مطابق رابطه (7) تعريف مىشوند: $\mathrm{X}=\frac{x}{h}, \mathrm{Y}=\frac{y}{h}, \mathrm{U}=\frac{u}{U_{s}}, \mathrm{~V}=\frac{v}{U_{s}}, \mathrm{P}=\frac{p}{\rho U_{s}{ }^{2}}$

 با توجه به متغيرهاى بى بعد تعريف شده در رابطه 7 معادلات (4-6) به صورت بى بعد (10-1) بازنويسى مىشوند: $\frac{\partial U}{\partial X}+\frac{\partial V}{\partial Y}=0$
$\mathrm{U} \frac{\partial \mathrm{U}}{\partial \mathrm{X}}+\mathrm{V} \frac{\partial \mathrm{U}}{\partial \mathrm{Y}}=-\frac{\partial \mathrm{P}}{\partial \mathrm{X}}+\frac{1}{\operatorname{Re}}\left(\frac{\partial^{2} \mathrm{U}}{\partial \mathrm{X}^{2}}+\frac{\partial^{2} \mathrm{U}}{\partial \mathrm{Y}^{2}}\right)$
$\mathrm{U} \frac{\partial \mathrm{V}}{\partial \mathrm{X}}+\mathrm{V} \frac{\partial \mathrm{V}}{\partial \mathrm{Y}}=-\frac{\partial \mathrm{P}}{\partial \mathrm{Y}}+\frac{1}{\operatorname{Re}}\left(\frac{\partial^{2} \mathrm{~V}}{\partial \mathrm{X}^{2}}+\frac{\partial^{2} \mathrm{~V}}{\partial \mathrm{Y}^{2}}\right)$
كه در آن عدد رينولدز (Re) براساس قطر روتور بزر كتر محاسبه مىشود و در تمامى محاسبات برابر 1 در نظر گر كرفته شده است است

 مطابق روابط (11) -(14) نوشته مى شوند. بايستى ذكر گردرد كه شرايط مريّى بى بعد مربوط به سرعت روتورها يعنى روابط (113) و (114) براى هندسه نشان داده شده در شكل 1 ارائه شده است. $\mathrm{U}=\mathrm{V}=0, \frac{\partial \mathrm{P}}{\partial \mathrm{Y}}=0$

ديوار ههاى ريزمجرا:
(11)

 اين مقاله نيز با استفاده از ديدگًاه كمينهسازى توليد آنترويى، حالت بهينينه

 بعدى با استفاده از روش حجم محدود انجام شده است تا تأثير پارارامترهاى
 ريزمجراى آن مطالعه كند. در انتها نيز با با استفاده از تحليل كمينيندسازى توليد آنترويى پارامترهاى هندسى بهينه استخراج و معرفى شدند.

2 - فيزيك مساله و فرضيات

شماتيكى از فيزيك مساله حاضر و شرايط مرزى آن در شر شكل 1 نشان 1 نشان داده شده است. مساله مورد نظر شامل يكى ريزمجراى تخت با با ارتفاع (h) 30 مريلي ميلىمتر و طول به شرايط جريان كاملا توسعه يافته درون ريز مجرا ديرا بايستى طول شكل 1 نيز نشان داده شده است، حداقل هشت برابر قطر روتور بزر ركتر باشند.
 طورى انتخاب شده است كه شرط توسعه يافتتى برقرار باشد. با توجه به شكل 1، درون ريزمجراى تخت نشان داده شاد شده دو رو روتور

 تعريف مىشود: $\varepsilon_{1}=\frac{y_{c 1}}{\frac{h}{2}-\frac{d_{1}}{2}}, \varepsilon_{2}=\frac{y_{c 2}}{\frac{h}{2}-\frac{d_{2}}{2}}$
قابل ذكر است كه براى تغيير قطر روتورها و نيز فاصله مركز دو دو روتور از يكديگر دو پارامتر بىبعد ديگر به ترتيب مطابق روابط (2) و (3) تعريف $\mathrm{S}_{1}=\frac{h}{d_{1}}, \mathrm{~S}_{2}=\frac{h}{d_{2}}$ $\mathrm{L}=\frac{l}{h}$

