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Abstract — In this paper, a novel modification of the spectral-homotopy analysteade
(SHAM) technigue for solving highly nonlinear initial value problems thatdelcsystems
with chaotic and hyper-chaotic behaviour is presented. The propos#tbchis based on
implementing the SHAM on a sequence of multiple intervals thereby incredasimgdius
of convergence to yield highly accurate method which is referred to géebe-wise spectral
homotopy analysis method (PSHAM). We investigate the application of theARBid the
L{ system [20] which is well known to display periodic, chaotic and hyetic behaviour
under carefully selected values of it's governing parameters. Existend uniqueness of
solution of SHAM that give a guarantee of convergence of SHAM, lesnliscussed in
details. Comparisons are made between PSHAM generated resultsaltsifrem literature
and Runge—Kutta generated results and good agreement is observed.

Keywords: hyperchaotic system, Banach'’s fixed point theorem, piecewisérapbomo-
topy analysis method, spectral collocation

1. Introduction

The study of initial value problems (IVPs) that model chaotic motion con-
tinues to be an active area of research. Chaos theory studies thedoehav
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of dynamical systems that are highly sensitive to initial conditions and have
complex and highly unpredictable profiles. Chaotic systems can be oliserve
in a wide variety of applications such as mechanics of nonlinear pendula,
nonlinear acoustics, crystal growth, cell automata, turbulent flow, neealin
feedback systems, population dynamics, electrodynamics, optics, and many
other areas of physical and life sciences, engineering and economics.

Research into several classic and new or prototype models of chaos is
now well documented. Recently, there has been a surge in the interest of
hyper-chaotic systems. Hyper-chaotic systems are typically defineduby fo
dimensional IVPs and show chaotic behaviour with at least two positive
Lyapunov exponents. The first four-dimensional hyperchaotic systas
identified by Rossler [30]. During the last two decades, various hyperchaotic
systems have been discovered such as the hyperchaotic Lorenn-$yake
tem [18], hyperchaotic Chua’s circuit [10], hyperchaotic Chen%816] and
hyperchaotic Lu system [19, 20].

The complex nature of chaotic and hyperchaotic systems precludes the
possibility of obtaining closed form analytical solutions of the underlying
governing equations. Thus, approximate-analytical methods, which are im-
plemented on a sequence of multiple intervals to increase their radius of con-
vergence, are often used to solve IVPs modelling chaotic systems. Examples
of multi-stage methods that have been developed recently to solve IVPs for
chaotic and non-chaotic systems include the, multi-stage homotopy analy-
sis method [2, 4, 5], piecewise homotopy perturbation methods [9, 29, 33],
multi-stage Adomian decomposition method [1,27], multi-stage differential
transformation method, [3, 13, 28], multi-stage variational iteration method
[12, 26]. Other multistage methods which use numerical integration tech-
nigues have also been proposed such as the piecewise iteration method [11
which uses a spectral collocation method to perform the integration process
Accurate solutions of highly chaotic and hyper-chaotic systems reqeses r
olution over many small intervals. Thus, seeking analytical solutions over
the numerous intervals may be impractical or computationally expensive if
the solution is sought over very long intervals. In this paper we propose a
new approach based on the spectral homotopy analysis method for solving
the chaotic and hyperchaotic Lu system [19, 20]. The spectral homotopy
analysis method (SHAM) was recently proposed in [21,22] as a flexible nu
merical implementation of Liao’s [17] homotopy analysis method (HAM).
The SHAM has previously been applied on boundary value problems (see
i.e., [21-23,31]) and it may not be useful in its standard form as a metinod f
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solving IVPs. However, when implemented on a sequence of multiple inter-
vals, the resulting extended version of the SHAM, hereinafter refeorad

the peace-wise spectral homotopy analysis method (PSHAM), is highly ac-
curate and robust enough to be a suitable for solving IVPs with chaotic and
hyperchaotic behaviour [24, 25]. In this work we demonstrate the applica
bility of the PSHAM on the Il system which is known to display periodic,
chaotic and hyperchaotic profiles under carefully selected values afits g
erning parameters.

