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Abstract — In this paper, a novel modification of the spectral-homotopy analysis method
(SHAM) technique for solving highly nonlinear initial value problems that model systems
with chaotic and hyper-chaotic behaviour is presented. The proposed method is based on
implementing the SHAM on a sequence of multiple intervals thereby increasingit’s radius
of convergence to yield highly accurate method which is referred to as thepiece-wise spectral
homotopy analysis method (PSHAM). We investigate the application of the PSHAM to the
Lü system [20] which is well known to display periodic, chaotic and hyper-chaotic behaviour
under carefully selected values of it’s governing parameters. Existence and uniqueness of
solution of SHAM that give a guarantee of convergence of SHAM, has been discussed in
details. Comparisons are made between PSHAM generated results and results from literature
and Runge–Kutta generated results and good agreement is observed.

Keywords: hyperchaotic system, Banach’s fixed point theorem, piecewise-spectral homo-
topy analysis method, spectral collocation

1. Introduction

The study of initial value problems (IVPs) that model chaotic motion con-
tinues to be an active area of research. Chaos theory studies the behaviour
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of dynamical systems that are highly sensitive to initial conditions and have
complex and highly unpredictable profiles. Chaotic systems can be observed
in a wide variety of applications such as mechanics of nonlinear pendula,
nonlinear acoustics, crystal growth, cell automata, turbulent flow, nonlinear
feedback systems, population dynamics, electrodynamics, optics, and many
other areas of physical and life sciences, engineering and economics.

Research into several classic and new or prototype models of chaos is
now well documented. Recently, there has been a surge in the interest of
hyper-chaotic systems. Hyper-chaotic systems are typically defined by four
dimensional IVPs and show chaotic behaviour with at least two positive
Lyapunov exponents. The first four-dimensional hyperchaotic system was
identified by R̈ossler [30]. During the last two decades, various hyperchaotic
systems have been discovered such as the hyperchaotic Lorenz–Haken sys-
tem [18], hyperchaotic Chua’s circuit [10], hyperchaotic Chen [8,15,16] and
hyperchaotic Lu system [19,20].

The complex nature of chaotic and hyperchaotic systems precludes the
possibility of obtaining closed form analytical solutions of the underlying
governing equations. Thus, approximate-analytical methods, which are im-
plemented on a sequence of multiple intervals to increase their radius of con-
vergence, are often used to solve IVPs modelling chaotic systems. Examples
of multi-stage methods that have been developed recently to solve IVPs for
chaotic and non-chaotic systems include the, multi-stage homotopy analy-
sis method [2, 4, 5], piecewise homotopy perturbation methods [9, 29, 33],
multi-stage Adomian decomposition method [1,27], multi-stage differential
transformation method, [3, 13, 28], multi-stage variational iteration method
[12, 26]. Other multistage methods which use numerical integration tech-
niques have also been proposed such as the piecewise iteration method [11]
which uses a spectral collocation method to perform the integration process.
Accurate solutions of highly chaotic and hyper-chaotic systems requires res-
olution over many small intervals. Thus, seeking analytical solutions over
the numerous intervals may be impractical or computationally expensive if
the solution is sought over very long intervals. In this paper we propose a
new approach based on the spectral homotopy analysis method for solving
the chaotic and hyperchaotic Lu system [19, 20]. The spectral homotopy
analysis method (SHAM) was recently proposed in [21,22] as a flexible nu-
merical implementation of Liao’s [17] homotopy analysis method (HAM).
The SHAM has previously been applied on boundary value problems (see,
i.e., [21–23,31]) and it may not be useful in its standard form as a method for

Brought to you by | New York University Bobst Library Technical Services
Authenticated

Download Date | 11/29/14 4:31 PM



Piecewise-spectral homotopy analysis method 345

solving IVPs. However, when implemented on a sequence of multiple inter-
vals, the resulting extended version of the SHAM, hereinafter referredto as
the peace-wise spectral homotopy analysis method (PSHAM), is highly ac-
curate and robust enough to be a suitable for solving IVPs with chaotic and
hyperchaotic behaviour [24, 25]. In this work we demonstrate the applica-
bility of the PSHAM on the L̈u system which is known to display periodic,
chaotic and hyperchaotic profiles under carefully selected values of its gov-
erning parameters.

