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Abstract The Burzynski criterion is developed for anisotropic asymmetric metals with
the non-associated flow rule (NAFR) for plane stress problems. The presented pressure
depending on the yield criterion can be calibrated with ten experimental data, i.e., the
tensile yield stresses at 0◦, 45◦, and 90◦, the compressive yield stresses at 0◦, 15◦, 30◦,

45◦, 75◦, and 90◦ from the rolling direction, and the biaxial tensile yield stress. The
corresponding pressure independent plastic potential function can be calibrated with six
experimental data, i.e., the tensile R-values at 0◦, 15◦, 45◦, 75◦, and 90◦ from the rolling
direction and the tensile biaxial R-value. The downhill simplex method is used to solve
these ten and six high nonlinear equations for the yield and plastic potential functions, re-
spectively. The results show that the presented new criterion is appropriate for anisotropic
asymmetric metals.

Key words modified Burzynski criterion, pressure dependent asymmetric metal, down-
hill simplex method, non-associated flow rule (NAFR)

Chinese Library Classification O347.2
2010 Mathematics Subject Classification 74C99

1 Introduction

The anisotropic character is always considered to accurately model the behavior of materials.
In the current study, a brief review about this subject is firstly mentioned, and then a criterion
for isotropic materials is extended for anisotropic pressure dependent metals with the non-
associated flow rule (NAFR) in a new way.

Barlat et al.[1] proposed a general yield function to consider binary aluminum-magnesium
sheet samples, which were fabricated by different processing paths. The yielding behavior
was measured by the biaxial compression tests on the cubic specimens made from laminated
sheet samples. Thamburaja and Anand[2] developed a crystal-mechanics-based constitutive
model for polycrystalline shape-memory materials. The model was implemented in a finite
element program and several experiments in the tension, compression, and shear performed on
an initially textured polycrystalline Ti-Ni alloy. Thamburaja and Anand[3] showed the crystal-
mechanics-based constitutive model for polycrystalline shape memory alloys[2], and predicted
the super-elastic response of an initially-textured Ti-Ni alloy in (i) a proportional-loading and
combined tension-torsion experiment and (ii) a path-change and tension-torsion experiment.
Barlat et al.[4] proposed a new plane stress yield function to account for the anisotropy effects
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on the Cauchy stress tensor and the aluminum alloy sheets. Stoughton and Yoon[5] proposed an
NAFR to fully account for the strength differential effect (SDE) based on a pressure sensitive
yield criterion with isotropic hardening. Clausen et al.[6] presented an efficient return algorithm
for the stress updating in the numerical plasticity computations for the yield criterion in the
linear principal stress space composed of yield planes. Cvitanic et al.[7] developed a finite
element formulation based on the non-associated plasticity. In the constitutive formulation,
the isotropic hardening was assumed, and an evolution equation for the hardening parameter
consistent with the principle of plastic work equivalence was introduced. Stoughton and Yoon[8]

described a model, and explicitly integrated it into the yield criterion with no effect on the
accuracy of the plastic strain components defined by the gradient of a separate plastic potential
function based on an NAFR. Lee et al.[9] extended a hardening law based on a two-surface
model to account for the general stress-strain effects of metal sheets, including the Bauschinger
effect, the transient behavior, and the uncommon asymmetry. Aretz[10] presented the convexity
of the yield function in the presence of a hydrostatic pressure sensitive yield stress. Hu and
Wang[11] proposed a new theory, in which the yield function and the plastic potential were
involved in the model. Taherizadeh et al.[12] developed an anisotropic material model based on
the NAFR and the mixed isotropic-kinematic hardening, and implemented them into a user-
defined material subroutine for the commercial finite element code ABAQUS. They defined both
the yield function and the plastic potential in the form of Hill’s quadratic anisotropic function.
The coefficients for the yield function were determined from the yield stresses in different
material orientations, and those of the plastic potential were determined from the R-values in
different directions. Mohr et al.[13] evaluated the accuracy of the quadratic plane stress plasticity
models for a dual phase and an advanced high strength steel, and used the isotropic and
anisotropic associated and non-associated quadratic plasticity models to describe the material
behaviors. The results showed that the sheet materials exhibited a considerable direction-
dependence on the R-ratio, and the uniaxial stress-strain curves had the same irrespective in
the specimen direction. Huh et al.[14] evaluated the accuracy of common anisotropic yield
functions, e.g., Hill48, Yld89, Yld91, Yld96, Yld2000-2d, BBC2000, and Yld2000-18p based
on the root-mean square error (RMSE) of the yield stresses, and obtained that the deduced
Yld2000-18 yield function was the best to accurately describe the yield stresses and the R-
values for sheet metals. Vadillo et al.[15] formulated an implicit integration of the elastic-plastic
constitutive equations for the paraboloid case of Burzynski’s yield condition, and developed a
tangent operator which was consistent with the integration algorithm. Taherizadeh et al.[16]