The organization of this paper is as follows. In Section 2, the basic idea
of the spectral homotopy analysis method (SHAM) is presented. In Sec-
tion 3, piece-wise spectral homotopy analysis method is presented. Exis-
tence and uniqueness of solution of SHAM that give a guarantee oéconv
gence of SHAM is presented in Section 4. Section 5 presents the results and
discussion. In Section 6, some concluding remarks are given.

2. Basic idea behind the spectral homotopy analysis method

In this section, we give a brief description of the basic idea behind the

standard spectral homotopy analysis method that was initially proposed in
Motsa et. al. [21,22] for solving nonlinear boundary value problem&irgtt

we take into account the following properties of shifted Legendre polyno-

mials.

2.1. Properties of shifted Legendre polynomials

The well-known Legendre polynomials are defined on the intgrvdl 1)
and can be determined with the aid of the following recurrence formula:

Lo(X) =1, Li(X) =X
2j+1 ' .
Lj+1(x) = J-J+1X|-j (X) — jJJrlel(X), j>1 (2.1)

In order to use these polynomials on the interal(0, T) we defined the so-
called shifted Legendre polynomials by introducing the change of variable
x=2t/T —1. Let the shifted Legendre polynomialg2t/T — 1) be denoted

by Lt j(t). ThenLy j(t) can be generated by using the following recurrence
relation:

IYCOTE ke (SN VIS I i —
LT,JJ’»l(t)— j—l—l <T 1> LT’J(t) j—l—lLT’Jil(t)’ ji=12,... (22)
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whereLto(t) =1 andLy1(t) =2t/T —1. The orthogonality condition is

;
| bt = 8 2.3)

whereg  is the Kronecker function. Any functiout), square integrable in
(0, T), may be expressed in terms of shifted Legendre polynomials as

00

ut) =% ajLt(t) (2.4)
J;) LT
where the coefficients; are given by
20+1 T .
aj = o y(t)Lyj(t)dt, j=0,1,2,.... (2.5)

In practice, only the firsfN + 1)-terms shifted Legendre polynomials are
considered. Hence we can write
N

ut) =39y ajLri(t). (2.6)
(t) ,; ikt

Now, we turn to Legendre—Gauss interpolation. We denol‘e}“b@ <j<

N, the nodes of the standard Legendre—Gauss interpolation on the interval
(—1,1). The corresponding Christoffel numbers awP 0< j<N.The
nodes of the shifted Legendre—Gauss interpolation on the intgyva) are

the zeros oft n1(t), which are denoted tIyPJ 0<j<N. Clearlyt%\{j =

T(t)' +1)/2. The corresponding Christoffel numbers a; = Tl /2.

Let #n(0,T) be the set of all polynomials of degree at mstDue to the
property of the standard Legendre—Gauss quadrature, it followfothaty

(OFS @2N+1(0,T)Z

'/qu:(t)dt=;/1¢<T(t+1)>dt
:2230) < tN—i—l):i(Uqu)(t"IN,j)' (2.7)

Definition 2.1. Let (u,v)t and||v||t be the inner product and the norm
of spacel?(0,T), respectively. We introduce the following discrete inner
product and norm,

2

DXL AL Mrn =@ (28
J
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From (2.7), for any®y € Pon,2(0,T),

(P, )1 = (P, )TN (2.9)
whereA = —1,0,1 for the Legendre Gauss interpolation, the Legendre
Gauss—Radau interpolation and the Legendre Gauss—Lobatto integeation r

spectively.
Moreover, for the Legendre Gauss integration and the LegendresGaus
Radau integration,

[¢lr=lollrn, @€ Pn(OT). (2.10)