The organization of this paper is as follows. In Section 2, the basic idea
of the spectral homotopy analysis method (SHAM) is presented. In Sec-
tion 3, piece-wise spectral homotopy analysis method is presented. Exis-
tence and uniqueness of solution of SHAM that give a guarantee of conver-
gence of SHAM is presented in Section 4. Section 5 presents the results and
discussion. In Section 6, some concluding remarks are given.

2. Basic idea behind the spectral homotopy analysis method

In this section, we give a brief description of the basic idea behind the
standard spectral homotopy analysis method that was initially proposed in
Motsa et. al. [21,22] for solving nonlinear boundary value problems. Atfirst,
we take into account the following properties of shifted Legendre polyno-
mials.

2.1. Properties of shifted Legendre polynomials

The well-known Legendre polynomials are defined on the interval(−1,1)
and can be determined with the aid of the following recurrence formula:

L0(x) = 1, L1(x) = x

L j+1(x) =
2 j +1
j +1

xL j(x)−
j

j +1
L j−1(x), j > 1. (2.1)

In order to use these polynomials on the intervalx∈ (0,T)we defined the so-
called shifted Legendre polynomials by introducing the change of variable
x= 2t/T−1. Let the shifted Legendre polynomialsL j(2t/T−1) be denoted
by LT, j(t). ThenLT, j(t) can be generated by using the following recurrence
relation:

LT, j+1(t) =
2 j +1
j +1

(

2t
T

−1

)

LT, j(t)−
j

j +1
LT, j−1(t), j = 1,2, . . . (2.2)
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whereLT,0(t) = 1 andLT,1(t) = 2t/T −1. The orthogonality condition is
∫ T

0
LT,i(t)LT,k(t)dt =

T
2i+1

δi,k (2.3)

whereδi,k is the Kronecker function. Any functionu(t), square integrable in
(0,T), may be expressed in terms of shifted Legendre polynomials as

u(t) =
∞

∑
j=0

a jLT, j(t) (2.4)

where the coefficientsa j are given by

a j =
2l +1

T

∫ T

0
y(t)LT, j(t)dt, j = 0,1,2, . . . . (2.5)

In practice, only the first(N+ 1)-terms shifted Legendre polynomials are
considered. Hence we can write

u(t) =
N

∑
j=0

a jLT, j(t). (2.6)

Now, we turn to Legendre–Gauss interpolation. We denote bytN
j , 0 6 j 6

N, the nodes of the standard Legendre–Gauss interpolation on the interval
(−1,1). The corresponding Christoffel numbers areωN

j , 0 6 j 6 N. The
nodes of the shifted Legendre–Gauss interpolation on the interval(0,T) are
the zeros ofLT,N+1(t), which are denoted bytN

T, j , 06 j 6 N. ClearlytN
T, j =

T(tN
j + 1)/2. The corresponding Christoffel numbers areωN

T, j = TωN
j /2.

Let PN(0,T) be the set of all polynomials of degree at mostN. Due to the
property of the standard Legendre–Gauss quadrature, it follows thatfor any
Φ ∈ P2N+1(0,T):

∫ T

0
Φ(t)dt =

T
2

∫ 1

−1
Φ
(

T
2
(t +1)

)

dt

=
T
2

N

∑
j=0

ωN
j Φ

(

T
2
(tN

j +1)

)

=
N

∑
j=0

ωN
T, jΦ(tN

T, j). (2.7)

Definition 2.1. Let (u,v)T and‖v‖T be the inner product and the norm
of spaceL2(0,T), respectively. We introduce the following discrete inner
product and norm,

(u,v)T,N =
N

∑
j=0

u(tN
T, j)v(t

N
T, j)ωN

T, j , ‖v‖T,N = (v,v)1/2
T,N. (2.8)
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Piecewise-spectral homotopy analysis method 347

From (2.7), for anyΦψ ∈ P2N+λ (0,T),

(Φ,ψ)T = (Φ,ψ)T,N (2.9)

where λ = −1,0,1 for the Legendre Gauss interpolation, the Legendre
Gauss–Radau interpolation and the Legendre Gauss–Lobatto integration re-
spectively.