به صورت رابطه (21) تعريف مىشود:
$R_{P}=a_{P} \emptyset_{P}-\left(\sum a_{N b} \emptyset_{\mathrm{Nb}}+S_{u}\right)$
حنانحֶه ذكر شد انتخاب مىشود. در اينجا نيز آن برابر 100^{8} لحاظ كرديدر درد است. حل عددى هنگامى متوقف مى شود كه رابطهى (20) برقرار كردد.
 براى متغير هاى تصحيح شده سرعت و O/3 براى متغير تصحيح شده فشار در نظر كَرفته شده است. نمونهاى از شبكه ايجاد شده به روش جبرى براى حالتى كه
 همانطور كه در اين شكل نيز مشاهده مىشود به دا دليل وضوح برا بيشتر، شبكهى ايجاد شده اطراف استوانهها بهصورت مجزا و با بزر گینمايى بيشترى نشان داده شده است.

 شاراحندرا [1] و عبدالقواد [3] مقايسه گرديده است. در اين مقايسه يك

 به صورت بى بعد ذيل تعريف و برابر 1 لحاظ كرديده استر استر $\Delta \mathrm{P}^{*}=\frac{P_{\text {out }}-P_{\text {in }}}{\rho 9^{2} / d^{2}}$
 نظر كرفته شده است. نتايج حاصل از مقايسه در جدين اين اين 1 و و شكل 3 نشان داده شده است. چنان چچه در اين جدول و شكل مشاهن قبولى بين نتايج وجود دارد.

شكل 2 نمونهاى از شبكه جبرى توليد شده با بزر گنمايى اطر اف استوانهها
$\frac{\partial \mathrm{U}}{\partial \mathrm{X}}=\frac{\partial \mathrm{V}}{\partial \mathrm{X}}=0, \mathrm{P}_{\text {in }}=\mathrm{P}_{\text {out }}=0 \quad$ (12) $\mathrm{U}=\frac{d_{1}}{d_{2}} \sin \varphi, \mathrm{~V}=\frac{d_{1}}{d_{2}} \cos \varphi, \frac{\partial \mathrm{P}}{\partial \mathrm{n}}=0 \quad: \quad$ (13) $\mathrm{U}=\sin \varphi, \mathrm{V}=\cos \varphi, \frac{\partial \mathrm{P}}{\partial \mathrm{n}}=0$
روتور پاييندست:
 صورت رابطه (15) محاسبه و استفاده شده است.
$\mathrm{Q}=\frac{q}{h U_{\mathrm{s}}}\left(q=\int_{0}^{h} u d y\right)$
در مساله حاضر توليد آنترويى فقط ناشى از اثرات اصطكاك جريان سيال مى باشد كه توسط رابطه (16) ارائه مىشود[11]. $s_{f}=\frac{\mu}{T_{0}}\left[2\left(\frac{\partial u}{\partial x}\right)^{2}+2\left(\frac{\partial v}{\partial y}\right)^{2}+\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)^{2}\right]$
كه در آن To دماى سيال درون ريزمجرا مىباشد كه برابر 300 كلوين در نظر گرفته شده است.
با توجه به متغيرهاى بى بعد رابطه (7)، شكل بىبعد رابطه (16) به
صورت ذيل بازنويسى مىشود:
$\mathrm{S}_{\mathrm{F}}=\varphi_{\mathrm{F}}\left[2\left(\frac{\partial \mathrm{U}}{\partial \mathrm{X}}\right)^{2}+2\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{Y}}\right)^{2}+\left(\frac{\partial \mathrm{U}}{\partial \mathrm{Y}}+\frac{\partial \mathrm{V}}{\partial \mathrm{X}}\right)^{2}\right]$
كه در آن 10^{2} به بهورت رابطه بیىعد (18) تعريف و در اين مقاله برابر لحاظ شده است. $\varphi_{\mathrm{F}}=\frac{\mu U_{s}{ }^{2}}{T_{0} k}$

كه در آن kضريب رسانندگى گرمايى سيال عامل مىباشد.