For the Legendre Gauss—-Lobatto integratiod||t # ||¢ ||t n usually. But
for mostly used orthogonal systems[) T], they are equivalent, namely,
for certain positive constants andc;,

cllgllr <llollrn <2t (2.11)

As a consequence, for Legendre Gauss—Lobatto interpolation amfddor
2n(0,T), we have

1ollr <9

1
T < (/24 18 (2.12)

2.2. Spectral homotopy analysis method

For convenience of the interested reader, we will first present a teief
scription of the basic idea behind the standard SHAM [21, 22]. This will be
followed by a description of the piecewise version of the SHAM algorithm
which is suitable for solving initial value problems. To this end, we consider
the initial value problem (IVP) of dimensiamgiven as

a(t) =f(t,u), u(to) =u° (2.13)
U:R—R" f:RxR"—R" (2.14)
where the dot denotes differentiation with respedt t&®We make the usual
assumption that is sufficiently smooth for linearization techniques to be

valid. If u = (ug, u,...,uy) we can apply the SHAM by rewriting equation
(2.13) as

n
Ur+ 3 QiU+ Gr (U, Uz, ..., Un) =0 (2.15)
k=1
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subject to the initial conditions
u (0) = ul (2.16)

whereu? are the given initial conditionsy x are known constant parameters
andg; is the nonlinear component of thth equation.

The SHAM approach imports the conventional ideas of the standard
homotopy analysis method (HAM) by defining the following zeroth-order
deformation equations

(1—0)Z [Ur(t;a) — uro(t)] = ghrA7[Ur (t; )] (2.17)

whereqg € [0,1] is an embedding parametek,(t; q) are unknown functions,
h: is a convergence controlling parameter. The operatdrand _4; are
defined as

oU, n
—_ 2.1
P k; ar Uk (2.18)

MU (9)] = AU (t;a)] +gr[Ua(t; ), Uz(t;0), ..., Un(t;g)]. - (2.19)

LU (t;0)] =

Using the ideas of the standard HAM approach [17], we differentiate the
zeroth-order equations (2.1 times with respect tg and then setj =0
and finally divide the resulting equations fwyto obtain the following equa-
tions, which are referred to as thah order (or higher order) deformation
equations,

ﬁ’[ur,m(t) — XmUr,mfl(t)] =R m1 (2.20)
subject to
where - U Q)
B 1 9™ AUt q
Rm 1= D aqnd 4=0 (2:22)
and
0, mgl1l
Xm = { 1, m>1. (2.23)

After obtaining solutions for equations (2.20), the approximate solution
for eachu, (t) is determined as the series solution

Ur(t) = Uro(t) +ura(t) +ur2(t) +. .. (2.24)
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A SHAM solution is said to be of ordé\ if the above series is truncated
atm= M, that is, if

ur(t) = %Our,m(t)' (2.25)

The SHAM was introduced as a possible improvement of the HAM
which offers flexibility in choosing the linear operat@t and removes some
of the perceived limitations of the HAM such as the requirement that the
solution must conform to the so called rule of solution expression and co-
efficient ergodicity. The SHAM specifies a clear criteria for choosing the
linear operator as just the linear part of the governing equation. The initial
approximation is chosen to the solution of the linear part of the governing
equations when solved subject to the given initial conditions. The SHAM
higher order deformation equations are reduced into a system of lingar alg
braic equations by transforming the derivatives using the Legendotrape
collocation method.

The initial approximation is obtained as a solution of the following sys-
tem of equations

n
K=1
subject to the initial conditions
U (0) = uP. (2.27)

The solution of equation (2.26) can be obtained analytically for most
IVPs. If the analytical solution is not available, numerical methods can be
used to estimate the solution. The solutigg(t) of equation (2.26) is then
substituted in the higher order deformation equation (2.20) which is itera-
tively solved foruy m(t) (form=1,2,...,M).