Moreover, for the Legendre Gauss integration and the Legendre Gauss–
Radau integration,

‖ϕ‖T = ‖ϕ‖T,N, ϕ ∈ PN(0,T). (2.10)

For the Legendre Gauss–Lobatto integration,‖ϕ‖T 6= ‖ϕ‖T,N usually. But
for mostly used orthogonal systems in[0,T], they are equivalent, namely,
for certain positive constantscl andc2,

c1‖ϕ‖T 6 ‖ϕ‖T,N 6 c2‖ϕ‖T . (2.11)

As a consequence, for Legendre Gauss–Lobatto interpolation and forϕ ∈
PN(0,T), we have

‖ϕ‖T 6 ‖ϕ‖T,N 6

√

2+
1
N
‖ϕ‖T . (2.12)

2.2. Spectral homotopy analysis method

For convenience of the interested reader, we will first present a briefde-
scription of the basic idea behind the standard SHAM [21,22]. This will be
followed by a description of the piecewise version of the SHAM algorithm
which is suitable for solving initial value problems. To this end, we consider
the initial value problem (IVP) of dimensionn given as

u̇(t) = f(t,u(t)), u(t0) = u0 (2.13)

u : R→ R
n, f : R×R

n → R
n (2.14)

where the dot denotes differentiation with respect tot . We make the usual
assumption thatf is sufficiently smooth for linearization techniques to be
valid. If u = (u1,u2, . . . ,un) we can apply the SHAM by rewriting equation
(2.13) as

u̇r +
n

∑
k=1

αr,kuk+gr(u1,u2, . . . ,un) = 0 (2.15)
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subject to the initial conditions

ur(0) = u0
r (2.16)

whereu0
r are the given initial conditions,αr,k are known constant parameters

andgr is the nonlinear component of therth equation.
The SHAM approach imports the conventional ideas of the standard

homotopy analysis method (HAM) by defining the following zeroth-order
deformation equations

(1−q)Lr [Ur(t;q)−ur,0(t)] = qh̄rNr [Ur(t;q)] (2.17)

whereq∈ [0,1] is an embedding parameter,Ur(t;q) are unknown functions,
h̄r is a convergence controlling parameter. The operatorsLr and Nr are
defined as

Lr [Ur(t;q)] =
∂Ur

∂ t
+

n

∑
k=1

αr,kUk (2.18)

Nr [Ur(t;q)] = Lr [Ur(t;q)]+gr [U1(t;q),U2(t;q), . . . ,Un(t;q)]. (2.19)

Using the ideas of the standard HAM approach [17], we differentiate the
zeroth-order equations (2.17)m times with respect toq and then setq = 0
and finally divide the resulting equations bym! to obtain the following equa-
tions, which are referred to as themth order (or higher order) deformation
equations,

Lr [ur,m(t)−χmur,m−1(t)] = h̄rRr,m−1 (2.20)

subject to
ur,m(0) = 0 (2.21)

where

Rr,m−1 =
1

(m−1)!
∂ m−1Nr [Ur(t;q)]

∂qm−1

∣

∣

∣

∣

q=0
(2.22)

and

χm =

{

0, m6 1
1, m> 1.

(2.23)

After obtaining solutions for equations (2.20), the approximate solution
for eachur(t) is determined as the series solution

ur(t) = ur,0(t)+ur,1(t)+ur,2(t)+ . . . (2.24)
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Piecewise-spectral homotopy analysis method 349

A SHAM solution is said to be of orderM if the above series is truncated
atm= M, that is, if

ur(t) =
M

∑
m=0

ur,m(t). (2.25)

The SHAM was introduced as a possible improvement of the HAM
which offers flexibility in choosing the linear operatorLr and removes some
of the perceived limitations of the HAM such as the requirement that the
solution must conform to the so called rule of solution expression and co-
efficient ergodicity. The SHAM specifies a clear criteria for choosing the
linear operator as just the linear part of the governing equation. The initial
approximation is chosen to the solution of the linear part of the governing
equations when solved subject to the given initial conditions. The SHAM
higher order deformation equations are reduced into a system of linear alge-
braic equations by transforming the derivatives using the Legendre spectral
collocation method.

The initial approximation is obtained as a solution of the following sys-
tem of equations

u̇r +
n

∑
k=1

αr,kuk = 0 (2.26)

subject to the initial conditions

ur(0) = u0
r . (2.27)

The solution of equation (2.26) can be obtained analytically for most
IVPs. If the analytical solution is not available, numerical methods can be
used to estimate the solution. The solutionur,0(t) of equation (2.26) is then
substituted in the higher order deformation equation (2.20) which is itera-
tively solved forur,m(t) (for m= 1,2, . . . ,M).