developed a generalized finite element formulation of the stress integration method for the
non-quadratic yield functions and potentials with mixed nonlinear hardening under the NAFR.
Gao et al.[17] described a plasticity model for isotropic materials, which was a function of the
hydrostatic stress and the second and third invariants of the stress deviator, and presented
its finite element implementation. Coombs and Crouch[18] presented an analytical backward
Euler stress integration for a volumetrically non-associated pressure sensitive yield function
based on a modified Reuleaux triangle. The analytical solution was 2–4 times faster than a
standard numerical backward Euler algorithm. Yu et al.[19] showed that the transformation
started stress from austenitic phase to stress-induced martensitic phase increased with the
increase in the ambient temperature. Based on the experimental observation, a single crystal
constitutive model considering both transformation and plasticity was first established, and the
interaction energy was introduced to consider the effect of the plasticity on the transformation.
Then, an explicit scale-transition rule was adopted in the proposed micromechanical constitutive
model. Park and Chung[20] developed a new formulation with the combined isotropic-kinematic
hardening law. Yu et al.[21] constructed a new micromechanical constitutive model to describe
the cyclic deformation of the polycrystalline Ni-Ti shape memory alloy presented under different
thermo-mechanical cyclic loading conditions. Lou et al.[22] proposed an approach to extend
the symmetric yield functions, considering the SDE in the sheet metals. The approach was
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successfully used to analyze the symmetric Yld2000-2d yield function, and the yield function
was modified to describe the anisotropic yielding and the symmetric yielding of two aluminum
alloys with small and strong SDEs. Safaei et al.[23] presented a non-associated plane stress
anisotropic constitutive model with mixed isotropic-kinematic hardening. The quadratic Hill48
yield criterion and the non-quadratic Yld2000-2d yield criterion were considered in the NAFR
model to account for the anisotropic behavior. Yu et al.[24] constructed a micromechanical
constitutive model based on the crystal plasticity to describe the deformation behaviors of the
polycrystalline Ni-Ti shape memory alloy under various thermo-mechanical loading conditions,
and deduced the evolution equations of internal variables to power-law forms. Safaei et al.[25]

described the anisotropy evolution in terms of both distortional hardening and variations of
Lankford coefficients. An NAFR based Yld2000-2d anisotropic yield model was used, where
the separate yield function and the plastic potential were considered.

In the current research, a pressure dependent isotropic criterion, i.e., “Burzynski criterion”,
for isotropic metals is newly extended to consider the anisotropy effects along with pressure
dependency and the NAFR in a plane stress problem. It is shown that the new criterion is
proper for anisotropic pressure asymmetric metals.