4 - روش حل عددى

دستگاه معادلات دوبعدى (4)-(6) با استفاده از روش حجم محدود ${ }^{1}$ ¹ كسسته-
 گيرى شده تا يك دستگاه معادلات جبرى خطى به صورت رابطه (19) به

دست آيد.
$a_{P} \emptyset_{P}=\sum a_{N b} \emptyset_{N b}+S_{u}$
كه در آن $a^{\text {و }}$ و $a_{\text {ض }}$ چشمه میباشند. در اين حل براى برقرارى ارتباط بين ميدان سرعت و فشار از الگَوريتم

 راى-چو [12] براى محاسبه مقادير سرعت روى وجوه بهره ترفته شده است.
 ارزيابى جملات جابجايى در محل وجوه طرح هي انبريد ${ }^{4}$ لحاظ دستگاه معادلات جبرى به دست آمدي آمده با استفاده از الكَوريتم ماتريس سـري سه قطرى 5 به صورت ADI حل شده است. در اين الگَوريتم ابتدا محاسبات ميدان
 دست آوردن ميدان سرعت حل مى شوند. با استفاده از اين ميدان سرعت،

 بهصورت ذيل تعريف مىشود:
Res $=\sum\left|\mathrm{Re}_{\mathrm{p}}\right| /$ Res $_{\text {ref }}<\varepsilon_{\mathrm{r}}$
(20)

1- Finite Volume Method (FVM)
2- SIMPLE algorithm
3- Central Differencing Scheme
4- Hybrid Scheme
5- Tridiagonal Matrix Algorithm (TDMA)

5 - نتايج و بحث 1-1 - برسرسى تأثير خروج از مركزى روتورها (ع) بر دبى خروجى از ميكرو پمپ يكى از پارامتر هاى هندسى تأثير گذار بر عملكرد ميكروپمپپ

 است. در این كار هر چه

مى مباشد فقط الكوهاى اين حالت مورد بحث قرار گر گرفته است. شكل 4 خطوط جريان را اطراف روتورهاى دايروى با S 4 (الف) نيز مشاهده مىشود دو گردرابه بزر گی اطراف روت

 اندكى از سيال مىتواند توسط روتور ها به سمت خر خر انر و بيشتر سيال پيرامون خود روتورها شروع به چر روتور بالادست بايستى مقدارى از سيال از فضاى بين روتور و ديواره بالايى ريزمجرا عبور نمايد. با توجه به اينكه سيال ممنتم كار الفى براى عبا عبور از از اين فضا

 انبساط ناگَهانى مواجه مىشود. طى اين انبساط، سيال توال توانايى غلبه بر فشار مقابل را نداشته و با توجه به اين عدم بازيابیى فشار دیار يار يكى جدايش

 در شكل 4 (الف) نيز مشهود است، كردابه حاصل از اين جداي

 حاصل نيز كوچكتر ظاهر میشود. $\varepsilon_{1}=\varepsilon_{2}=0 / 2$ شكل 4 (ب) خطوط جريان را اطراف روتورها در حـن
 نسبت به نظيرش در حالت قبل كوچكتر شده است. با افزايش عدد خارج از

 افزايش فضاى عبور جريان، شيب انبساط كاهش میيابيد. در نتيجه فشار روبروى سيال نيز كاهش يافته و بازيابى فشار در اين ناحيا باريه بهتر صور كيرد. لذا سيال، كمتر از روى ديواره جدا خواهد شد. گردابه پاياييندست نيز

براى مطالعه استقلال حل از تعداد كرْهاى شبكه، مساله مورد نظر در حالتى
 همانطور كه در جدول 2 نيز نشان داده شده است پنج شبكه با تعدا
 چچنانچֶه نتايج دبى خروجى از ميكروپمپ نشان میدهد شبكهاى با تعداد گره 280×60 براى انجام محاسبات موردنظر كافى است.