In this paper, we use a spectral collocation method with Legendre–
Gauss–Lobatto (LGL) points [7, 32] to integrate the algorithm (2.20). We
remark that before applying the spectral method, we use the transformation
t = tF(τ +1)/2 to map the region[0, tF ] to the interval[−1,1] on which the
spectral method is defined.

After the transformation, the intervalτ ∈ [−1,1] is discretized using the
Legendre–Gauss–Lobatto (LGL) nodes. These points,τ j , j = 0,1, . . . ,N,
are unevenly distributed on[−1,1] and are defined byτ0 =−1, τN = 1 and
for 1 6 j 6 N− 1, τ j are the zeros oḟLN, the derivative of the Legendre
polynomial of degreeN, LN.
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The unknown functionsu(t) are approximated by theNth degree poly-
nomials of the form

u(t) =
N

∑
k=0

ukϕk(t) (2.28)

where, fork= 0,1, . . . ,N we have

ϕk(t) =
1

N(N+1)LN(tk)
(t2−1)L̇N(t)

t − tk
(2.29)

are the Lagrange polynomials of orderN which interpolate the functions at
the LGL points. The Legendre spectral differentiation matrixD is used to
approximate the derivatives of the unknown variablesur,m(t) at the colloca-
tion points as the matrix vector product

dur,m

dt
(t j) =

N

∑
k=0

D jkur,m(τk) = DUr,m, j = 0,1, . . . ,N (2.30)

whereD = 2D/tF andUr,m = [ur,m(τ0),ur,m(τ1), . . . ,ur,m(τN)]
T is the vector

function at the collocation pointsτ j . The matrixD is of size(N+1)× (N+
1) and its entries are defined [7,32] as

D jk =



































−
N(N+1)

4
, j = k= 0

N(N+1)
4

, j = k= N

LN(t j)

LN(tk)
1

t j − tk
, j 6= k

0, otherwise.

(2.31)

Applying the the Legendre spectral collocation method in equations
(2.20)–(2.21) gives

A [Wm−χmWm−1] = h̄rRm−1, Wm(τN) = 0 (2.32)

whereRm−1 is an(N+1)n×1 vector corresponding toRr,m−1 when evalu-
ated at the collocation points andWm = [U1,m;U2,m; . . . ;Un,m].

The matrixA is an (N + 1)n× (N + 1)n matrix that is derived from
transforming the linear operatorLr using the derivative matrixD and is
defined as

A =











A11 A12 · · · A1n

A21 A22 · · · A2n
...

.. .
...

An1 An2 · · · Ann











, Apq =

{

D+σpqI , p= q
σpqI , p 6= q

(2.33)
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whereI is an identity matrix of orderN+1.
Thus, starting from the initial approximation obtained as the solution

of equation (2.26), the recurrence formula (2.32) can be used to obtain the
solutionur(t).

3. Piece-wise spectral homotopy analysis method

It is worth noting that the SHAM method described above is ideally suited
for boundary value problems whose solutions don’t rapidly change in be-
haviour or oscillate over small regions of the domain of the governing prob-
lem. The SHAM solution can thus be considered to be local in nature and
may not be suitable for initial value problems at very large values of the
independent variablet. A simple way of ensuring the validity of the ap-
proximations for larget is to determine the solution in a sequence of equal
intervals, which are subject to continuity conditions at the end points of
each interval. To extend this solution over the intervalΛ = [t0, tF ], we di-
vide the intervalΛ into sub-intervalsΛi = [t i−1, t i ], i = 1,2,3, . . . ,F where
t0 6 t1 6 · · · 6 tF . We solve (2.18) in each subintervalΛi . Let u1

r (t) be the
solution of (2.15) in the first subinterval[t0, t1] andui

r(t) be the solutions in
the subintervalsΛi for 2 6 i 6 F . The initial conditions used in obtaining
the solutions in the subintervalΛi(26 i 6 F) are obtained from the initial
conditions of the subintervalΛi−1. Thus, we solve

Lr [u
i
r,m(t)−χmui

r,m−1(t)] = h̄rR
i
r,m−1, t ∈ [t i−1, t i ] (3.1)

subject to
ui

r,m(t
i−1) = 0. (3.2)