2 Modified Burzynski criterion as yield stress and plastic potential func-

tions

To develop the Burzynski criterion to consider the anisotropic effects, a linear transformation
is defined as follows:





s̄xx

s̄yy

s̄xy



 =





L11 L12 0
L21 L22 0
0 0 L66









σxx

σyy

τxy



 , (1)

where Lij (i, j = 1, 2, 3, 6) are the components of a linear transformation matrix applied on the
independent parameters σij (i, j = x, y) to obtain the modified deviatoric tensors s̄ij (i, j =
x, y). Lij (i, j = 1, 2, 3, 6) can be defined in terms of αi (i = 1, 2, · · · , 5) as follows:
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



. (2)

s̄ij (i, j = x, y) can be expressed as follows:




s̄xx

s̄yy

s̄xy



 =
1

9





2 (−α1 + α2 + 4α3 − α4)σxx + (α1 − 4α2 − 4α3 + 4α4)σyy

(4α1 − 4α2 − 4α3 + α4)σxx + 2 (−α1 + 4α2 + α3 − α4)σyy

9α5τxy



 . (3)

In the above equations, αi (i = 1, 2, · · · , 5) are the parameters which can determine the
anisotropy effects of the modified deviatoric stress tensors on the yield function. This idea
arises from one of the linear transformations mentioned in the Yld2000-2d criterion[4]. In this
case, the modified effective stress can be expressed as follows:

σ̄e =
√

3
√

s̄2
xx + s̄2

yy + s̄xxs̄yy + s̄2
xy. (4)

To modify the hydrostatic stress, the following form is used:

σ̄m =
α6σxx + α7σyy

3
, (5)
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where α6 and α7 are two parameters related to the anisotropy effects in the yield function.
Then, the modified Burzynski criterion for isotropic metals can be extended for anisotropic
asymmetric metals as follows[15]:

Φ̄ = α8σ̄
2
e + α9σ̄

2
m + α10σ̄m − 1 = 0. (6)

Generally, it can be stated that α8 can consider the weight of the modified effective deviatoric
stress, while α9 and α10 can consider the weight of the hydrostatic pressure in the modified
Burzynski criterion. Inserting Eq. (3) into Eq. (4) and substituting the obtained result and
Eq. (5) into Eq. (6) yield the modified Burzynski criterion in terms of the stress components as
follows:

Φ̄(σxx, σyy, τxy) =
α8

27
((2(−α1 + α2 + 4α3 − α4)σxx + (α1 − 4α2 − 4α3 + 4α4)σyy)2

+ ((4α1 − 4α2 − 4α3 + α4)σxx + 2(−α1 + 4α2 + α3 − α4)σyy)2

+ (2(−α1 + α2 + 4α3 − α4)σxx + (α1 − 4α2 − 4α3 + 4α4)σyy)

+ ((4α1 − 4α2 − 4α3 + α4)σxx + 2(−α1 + 4α2 + α3 − α4)σyy)

+ (9α5τxy)2) +
α9

9
(α6σxx + α7σyy)2 +

α10

3
(α6σxx + α7σyy) − 1

= 0. (7)

All of these ten material parameters αi (i = 1, 2, · · · , 10) can be determined by ten experimental
data which will be given and explained in the next section. When αi = 1 (i = 1, 2, · · · , 7), from
Eqs. (3) and (5), we can see that the modified Burzynski criterion in Eq. (6) is equivalent to
that of isotropic materials.

To present the new corresponding pressure independent plastic potential function, the fol-
lowing linear transformation is considered:


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where
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



, (9)

and the the modified deviatoric stress tensors ¯̄sij (i, j = x, y) can be determined by





¯̄sxx

¯̄syy

¯̄sxy



 =
1

9





2 (−β1 + β2 + 4β3 − β4)σxx + (β1 − 4β2 − 4β3 + 4β4)σyy

(4β1 − 4β2 − 4β3 + β4)σxx + 2 (−β1 + 4β2 + β3 − β4)σyy

9β5τxy



 . (10)

In the above equations, βi (i = 1, 2, · · · , 5) are five independent parameters, which are related
to the anisotropy effects in the plastic potential function. In this case, the modified effective
stress ¯̄σe can be expressed by

¯̄σe =
√

3
√

¯̄s2
xx + ¯̄s2

yy + ¯̄sxx ¯̄syy + ¯̄s2
xy. (11)
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Now, by eliminating the effects of the pressure independency in the yield function, a new
pressure independent plastic potential function is presented, i.e.,