ε		
C/3	3/89	C/76
$\mathrm{C} / 4$	1,99	-3/29
C/7	-2/68	-6/19
C/8	-5/66	-8,18

$340>70$	28C)60	200,50	150>40	90330	تعداد كره
C/126	C,128	C/132	0,136	0,146	Q

شكل 3 مقايسه نتايج دبى خروجى از ميكرويميى با تك روتور دايروى در كار حاضر با نتايج ديگران

شكل 4 خطوط جريان اطراف روتورهاى دايروى با L = مختلف و حالت 2

مربوطه كوچكتر خواهد بود. براى بررسى تأثير S بر دبى، قطر روتور بالادست

 شكل 6 خطوط جريان را اطراف روتور هاى دايروى با
 (الف) مشاهده مىشود دو گَردابه قبل و بعد از روتور بال بالادست و شبيه آن نيز اطراف روتور پاييندست ايجاد شده است. براى تفسير پيدايش اين گَردابهها مىتوان همان مطالب بيان شده در قسمت قبل را ا ارائه نمود. همانطور كه در الكَوى جريان شكل 6 (ب) نيز نمايش دان داده شدي انده است
 گردابه ديگر نسبت به نظيرشان در حالت قبل كوپکـتر و ضعيفتر ظاهر
 براى عبور سيال از ناحيه فوقانى آن ايجاد مى گرددد. بنابراين از فشار انـار و نيز

 به شكل 6 (ج)، دو گردابه اطراف روتور پاييندست بهطور كامل نایِ نایديد شده
 شكل 5 تغييرات دبى بى بعد خروجى از ميكرويمب در عهاى مختلف و 2 = 2 اد ($=$ ($=$ /d)

$$
\varepsilon_{1}=\varepsilon_{2}=09, ~ L=3
$$

مشابه دو تَردابه ديگَر از نظيرش در حالت قبل كوچكتر و ضعيفتر شده

كمتر شده و گردابه مربوطه نيز كوچكتر خواهد شد.

شكل 4 (ج) الكوهاى جريان را در حالتى كه 0 0 =

 گردابه حاصل كوچكتر خواهد بود. همانطور كه شكل 4 (ج) 4 (ج) نيز نشان

 روى ديواره جدا نشده و گردابهاى در آر آن ناحيا

 = محسوسى بين آنها وجود ندارد.

 پيرامون خود روتورها شروع به چرخـى

 مى $\mathrm{S}_{1}=\mathrm{S}_{2}=1 / 5$ افزايش نيز از دو حالت ديگر بيشتر است. در اين دين حالت قاي

 داراى روتورهايى با قطر و عدد خارج از مركزى بيشينينه بانـيند.

5-2-4 - بررسى تأثير نسبت معكوس قطر روتورها (S) بر دبى خروجى از

ميكروپمپ

 با معكوس قطر روتورها است بنابراين هرحهه S بزرگتر باشد قطر روتور

 $\varepsilon_{1}=\varepsilon_{2}=09$,

$\mathrm{L}=4 / 5$ (0)
شكل 8 خطوط جريان اطراف روتورهايى با 1/5 1 عاى مختلف و $\varepsilon_{1}=\varepsilon_{2}=09$

شكل 8 (ب) الكوهاى جريان را براى حالتى كه L=1/5 مى الشد نشان مى -

با كاهش بيشتر قطر روتور در اين حالت، ممنتم سيال براى غلبه فشار پيش

 مطلب الگوهاى جريان شكل 6 (د) مىاشبان. همانطور كه در اير اين شكل مشهود است تفاوت محسوسى بين اين حالت و حالت قبل مشاهده نمى شانود. شكل 7 تغييرات دبى خروجى را براى 3 ها的 $=\varepsilon_{2}=0 / 9$ و L=3 3 ، $\mathrm{S}_{1}=1 / 5$

 دست نقش مقاومتى اين روتور نسبت به عاني

 در تغييرات دبى نخواهد داشت.

5-3-4 - بر رسى تأثير فاصله روتورها از يكديگر (L) بر دبى خروجى از

ميكروپمپ

 بين روتورها مىباشد. چنانچه

حالت 0/9 = خطوط جريان مربوط به L= 0/85 را نشان مىدهد ا شكل مشاهده مىشود چهار تردابه

 ممنتم كافى براى غلبه بر فشار مذكور را نداشته و از از روى سطح بان بالايى

 بين دو روتور را شبيه به يك كانال براى عبيار سيال سيال تصور نمود. اما چون سيال ممنتم كافى براى غلبه بر فشار را ندارد لذا مقدارى از از سيال قاد
 بين دو روتور نزديكى به ديواره پايينى ريزمجرا را آ خواهد داد.