The initial approximations for solving equation (3.1) are obtained as
solutions of the following equations

u̇i
r,0+

n

∑
k=1

αr,ku
i
k,0 = 0, t ∈ [t i−1, t i ] (3.3)

subject to the initial conditions

ui
r,0(t

i−1) = ui−1
r (t i−1). (3.4)

After transforming the interval[t i−1, t i ] into [−1,1], the Legendre spec-
tral collocation method is then applied to solve equations (3.1)–(3.2) on each
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interval[t i−1, t i ]. This results in the following recursive formula form> 1:

W i
m = χmW i

m−1+hrA−1Ri
m−1 (3.5)

for t ∈ [t i−1, t i ]. The initial approximation for the iterative formula (3.5) is is
obtained as a solution of (3.3 - 3.4). The solution approximatingur(t) in the
entire interval[t0, tF ] is given by

ur(t) =



















u1
r (t), t ∈ [t0, t1]

u2
r (t), t ∈ [t1, t2]

...
uF

r (t), t ∈ [tF−1, tF ].

(3.6)

It should be noted that whenF = 1, the proposed piecewise spectral
homotopy analysis method (PSHAM) becomes equivalent to the original
SHAM algorithm.

4. Existence and uniqueness of solution of SHAM

We consider the initial value problem (IVP) of dimensionn (2.13) that is
rewritten as

L [u(t)]+N [u(t)] = ϕ(t) (4.1)

whereL is a linear operator which is derived from the entire the linear part
of (2.13) andN is the remaining nonlinear component.

Let us define the nonlinear operatorN and the sequence{Um}
∞
m=0 as,

N [u(t)] =
∞

∑
k=0

Nk(u0,u1, . . . ,uk) (4.2)



















U0 = u0

U1 = u0+u1
...

Um = u0+u1+u2+ · · ·+um.

(4.3)

The SHAM gives the following equation, which is referred to as themth
order (or higher order) deformation equation,

L [um(t)−χmum−1(t)] = h̄H(t)Rm[um−1(t)] (4.4)
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subject to the initial condition

um(0) = 0 (4.5)

where

Rm(~um−1) = L [um−1]+Nm−1[u0,u1, . . . ,um−1]− (1−χm)ϕ(t). (4.6)

Therefore,

L [u1(t)] = h̄H(t){L [u0]+N0−ϕ(t)}
L [u2(t)−u1(t)] = h̄H(t){L [u1]+N1}

L [u3(t)−u2(t)] = h̄H(t){L [u2]+N2}

...

L [um(t)−um−1(t)] = h̄H(t){L [um−1]+Nm−1}

after summing this equations, we have

L [um(t)] = h̄H(t)

{

m−1

∑
k=0

L [uk]+
m−1

∑
k=0

Nk−ϕ(t)

}

(4.7)

from (4.3) we have

L [Um(t)−Um−1(t)] = h̄H(t){L [Um−1]+N [Um−1]−ϕ(t)} (4.8)

subject to the initial condition

Um(0) = 0. (4.9)

Consequently, the collocation method is based on a solutionUN(t) ∈
PN+1(0,T), for (4.8) such that

L [UN
m(tN

T,k)−UN
m−1(t

N
T,k)] = h̄HN(tN

T,k){L [UN
m−1(t

N
T,k)]+N [UN

m−1(t
N
T,k)]

−ϕN(tN
T,k)} (4.10)

subject to the initial condition

UN
m(0) = 0. (4.11)
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Definition 4.1. A mapping f of spaceL2(0,T), into itself is said to sat-
isfy a Lipschitz condition with Lipschitz constantγ if for any z andz∗,

| f (z, t)− f (z∗, t)|6 γ |z−z∗|. (4.12)

If this conditions is satisfied with a Lipschitz constantγ such that 06 γ < 1
then f is called a contraction mapping.

Theorem 4.1 (Banach’s fixed point theorem [6]).Assume that K is a
non-empty closed set in a Banach space V, and further, that T: K → K is
a contractive mapping with contractivity constantγ, 06 γ < 1. Then there
exists a unique U∈ K such that U= T(U).

Theorem 4.2 (existence and uniqueness of the solution).Assume that
f(t,u(t)) in the initial value problem (IVP)(2.13) satisfies condition of
(4.12), then(4.10)has a unique solution.