In this paper, we use a spectral collocation method with Legendre—
Gauss-Lobatto (LGL) points [7, 32] to integrate the algorithm (2.20). We
remark that before applying the spectral method, we use the transformation
t =t (1 +1)/2 to map the regiofD,tg] to the interval—1, 1] on which the
spectral method is defined.

After the transformation, the intervale [—1,1] is discretized using the
Legendre—Gauss—Lobatto (LGL) nodes. These pointsj = 0,1,...,N,
are unevenly distributed dn-1,1] and are defined by, = —1, 7y = 1 and
for 1< j < N-—1, 1 are the zeros oItN, the derivative of the Legendre
polynomial of degred, Ly.
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The unknown functionsi(t) are approximated by thiéth degree poly-

nomials of the form N

u(t) = ukdk(t) (2.28)
&o

where, fork=0,1,...,N we have
, .
N(tk)  t—t
are the Lagrange polynomials of ordémvhich interpolate the functions at
the LGL points. The Legendre spectral differentiation maiis used to
approximate the derivatives of the unknown variahigs(t) at the colloca-
tion points as the matrix vector product

(2.29)

dur m
dt

whereD = 2D/t andU; m = [Urm(T0), Urm(T1),- - ., ur,m(rN)]T is the vector
function at the collocation pointg. The matrixD is of size(N+ 1) x (N +
1) and its entries are defined [7,32] as

N
k=

(
_mﬂrnj [—k=0
N(N+1) RN

D=4 4 o JTK= (2.31)
j

Ln(t) 1 i £k
LN(tk) t —t’

L 0, otherwise

Applying the the Legendre spectral collocation method in equations
(2.20)—(2.21) gives

A [Wm —Xme_]_] == ﬁr Rm_]_, Wm(TN) == 0 (232)

whereRpy_1 is an(N + 1)n x 1 vector corresponding & n-1 when evalu-
ated at the collocation points alidy, = [Uym; Uz m;...;Unm|.

The matrixA is an (N + 1)n x (N + 1)n matrix that is derived from
transforming the linear operata¥; using the derivative matrio and is
defined as

A11 A1 -+ Adn
A21 Aoz -+ Agn D+opgl, P=q
. . . s qu: I
Opgl, p#q

(2.33)

An1 Anz -+ Ann
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wherel is an identity matrix of ordeN + 1.

Thus, starting from the initial approximation obtained as the solution
of equation (2.26), the recurrence formula (2.32) can be used to obtain th
solutionu (t).

3. Piece-wise spectral homotopy analysis method

It is worth noting that the SHAM method described above is ideally suited
for boundary value problems whose solutions don'’t rapidly change-n be
haviour or oscillate over small regions of the domain of the governing prob-
lem. The SHAM solution can thus be considered to be local in nature and
may not be suitable for initial value problems at very large values of the
independent variable A simple way of ensuring the validity of the ap-
proximations for largé is to determine the solution in a sequence of equal
intervals, which are subject to continuity conditions at the end points of
each interval. To extend this solution over the intetvak [t°,t7], we di-

vide the interval\ into sub-intervals\; = [t —1,t'], i =1,2,3,...,F where

t0 <ttt < - < tF. We solve (2.18) in each subinterva. Let ul(t) be the
solution of (2.15) in the first subinterviP, t'] andu (t) be the solutions in
the subintervalg\; for 2 < i < F. The initial conditions used in obtaining
the solutions in the subinterval (2 < i < F) are obtained from the initial
conditions of the subinterva\;_;. Thus, we solve

Z’[ui:m(t) _Xmuir,m—l(t)] = ﬁrRir,m—lv te [ti_lvti] (3-1)

subject to o
Ut =0 (3.2)

The initial approximations for solving equation (3.1) are obtained as
solutions of the following equations

u:r‘0+ Z ar7kui(.’0 = O, t E [tl_]-,tl] (3-3)
K=1
subject to the initial conditions

Uo(t™) =u (). (3.4)