¯̄Φ = β6 ¯̄σ2
e − 1 = 0. (12)

Inserting Eq. (10) into Eq. (11) and substituting the obtained result into Eq. (12) yield the
plastic potential function in terms of the stress components as follows:

¯̄Φ(σxx, σyy, τxy) =
β6

27
((2(−β1 + β2 + 4β3 − β4)σxx + (β1 − 4β2 − 4β3 + 4β4)σyy)2

+ ((4β1 − 4β2 − 4β3 + β4)σxx + 2(−β1 + 4β2 + β3 − β4)σyy)2

+ (2(−β1 + β2 + 4β3 − β4)σxx + (β1 − 4β2 − 4β3 + 4β4)σyy)

+ ((4β1 − 4β2 − 4β3 + β4)σxx + 2(−β1 + 4β2 + β3 − β4)σyy)

+ (9β5τxy)2) − 1

= 0. (13)

Moreover, the first differentiation of the proposed plastic potential function is useful for its
calibration. Therefore, from Eq. (13), we have






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




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
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
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





























∂ ¯̄Φ

∂σxx

= β6(2(−β1 + β2 + 4β3 − β4)((4β3 − β4)σxx + 2(−β3 + β4)σyy)

+ (4β1 − 4β2 − 4β3 + β4)(2(β1 − β2)σxx + (−β1 + 4β2)σyy)),

∂ ¯̄Φ

∂σyy

= β6((β1 − 4β2 − 4β3 + 4β4)((4β3 − β4)σxx + 2(−β3 + β4)σyy)

+ 2(−β1 + 4β2 + β3 − β4)(2(β1 − β2)σxx + (−β1 + 4β2)σyy)),

∂ ¯̄Φ

∂τxy

= 54β6β
2
5τxy.

(14)

3 Calibration of modified Burzynski criterion and its plastic potential func-

tion

The newly modified yield criterion can be calibrated by ten experimental data, i.e., the
tensile yield stresses (σT

θ ) at 0◦, 45◦, and 90◦, the compressive yield stresses (σC
θ ) at 0◦, 15◦,

30◦, 45◦, 75◦, and 90◦ from the rolling direction, and the biaxial tensile yield stress (σT
b ). The

related newly pressure, which is independent of the plastic potential function, can be calibrated

by six experimental data, i.e., the tensile R-values (RT
θ =

dεp

yy

dε
p

zz

) at 0◦, 15◦, 45◦, 75◦, and 90◦ from

the rolling direction, and the tensile biaxial R-value (RT
b =

dεp

yy

dε
p

xx

). The effect of the pressure
dependency in this criterion can be automatically satisfied because of the inherent existence of
the modified hydrostatic stress in the yield function in Eq. (6). The proposed criterion has the
anisotropy effects and the pressure dependency effects[22].
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3.1 Tensile, compressive, and biaxial yield stress tests

For the tensile yield stress tests in the θ-direction from the rolling direction, it is considered
that[22]



















σxx = σT
θ cos2 θ,

σyy = σT
θ sin2 θ,

τxy = σT
θ sin θ cos θ,

(15)

where θ is the angle from the rolling direction, and σT
θ is the tensile yield stress in the θ-

direction. By inserting these values in Eq. (7), a second-order equation in terms of σT
θ can be

obtained, i.e.,

Aθ(σ
T
θ )2 + Bθ(σ

T
θ ) − 1 = 0. (16)

Taking the positive root of this equation yields σT
θ as follows:

σT
θ =

−Bθ +
√

B2
θ + 4Aθ

2Aθ

, (17)
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







Aθ = α8

( 1

27
(2(−α1 + α2 + 4α3 − α4) cos2 θ

+ (α1 − 4α2 − 4α3 + 4α4) sin2 θ)2)

+ ((4α1 − 4α2 − 4α3 + α4) cos2 θ

+ 2(−α1 + 4α2 + α3 − α4) sin2 θ)2

+ (2(−α1 + α2 + 4α3 − α4) cos2 θ

+ (α1 − 4α2 − 4α3 + 4α4) sin2 θ)

· ((4α1 − 4α2 − 4α3 + α4) cos2 θ

+ 2(−α1 + 4α2 + α3 − α4) sin2 θ)

+ (9α5 sin θ cos θ)2
)

+
α9

9
(α6 cos2 θ + α7 sin2 θ)2,

Bθ =
α10

3
(α6 cos2 θ + α7 sin2 θ).