For the proof of the theorems we should consider the following. From
(4.10) we have

L [UN
m(tN

T,k)] = (1+ h̄HN(tN
T,k))L [UN

m−1(t
N
T,k)]+ h̄HN(tN

T,k)

×{N [UN
m−1(t

N
T,k)]−ϕN(tN

T,k)}, 06 k6 N, m> 1 (4.13)

UN
m(0) = 0, m> 0.

Since f (t,z) satisfies the Lipschitz-continuous condition, then there exists a
constantγ > 0 such that

| f (t,z)− f (t,z∗)|6 γ |z−z∗| (4.14)

for all t ∈ [0,T], and allz andz∗.
Now, for the problem (4.1), we chooseL[U(t)] = dU/dt + α(t)U ,

N[U(t)] = −α(t)U − f (t,U) andϕ(t) ≡ 0, whereα(t) is an arbitrary ana-
lytic function.

Let ŨN
m(t) =UN

m(t)−UN
m−1(t), then we have from (4.13) that

L [ŨN
m(tN

T,k)] = (1+ h̄H(tN
T,k))L [UN

m−1(t
N
T,k)−UN

m−2(t
N
T,k)]

+ h̄H(tN
T,k){N [UN

m−1(t
N
T,k)]−N [UN

m−2(t
N
T,k)]}

06 k6 N, m> 1 (4.15)
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or according to the definitions ofL[U(t)] andN[U(t)],

d
dt
[ŨN

m(tN
T,k)]+α(tN

T,k)Ũ
N
m = (1+ h̄H(tN

T,k))

×

{

d
dt
[ŨN

m−1(t
N
T,k)]+α(tN

T,k)Ũ
N
m−1

}

− h̄H(tN
T,k)

×{ f (tN
T,k,U

N
m−1(t

N
T,k))+α(tN

T,k)U
N
m−1− f (tN

T,k,U
N
m−2(t

N
T,k))

−α(tN
T,k)U

N
m−2}, 06 k6 N, m> 1 (4.16)

from where

d
dt
[ŨN

m(tN
T,k)] = (1+ h̄H(tN

T,k))
d
dt
[ŨN

m−1(t
N
T,k)]+α(tN

T,k)Ũ
N
m−1−α(tN

T,k)Ũ
N
m

− h̄H(tN
T,k){ f (tN

T,k,U
N
m−1(t

N
T,k))− f (tN

T,k,U
N
m−2(t

N
T,k))}

06 k6 N, m> 1. (4.17)

It is obvious that,ŨN
m(0) = 0. Clearly,

(

ŨN
m(T)

)2
= 2

(

ŨN
m ,

d
dt
(ŨN

m)

)

T

6 2‖ŨN
m‖T‖

d
dt
(ŨN

m)‖T . (4.18)

Furthermore, for anyt ∈ [0,T],

(

ŨN
m(t)

)2
=

(

ŨN
m(T)

)2
−

∫ T

t

d
dx

(

ŨN
m(x)

)2
dx

6
(

ŨN
m(T)

)2
+2‖ŨN

m‖T

∥

∥

∥

∥

d
dx

ŨN
m

∥

∥

∥

∥

T
.

Integrating the above with respect tot, yields that

‖ŨN
m‖2

T 6 T
(

ŨN
m(T)

)2
+2T‖ŨN

m‖T

∥

∥

∥

∥

d
dt

ŨN
m

∥

∥

∥

∥

T
(4.19)

from where

(

ŨN
m(T)

)2
>

1
T
‖ŨN

m‖2
T −2‖ŨN

m‖T

∥

∥

∥

∥

d
dt

ŨN
m

∥

∥

∥

∥

T
. (4.20)

Using (4.20) and (4.18) we have

∥

∥ŨN
m

∥

∥

T 6 4T

∥

∥

∥

∥

d
dt

ŨN
m

∥

∥

∥

∥

T
, m> 0. (4.21)
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Let α = maxt∈[0,T] |α(t)| andH = maxt∈[0,T] |H(t)|. Therefore, a combina-
tion (2.12), (4.12), and (4.18) leads to that
∥

∥

∥

∥

d
dt

ŨN
m

∥

∥

∥

∥

T
6

∥

∥

∥

∥

d
dt

ŨN
m

∥

∥

∥

∥

T,N
6 (1+ |h̄|H)