After transforming the intervat'~1,t'] into [—1, 1], the Legendre spec-
tral collocation method is then applied to solve equations (3.1)—(3.2) on each
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interval [t'—2,t']. This results in the following recursive formula for> 1:
Wiy = XmWi_1 + A 'Ry (3.5)

fort e [t'~1,t']. The initial approximation for the iterative formula (3.5) is is
obtained as a solution of (3.3 - 3.4). The solution approximatjiig in the
entire intervalt®,tF] is given by

ul(t), t e [totY
uz(t), t e [t1,t?
ur(t) = : (3.6)

U (1), te FLt)

It should be noted that whelr = 1, the proposed piecewise spectral
homotopy analysis method (PSHAM) becomes equivalent to the original
SHAM algorithm.

4. Existence and uniqueness of solution of SHAM

We consider the initial value problem (IVP) of dimensior§2.13) that is
rewritten as
L))+ A ut)] = ¢(t) (4.1)

where.Z is a linear operator which is derived from the entire the linear part
of (2.13) and/” is the remaining nonlinear component.
Let us define the nonlinear operatar and the sequenc@m}mr_o as,

ﬂmmzémeww@ (4.2)
Uo=Up
Up=up+Uup
_ (4.3)

Um=Up+Ur+ U2+ + Um.

The SHAM gives the following equation, which is referred to as ik
order (or higher order) deformation equation,

2 [Um(t) = XmUm-1(t)] = AH (t) Rn[Um-1(t)] (4.4)
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subject to the initial condition
um(0) =0 (4.5)
where
Rn(Um-1) = L [Um_1] + Am-1[Uo, U1, ..., Un_1] — (1 — Xm)p(t). (4.6)
Therefore,

Zur(t)] = hHt){L[uo] + Ao — (1)}
Zup(t) — ua(t)] = AHO{ L w] + A1}
Llus(t) — uz(t)] = hH(t){L[uz] + A2}
Z[Um(t) — Um-1(t)] = AHO{ L [Um-1] + Am-1}

after summing this equations, we have

m-1 m—1
Z[um(t)] = AH(t) {k;i”[ukH k;ﬂkrb(t)} (4.7)

from (4.3) we have
Z|Un(t) ~Um-1(8)] = RHO{Z 1] +# Un-a] — 0(0)}  (4.8)
subject to the initial condition
Um(0) = 0. (4.9)

Consequently, the collocation method is based on a solutitiit) ¢
Pn+1(0,T), for (4.8) such that

ZUn () —UR1 (6] = FRN (LU (101 + A UR_1 ()]
—¢"(trw)} (4.10)

subject to the initial condition

uN(0) =o. (4.11)
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Definition 4.1. A mappingf of space_?(0,T), into itself is said to sat-
isfy a Lipschitz condition with Lipschitz constapif for any zandz",

If(zt) - f(Z',0)] < ylz—Z']. (4.12)

If this conditions is satisfied with a Lipschitz constgguch thatG{ y < 1
thenf is called a contraction mapping.

Theorem 4.1 (Banach'’s fixed point theorem [6]).Assume that K is a
non-empty closed set in a Banach space V, and further, th& F K is
a contractive mapping with contractivity constgnto < y < 1. Then there
exists a unique U K such thatU=T(U).

Theorem 4.2 (existence and uniqueness of the solutionAssume that
f(t,u(t)) in the initial value problem (IVP)2.13) satisfies condition of
(4.12) then(4.10)has a unique solution.

For the proof of the theorems we should consider the following. From
(4.10) we have
ZUn ()] = (L+RHN (7)) -2 [Un_a (73] + AHY ()
AN U ()] -9 ()}, 0<k<N, m>1 (4.13)
uN@©O)=0, m>o0.

Sincef (t, z) satisfies the Lipschitz-continuous condition, then there exists a
constanty > 0 such that

|f(t,2) — f(t,2)| < y|z—Z| (4.14)

forallt € [0, T], and allzandz".