شكل 9 تغييرات دبى خروجى در L هاى مختلف در حالت L

شكل10 تغييرات توليد آنتروبى و دبى خروجى از ميكروپمپ براى عهاى مختلف در حالت 2 , 2 و $2=S_{2}$

وقتى ع افزايش پيدا مىكند تغييرات سرعت شديدى در اطراف روتورها و به ويزه در ناحيه پايينى محصور بين آنها و ديواره پايينى ريزمجرا ايجاد مىشود. همين موضوع سبب مى گردد تا توليد آنتروپی با نزديكى روتورها به سطح ديواره پايينى ريزمجرا افزايش يابد. براى تحليل بهتر نتايج حاصل از توليد آنتروپى، رابطه (23) كه نشان دهنده نسبت شيب تغييرات توليد آنتروپى به دبى مربوطه در هر بازه تغيير

پارامتر هندسى ميكروپمپ مى باشد به صورت ذيل تعريف مىشود. $R S=\frac{\mathrm{S}_{\mathrm{F}} \mathrm{I}_{2}-\mathrm{S}_{\mathrm{F}} \mathrm{I}_{1}}{\mathrm{Ql}_{2}-\mathrm{Ql}_{1}}$
در رابطه (23) در هر بازه تغييرات پارامترهاى هندسى به كار رفته، اعداد 1 و

 مر كزى O/4 مىباشند. جدول 3 تغييرات 1 , 1 در بازههاى مختلف تغيير پارامتر هندسى ع نشان مىدهد. چنانحֶه در این جدول مشاهده مىشود مقدار RS در بازههاى ابتدايى بسيار كوچكى است كه اين نشان مىدهد شيب تغييرات توليد آنتروپیى نسبت به دبى خروجى بسيار كمم است. ولى با افزايش ع مقدار RS نيز افزايش مىيابد به طورى كه در بازه آخر جدول نيز مشاهده مىشود اين مقدار از يك هم فراتر رفته است. بنابراين مىتوان گفت توليد آنتروپی نسبت به افزايش دبى خروجى در تغيير مقادير بزرگى ع حساسيت بيشترى نشان مىدندهد ولـى در مقادير كوچكى آن نتيجه عكس مىباشد

بايستى بر فشار ناحيه فوقانى روتور پاييندست نيز غلبه كند. از طرفى چون هنوز فاصله بين دو روتور به اندازهاى بزرگ نيست كه سيال پس از جدايش

 ادامه روند افزايشى L همانند شكل (د)، بدليل فاصله در دسترس بيش بيشتر،
 مواجه با روتور پاييندست پايیندست دچار جدایش دوم گردد. لذا در اين
 محسوسى در الگوهاى جريان مشاهده نمىشود. همانطور كه در شكل (ه)

باشد.
شكل 9 روند تغييرات دبى را درLهاى مختلف در حالت 9 (9 ع نشان مىدهد. همانطور كه در اين شكل مشاهده مىشود در ابتدا با افزايش L دبى خروجى نيز با شيب تندى افزايش پی
 الگوهاى جريان ارائه شده در قبل مى توح

 مىتوان گفت كه هر يك از روتورها به طور مستقل عمل مى كنند. بنابراين منطقى به نظر مىرسد كه دبى خروجى بعد از يك L ا خاص كه در در اينجا مقدار 2 مىباشد مستقل از افزايش آن گردد.