∥

∥

∥

∥

d
dt

ŨN
m−1

∥

∥

∥

∥

T,N

+cγ |h̄|H
∥

∥ŨN
m−1

∥

∥

T,N +α‖ŨN
m‖T,N +α‖ŨN

m−1‖T,N

6

√

2+
1
N
(1+ |h̄|H)

∥

∥

∥

∥

d
dt

ŨN
m−1

∥

∥

∥

∥

T
+

√

2+
1
N

Cγ |h̄|H‖ŨN
m−1‖T

+

√

2+
1
N

α‖ŨN
m‖T +

√

2+
1
N

α‖ŨN
m−1‖T . (4.22)

Using (4.21) and (4.22) results in

∥

∥ŨN
m

∥

∥

T 6

4
√

2+ 1
NT (1+ |h̄|H)

1−4
√

2+ 1
NαT

∥

∥

∥

∥

d
dt

ŨN
m−1

∥

∥

∥

∥

T

+
4
√

2+ 1
NT (α +cγ |h̄|H)

1−4
√

2+ 1
NαT

∥

∥ŨN
m−1

∥

∥

T (4.23)

wherec is a positive constant. Then, by (4.21) withm−1, instead ofm and
multiplying the resulting inequality by

√

2+ 1
N(1+ |h̄|H)

1−4
√

2+ 1
N αT

> 0

we have
√

2+ 1
N(1+ |h̄|H)

1−4
√

2+ 1
N αT

∥

∥ŨN
m−1

∥

∥

T 6

4
√

2+ 1
NT (1+ |h̄|H)

1−4
√

2+ 1
N αT

∥

∥

∥

∥

d
dt

ŨN
m−1

∥

∥

∥

∥

T
.

(4.24)
Subtracting (4.24) from (4.23), after simplifying, we obtain

∥

∥ŨN
m

∥

∥

T 6

√

2+ 1
N (1+ |h̄|H)+4

√

2+ 1
NT (α +cγ |h̄|H)

1−4
√

2+ 1
NαT

∥

∥ŨN
m−1

∥

∥

T .

(4.25)
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Therefore, if

√

2+ 1
N (1+ |h̄|H)+4

√

2+ 1
NT (α +cγ |h̄|H)

1−4
√

2+ 1
NαT

6 β < 1

then‖ŨN
m‖T → 0 asm→ ∞. According to Theorem 4.2, it implies the exis-

tence and uniqueness of solution of (4.10).

5. Results and discussion

To demonstrate the applicability of the proposed piecewise spectral homo-
topy analysis method (PSHAM) algorithm as an appropriate tool for solv-
ing nonlinear IVPs, we apply the proposed algorithm to the Hyperchaotic
Lü system, which was presented by Lü et al. [19] as

du1

dt
= a(u2−u1)+u4

du2

dt
=−u1u3+cu2 (5.1)

du3

dt
= u1u2−bu3

du4

dt
= u1u3+du4

where ui are state variables,i = 1,2,3,4, while a, b, c, and d are real
constants. It was demonstrated in [23] that whena = 36, b = 3, c = 20,
−1.036 d 6 0.46, the system (see [19]) has periodic orbit. Ifa= 36,b= 3,
c = 20, −0.466 d 6 −0.35, the system has chaotic attractor. Ifa = 36,
b= 3, c= 20,−0.356 d 6 1.3 the system (see [19]) has hyperchaotic at-
tractor.

For the Lu system (5.2), the parameters used in the SHAM and PSHAM
algorithms described in the previous section areα11 = a, α12 = −a, α14 =
−1,α22=−c, α33= b, α44=−d with all otherαpq= 0 (for p,q= 1,2,3,4)
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and

Ri
r,m−1 = Lr [u

i
r,m−1]+Qi

r,m−1, Qi
r,m−1 =

























0
m−1

∑
j=0

ui
1, ju

i
3,m−1− j

−
m−1

∑
j=0

ui
1, ju

i
2,m−1− j

−
m−1

∑
j=0

ui
1, ju

i
3,m−1− j

























. (5.2)

With these definitions, the PSHAM algorithm gives

AW i
r,m = (χm+ h̄r)AW i

r,m−1+ h̄rQi
r,m−1. (5.3)

Because the right hand side of equation (5.3) is known, the solution can
easily be obtained by using methods for solving linear system of equations.