Now, for the problem (4.1), we chooddU (t)] = dU/dt + a(t)U,
N[U(t)] = —a(t)U — f(t,U) and¢(t) = 0, wherea (t) is an arbitrary ana-
lytic function.

LetUN(t) =UN(t) —UN ,(t), then we have from (4.13) that

ZIURE] = (L+RHE)ZUn 1 () — Un2(t)]
+RHE ) LA UR_L ()] — A UR_a(80)]}
0<k<N, m>1 (4.15)
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or according to the definitions @fU (t)] andN[U (t)],
+a(th)Un = (L+RH(tFY))

t)]
{ (] +at)0N }—h—H(t'T\l,k)
x{f

(o Un 1 (tT) + a (U1 — F(E ) UR 2(tF))
a(tY)UN o}, O<k<N, m>1 (4.16)

d
10N

from where

d

SONR) = (14 ) 3 10N 5 @] + 0N, — a0

—AHEN L F (1 URa () — TG UR 2(t0)) )
0<k<N, m>1 4.17)

It is obvious thatJN(0) = 0. Clearly,

N 2 _ N E TN
(ONT)? = 2( 0. G )

~ d -~
< 2| Onlirll5 Um)lr- (4.18)
Furthermore, for any € [0, T],

(ON0)? = N~ [ S (ONo)

~ 2 ~ d -~
< (Un(™)"+20allr || 5 O

Integrating the above with respecttigyields that

~ ~ 2 ~ ~
IUnlIF < T (UR(M)“+2T (077 || = Un (4.19)

from where

d

~ 2 1 -~
(Un(M)" > 1017 —2[Unlr (4.20)

UN
T

Using (4.20) and (4.18) we have

~ d -~
3 < 47 | 08

, m>0. (4.21)
;
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Let a = maxep)|a(t)| andH = maxc(o 1) |H(t)|. Therefore, a combina-
tion (2.12), (4.12), and (4.18) leads to that

40

< H;GQ

d -~
< @+ )| G0N

T,N T,N

+cy|h|H HUQ—MT’N + a||ljn'\1‘||T,N + al\Uﬂ_lllT,N

1 d 1 ~
s;v6+qu+|mH)‘ +V£HIVCVWHHU$4H

dt

.
1 1
+4/2+ NaHUmHT+ 2+ NaHUmA”T- (4.22)

Using (4.21) and (4.22) results in

TN
Um—l

[0+ <

2+%T(1+\H\H H d G

m_
1-4,/2+ ka7 I
4\/2+ &T (a+cylA[H)

n 084, @29)
1-4y/2+%aT

wherec is a positive constant. Then, by (4.21) with- 1, instead omand
multiplying the resulting inequality by

\/2+ (14 |R[H) o

1-4,/2+%aT

we have
2+ (1+[AH) 4/2+ AT (1+|AH) d g
%1l < |00
1-4y/2+%aT 1-4y/2+%aT
mz@

Subtracting (4.24) from (4.23), after simplifying, we obtain

\/2+ & (14 |AH) +44/2+ AT (a +cy|AlH)

|03, < :
1-4,/2+ kaT

19+

(4.25)
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Therefore, if

\/2+ & (1+|AH) +4y/2+ LT (a +cy|A[H)
1-4,/2+%aT

<B<1

then||UN||t — 0 asm— o0. According to Theorem 4.2, it implies the exis-
tence and uniqueness of solution of (4.10).