5 -4 - تحليل آنتروپیى

اكثر فرآيندهاى مهندسى در معرض افتهاى اجتنابناپٍيرى نظير اصطكاكى و
 آنتروپى و اين افتهاى اجتناب نایذير را كمينه كرد. كمينهسازى توليد آنتروپى 1
 منظور دستيابى به بالاترين بازده ممكن مىباشد. در موضوع ميكروپمپهاى لزجتى، همانطور كه در مقدمه نيز اشاره گرديد تاكنون تحقيقى با با استفاده از ماري مفهوم كمينهسازى توليد آنتروپى مشاهده نشده استـ لذا لذا در اين كار با توجه به
 مختلف در ميكروپمپ لزجتى محاسبه گرديد. در ادامه با تغيير هر كدام از

خروجى مربوطه در يک نمودار ميلهاى مقايسه شده است.
مئرو 4 - 5 - بررسى تأثير خروج از مركزى روتورها (ع) بر توليد آنتروپیى درون ميكروپمپ شكل 10 روند تغيير توليد آنتروپی و نيز دبى خروجى از ميكروپمپ را در ع
 قبل نيز نشان داده شد با افزايش ع، دبى خروجى از ميكروپمپ نيز افزايش
 تغيير توليد آنتروپى با افزايش ع، متفاوت با روند تغيير دبى مربوطه مىيباشده چنانچه در شكل 10 مشاهده مىشود در ابتدا با افزايش ع تا حدود O/5، روند افزايش توليد آنتروپى بسيار كند است. با افزايش ع عبد از اين مقد ايند افزايش توليد آنتروپى قابل توجه شده بهطورى كه با تغيير ع از O/8 به O/9 با حدود 38 درصد افزايش در توليد آنتروپى مشاهده مىشود. 1- Entropy Generation Minimization

شكل11 تغييرات توليد آنترويى و دبى خروجى از ميكرويمپ در دا مختلف و حالت

$$
\begin{aligned}
& \text { شكل D2 تغييرات توليد آنتروپیى و دبى خروجى از ميكروپمپ در اهاهاى } \\
& \text { مختلف و حالت }
\end{aligned}
$$

قبل پى برد. همانطور كه در جدول 5 مشاهده مىشود رونى روند تغيير توليد
 جدول 5 كه مقدار RS منفى است نشان مىدهد كـد كه روند تغيير توليد آنترويى

 آن دارد. اما در باز ههاى بعدى جدول 5 تقريبا توليد آنتروپیى وجود نداشته و ثابت مىشود.

5 -5- انتخاب پارامتر هاى هندسى بهينه

بعد از ارائه نتايج مربوط به دبى و نيز تحليل آنترويى باينى بايستى پارامترهوهاى

 بودن يك دبى خروجى بيشينه مىباشد با توجه به شكل 13 مشاهده مىشود بعد از L L 1 تقريبا روند تغيير توليد

آ-4-4 - 5 آنترو پیى درون ميكروپیِ
 مختلف و حالت

 نيز كاسته مى گردد. اين نيز باعث كاهش توليد آنتروپی درون ميكروپمپپ میى شود.
 مىدهد. چنانچه در اين جدول مشاهده مىشود مقدار RS اR در بازهمای اوليه بيشتر از يكى است. اين موضوع نشان مىدهد كه تغينيرات تورير توليد آنترويى نسبت به تغييرات دبى خروجى از حساسيت بيشترى برخور انـيرار است. ولى با

از توليد آنترويى بيشتر مى گردد.

درون ميكروپمپ

شكل 12 تغييرات توليد آنترويى و دبى را براى مقادير مختلف L در حالت
的 $=\varepsilon_{2}=0 / 9$ و $\mathrm{S}_{1}=\mathrm{S}_{2}=1 / 5$

 افزايش آن حساسيت نشان نمىدهد. با توجه به شكل 12 ممكن است بـ به نظر

 جدول 5 تغييرات RS را در Lاهاى مختلف نشان مىدهد. با توجه به مقادير

اين جدول، مىتوان به جذابيت بيشتر تغييرات آن نسبت به دو جـن

يس برای داشتن كمترين افت اصطكاكى بهتر است مقدار S2

 $\varepsilon_{2}=$
از 2/5 به بعد انتخاب گردد. البته عدد مشخص آن با توجه به نمودار دبى

 مقدار بهينه براى S2 لحاظ گـرد

 مقدار بهينه اين مقاله باشد بايستى مقادير بزر كترى از S S در نظر كـر كرفته شود. نتيجه گيرى در اين مقاله يك شبيهسازى عددى براى بررسى تأثير پارامترهاى هنى هندسى