In the remainder of this section, we present the results of the numeri-
cal simulations of system (5.2) which were conducted using the PSHAM
algorithm. Unless otherwise specified, all the PSHAM results presented in
this section were obtained usingN = 10 collocation points and ten itera-
tions (that isM = 10) in each[t i−1, t i ] interval. The width of each interval
∆t = t i − t i−1 was taken to be∆t = 0.1. We remark that like in the homotopy
analysis method case [17], the convergence of the PSHAM can be adjusted
by altering the value of the convergence controlling parameterh̄. However,
for illustration purposes, a fixed value ofh̄=−1 was used in this study. We
also fix the values of the parametersa= 36,b= 3, c= 20 with d = −0.91
for the periodic case,d=−0.35 for the chaotic case andd= 1 for the hyper-
chaotic case. The initial conditions areu1(0) = 4,u2(0) = 8,u3(0) =−1 and
u4(0) = −3. The accuracy of the proposed method was validated against
in-built MATLAB based Runge–Kutta routines. In addition the graphical
results obtained from this study were qualitatively compared with previous
results from literature where the same problem was solved using other meth-
ods of solution.

The results of the PSHAM simulation of the Lu system (5.2) for the
periodic, chaotic, and hyper-chaotic case are shown in Figs. 1, 2, and3, re-
spectively. It can be observed that results are all qualitatively the same as
those reported in [19] for all the three cases considered in this study. This
validates the applicability of the PSHAM method as a possible tool for solv-
ing other complex initial value problems.
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Figure 1. Phase portraits for the periodic case.

6. Conclusion

In this paper we presented a new application of the spectral homotopy anal-
ysis method in solving a class of nonlinear differential equations whose so-
lutions show periodic, chaotic and hyperchaotic behaviour. The proposed
method, (referred to as the Piecewise Spectral Homotopy Analysis Method,
or PSHAM) of solution extends the application of the Spectral Homotopy
Analysis Method (SHAM) to complex nonlinear initial value problems. The
PSHAM approach was tested on a four dimensional system of nonlinear
initial value problem that is well known to display periodic, chaotic and
hyper-chaotic behaviour under carefully selected values of its governing pa-
rameters. The present numerical results were validated against results from
literature and Runge–Kutta based schemes. From this preliminary investi-
gation of the possible application of extended versions of the SHAM we
conclude that the PSHAM promises to be a useful tool for solving highly
nonlinear initial value problems including those with behaviour that is diffi-
cult to resolve mathematically such as the chaotic and hyper-chaotic nature
of the system considered in this study.
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Figure 2. Phase portraits for the chaotic case.
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Figure 3. Phase portraits for the hyper chaotic case.
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control.Physica A.(2006)364, 103 – 110.

21. S. S. Motsa, P. Sibanda, and S. Shateyi, A new spectral-homotopy analysis method
for solving a nonlinear second order BVP. Commun.Nonlinear Sci. Numer. Simulat.
(2010)152293 – 2302.

22. S. S. Motsa, P. Sibanda, F. G. Awad, S. Shateyi, A new spectral-homotopy analysis
method for the MHD Jeffery–Hamel problem.Computer & Fluids,(2010)39, 1219 –
1225.

23. H. Saberi Nik, S. Effati, S. S. Motsa, and M. Shirazian, Spectral homotopy analysis
method and its convergence for solving a class of nonlinear optimal control problems.
Numer. Algorithms,(2013) DOI 10.1007/s11075-013-9700-4.

24. S. Effati, H. Saberi Nik, and A. Jajarmi, Hyperchaos control of the hyperchaotic Chen
system by optimal control design.Nonlinear Dynamics,(2013)73, 499 – 508.

25. H. Saberi Nik, S. Effati, S. S. Motsa, and S. Shateyi, A new piecewise-spectral homo-
topy analysis method for solving chaotic systems of initial value problems.Math. Prob-
lems Engrg.(2013) DOI 10.1155/2013/583193.

26. M. Merdan, A. Gokdogan, and V. S. Erturk, An approximate solution of a model for
HIV infection of CD4+ T-cells.Iran. J. Sci. Technol.(2011)A1, 9 – 12.

27. M. Mossa Al-Sawalha, M. S. M. Noorani, I. Hashim, On accuracy of Adomian decom-
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