5. Results and discussion

To demonstrate the applicability of the proposed piecewise spectral homo-
topy analysis method (PSHAM) algorithm as an appropriate tool for solv-

ing nonlinear IVPs, we apply the proposed algorithm to the Hyperchaotic

LU system, which was presented biy &t al. [19] as

du
Fl =a(Uy—Uu1)+ Uy

O:;Jf = —UujUz+Clp (5.1)
dus
e Uilp — bus

dU4
o upuz +duy

where u; are state variables,= 1,2,3,4, while a, b, c, andd are real
constants. It was demonstrated in [23] that wleea 36, b = 3, c = 20,
—1.03<d < 0.46, the system (see [19]) has periodic orbita # 36,b = 3,

c =20, —0.46 < d < —0.35, the system has chaotic attractoralf 36,
b=3,c=20,-0.35< d < 1.3 the system (see [19]) has hyperchaotic at-
tractor.

For the Lu system (5.2), the parameters used in the SHAM and PSHAM
algorithms described in the previous section@e= a, d1o = —a, 014 =
—1,a20=—C, azz3= Db, as4 = —d with all otherapq =0 (for p,q=1,2,3,4)
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and
- 0 i}
m-1 )
Z) uy, les,m—l— j
J:
, _ _ _ °
RIr,mfl = ﬁ[ulnmfl] + er,mfla er_,mfl =1 _ " Ui -Ui _ (5.2)
1,jY2,m—1—]j
]:
- Zﬁ UpjUsm 1-]
L= i
With these definitions, the PSHAM algorithm gives
AWinm = (Xm+P)AW, 3+ Qp . (5.3)

Because the right hand side of equation (5.3) is known, the solution can
easily be obtained by using methods for solving linear system of equations.
In the remainder of this section, we present the results of the numeri-
cal simulations of system (5.2) which were conducted using the PSHAM
algorithm. Unless otherwise specified, all the PSHAM results presented in
this section were obtained usimg§j= 10 collocation points and ten itera-
tions (that isM = 10) in eachlt'—*,t'] interval. The width of each interval
At =t' —t'~1 was taken to bAt = 0.1. We remark that like in the homotopy
analysis method case [17], the convergence of the PSHAM can be adjuste
by altering the value of the convergence controlling parantetelowever,
for illustration purposes, a fixed value lof= —1 was used in this study. We
also fix the values of the parameters- 36,b = 3, ¢ =20 withd = —0.91
for the periodic casal = —0.35 for the chaotic case amld= 1 for the hyper-
chaotic case. The initial conditions arg0) = 4,u»(0) = 8,u3(0) = —1 and
us(0) = —3. The accuracy of the proposed method was validated against
in-built MATLAB based Runge—Kutta routines. In addition the graphical
results obtained from this study were qualitatively compared with previous
results from literature where the same problem was solved using other meth-
ods of solution.

The results of the PSHAM simulation of the Lu system (5.2) for the
periodic, chaotic, and hyper-chaotic case are shown in Figs. 1, 3,aed
spectively. It can be observed that results are all qualitatively the same a
those reported in [19] for all the three cases considered in this study. Th
validates the applicability of the PSHAM method as a possible tool for solv-
ing other complex initial value problems.
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Figure 1. Phase portraits for the periodic case.

6. Conclusion

In this paper we presented a new application of the spectral homotopy anal-
ysis method in solving a class of nonlinear differential equations whose so-
lutions show periodic, chaotic and hyperchaotic behaviour. The pegpos
method, (referred to as the Piecewise Spectral Homotopy Analysis Method,
or PSHAM) of solution extends the application of the Spectral Homotopy
Analysis Method (SHAM) to complex nonlinear initial value problems. The
PSHAM approach was tested on a four dimensional system of nonlinear
initial value problem that is well known to display periodic, chaotic and
hyper-chaotic behaviour under carefully selected values of its gimgepa-
rameters. The present numerical results were validated against resuits f
literature and Runge—Kutta based schemes. From this preliminary investi-
gation of the possible application of extended versions of the SHAM we
conclude that the PSHAM promises to be a useful tool for solving highly
nonlinear initial value problems including those with behaviour that is diffi-
cult to resolve mathematically such as the chaotic and hyper-chaotic nature
of the system considered in this study.
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Figure 3. Phase portraits for the hyper chaotic case.
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