 محدوده 0/1 تا 0/9، 1/5 تا 3/5 و0/85 تا 4/5 انجام شده است. نتايج حاصل از اين حل نشان مىدهد الگَوهاى خطوط جريان به شدت به سه پار ایارامتر
 آمده درون ريزمجرا در غالب موارد با با يكديگر متفاوت ظا

 مىشود كه داراى روتورهايى با قطر و عدي

شكل B Bوند تغيير دبى و توليد آنترويى در L و S Sهاى مختلف و $\varepsilon_{1}=\varepsilon_{2}=0 / 9$
نيز بررسى گردد تا بتوان دبى بيشينه را پيدا نمود. با توجه به شكل 13، دبى
 توانL=2 ميكرويمپهاى لزجتى معرفى نمود.

 روند تغيير دبى بر حسب ع عبه به صورت تقريبا يكنوا تعيين كننده در انتخاب ع بهينه تغييرات توليد آنتروپیى خواهي راستا 0/5= = به عنوان پارامتر بهينه خارج از مركزى ميكروپمپ لحاظ كرديده است.

شكل 14 روند تغيير دبى خروجى و توليد آنتروپیى در ع و Sهاى مختلف و 2 $\mathrm{L}=$

براى انتخاب آخرين پارامتر هندسى بهينه يعنى S ، حالتى را كه S =
 است. همانطور كه در شكل 15 نيز نشان داده شده است است تغييرات توليد آنتروپی قبل از S2

$$
\begin{aligned}
& \text { (kgm }{ }^{-1} \mathrm{~s}^{-3} \mathrm{~K} \text { (} s_{f} \\
& \text { نرخ بیى } \\
& \text { جمله چشمه در معادله انفصال } S_{u} \\
& \text { (K) } \\
& \text { (ms }{ }^{-1} \text {) س } \\
& \text { X سرعت بى بعد در راستاى U } \\
& \text { (ms }{ }^{-1} \text {) } U_{s} \\
& \text { y (ms }{ }^{-1} \text {) v }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (m) مختصه طولى كارتزين در راستاى افق د } \\
& \text { مختصه بى بعد در راستاى افق } \\
& \text { (m) مختصه طولى كارتزين در راستاى عمود ل } \\
& \text { مختصه بى بعد در راستاى عمود } \\
& \text { (m) فاصله مركز روتور تا خط افقى مار بر مر كز ميكروپمپ } \\
& \text { علايم .يونانى } \\
& \text { (} \mathrm{kgm}^{-3} \text {) } \rho \\
& \text { (} \mathrm{kgm}^{-1} \mathrm{~s}^{-1} \text {) } \mu \\
& \text { (m² }{ }^{-1} \text {) } \\
& \text { (rads }{ }^{-1} \text { (} \omega \\
& \text { ع } \\
& \text { ع } \varepsilon_{r} \\
& \varphi \\
& \text { پارامتر بیبعد در معادله توليد آنتروپیی } \\
& \text { Ø } \\
& \text { بالانويسها } \\
& \text { مقدار بىبعد } \\
& \text { زيرنويسها } \\
& 1 \\
& 2 \\
& \text { اصطكاكى F } \\
& \text { ورودى in } \\
& \text { خروجى out } \\
& \text { مرجع ref }
\end{aligned}
$$

[1] M.C. Sharatchandra, M. Sen, and M. Gad-el-Hak, Navier-Stokes Simulations of a Novel Micropump, ASME Journal of Fluids Engineering, Vol. 119, pp 372-382, 1997.
[2] P. Phutthavong and I. Hassan, Transient performance of flow over a rotating object placed eccentrically inside a microchannel-numerical study, journal of Microfluid Nanofluid, pp. 71-85, 2004.
[3] M. Abdelgawad, I. Hassan, N. Esmail and P. Phutthavong, Numerical Investigation of Multistage Viscous Micropump Configurations, Journal of Fluids Engineering, Vol. 127, pp. 734742, 2005.
[4] F. Yang, S.-H. Liu, X.-L. Tang, Y.-L. Wu, Numerical Study on Transverse Axis Rotary Viscous Pump and Hydropulser Mechanism, International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 7, pp. 263-268, 2006.
[5] A.K. da Silva, M.H. Kobayashi, C.F.M. Coimbra, Optimal theoretical design of 2-D microscale viscous pumps for maximum mass flow rate and minimum power consumption,

يابد در ابتدا دبى خروجى نيز با شيب تندى افزايش پيدا مى كند سپس روند تغييرات دبى كند و مىتوان گفت تقريبا ثابت شده است. در تحليل آنتروپیى نيز تأثير پارامترهاى هندسى فوق بر توليد آنتروپی بررسى گرديد. براى
 تغييرات توليد آنترویى به دبى مربوطه در هر بازه تغيير پارامتر هندسى
 تا حدود 0/5، روند افزايش توليد آنتروپى بسيار كند است. با افزايش ع بعد از اين مقدار، افزايش توليد آنتروپى قابل توجه شده به طورى كه با با تغيير ع از O/8 به O/9 حدود 38 درصد افزايش در توليد آنتروپى مشاهده شد. محاسبات RS
 در بررسى تأثير پارامتر S بر توليد آنتروپى، مشاهده شد با كاهش قطر روتور پاييندست در حين ثابت نگَهداشتن قطر روتور بالادست توليد آنتروپی نيز كاهش پيدا مىكند. جدول RS نشان مىدهد در بازههاى اوليه آن، تغييرات توليد آنتروپى نسبت به تغييرات دبى خروجى از حساسيت بيشترى برخوردار

 اوليه با توجه به مقدار منفى RS روند تغيير توليد آنترويى و دبـى ديّى معكي مىباشد. نكته قابل توجه در همين بازه اين است كه كاهش توند 4 دوليد آنتروپى

معرفى و انتخاب شدهاند.

فهرست علائم

a
ق d

(W/m ${ }^{\circ} \mathrm{C}$) ضريب رسانندگى سيال عامل مري
l فاصله بين دو روتور (m) پارامتر بیبعد مربوط به فاصله دو روتور L

طول ريزمجراى ميكروپمپ (m) L_{m}
ج
(Nm^{-2}) فشار
فشار بى بعد
($\mathrm{m}^{3} \mathrm{~s}^{-1}$)
دبى بى بعد خروجى از ميكروپمپ
عدد بىبعد رينولدز
باقيمانده حل عددى Res
(kgm ${ }^{-4} \mathrm{~s}^{-2} \mathrm{~K}$ (نسبت شيب تغييرات توليد آنتروپى به دبى RS
پارامتر بى پعد مربوط به تغيير قطر روتورها SS

Technology, Vol. 28, pp. 3733-3740, 2014.
[10] L. Jianfeng, D. Jing, Y. Jianping, Y. Xiaoxi, Steady dynamical behaviors of novel viscous pump with groove underthe rotor, International Journal of heat and Mass Transfer, Vol. 73, pp. 170-176, 2014.
[11] A. Bejan, Entropy generation through heat and fluid flow, John Wiley \& Sons,1994.
[12] C. M. Rhie and W. L. Chow, Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation, AIAA J., Vol.21, pp. 1525-1532, 1983.
[13] J. P. Van Doormaal and G. D. Raithby, Enhancement of the SIMPLE Method for Predicting Incompressible Fluid Flows, Numer. Heat Transfer, Vol.7, pp. 147-163,1984.

International Journal of Heat and Fluid Flow, Vol. 28, PP. 526536, 2007.
[6] H. El.Sadi, N. Esmail and I. Hassan, Numerical Modeling of NonNewtonian Flow in Viscous Micropump, Journal of the Society of Rheology, Vol. 36, pp. 51-58, 2008.
[7] K. M. Bataineh, M. A. Al-Nimr, 2D Navier-Stokes Simulations of Microscale Viscous Pump With Slip Flow, Journal of Fluids Engineering, Vol. 131,pp. 51105-51106, 2009.
[8] L. Jianfeng, D. Jing, Flow dynamical behaviors and characteristics of aligned and staggered viscous pumps, International Journal of Heat and Mass Transfer, Vol. 53, pp. 2092-2099, 2010.
[9] D. J. Kang, Effects of channel curvature on the performance of viscous micro-pumps, Journal of Mechanical Science and