(18)

For the compressive yield stress tests in the θ-direction from the rolling direction, it is considered
that



















σxx = −σC
θ cos2 θ,

σyy = −σC
θ sin2 θ,

τxy = −σC
θ sin θ cos θ.

(19)

With the same process as the previous one, the following second-order equation can be obtained:

Aθ(σ
C
θ )2 − Bθ(σ

C
θ ) − 1 = 0, (20)
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where

σC
θ =

Bθ +
√

B2
θ + 4Aθ

2Aθ

. (21)

For the balanced biaxial yield stress test, it is considered that

σxx = σT
b , σyy = σT

b , τxy = 0. (22)

Substituting these values into Eq. (7) yields a second-order equation in terms of σT
b as follows:

Ab(σT
b )2 + Bb(σT

b ) − 1 = 0. (23)

From the positive root, we have

σT
b =

−Bb +
√

B2
b + 4Ab

2Ab
, (24)

where
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









Ab =
α8

27
((−α1 − 2α2 + 4α3 + 2α4)

2

+ (2α1 + 4α2 − 2α3 − α4)
2

+ (−α1 − 2α2 + 4α3 + 2α4)

· (2α1 + 4α2 − 2α3 − α4))

+
α9

9
(α6 + α7)

2,

Bb =
α10

3
(α6 + α7).

(25)

3.2 NAFR with tensile and biaxial R-value tests

Since the plastic potential function is pressure independent, the NAFR for the plane stress
problem is accepted. The NAFR takes the following form:















































dεp
xx = dλ

∂ ¯̄Φ

∂σxx

,

dεp
yy = dλ

∂ ¯̄Φ

∂σyy

,

dεp
xy = dλ

∂ ¯̄Φ

∂τxy

.

(26)

In this case, the thickness strain can be calculated by the incompressibility assumption as
follows:

dεp
zz = −dεp

xx − dεp
yy. (27)
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The tensile R-value in the θ-direction from the rolling direction is denoted by RT
θ , which can

be obtained by

RT
θ =

dεp
yy

dε
p
zz

= −
dεp

yy

dε
p
xx + dε

p
yy

= −
1

∂ ¯̄Φ
∂σxx

+ ∂ ¯̄Φ
∂σyy

( ∂ ¯̄Φ

∂σxx

sin2 θ +
∂ ¯̄Φ

∂σyy

cos2 θ −
∂ ¯̄Φ

∂τxy

sin θ cos θ
)

. (28)

The R-value in the balanced biaxial tension is defined by the ratio of the strain increment in
the transverse direction to that in the rolling direction, and it can be obtained by

RT
b =

dεp
yy

dε
p
xx

=

∂ ¯̄Φ
∂σyy

∂ ¯̄Φ
∂σxx

. (29)

4 Parameter evaluation and RMSEs of yield stresses and R-values in yield

and plastic functions

From Eqs. (17), (21), and (24), we can obtain αi (i = 1, 2, · · · , 5) with the the yield function.
From Eqs. (28) and (29), we can obtain βi (i = 1, 2, · · · , 6) with the plastic potential function.
In the current study, these sixteen material constants are calculated by the following sixteen
experimental data:







σT
0 , σT

45, σT
90, σT

b , σC
0 , σC

15, σC
45, σC

60, σC
75, σC

90,

RT
0 , RT

15, RT
45, RT

75, RT
90, RT

b .

These experimental data are utilized to set up two error functions, i.e., the yield function of the
modified Burzynski criterion (E1) and its plastic potential function (E2). They are expressed
as follows:

E1 =
( (σT

0 )pred

(σT
0 )exp

− 1
)2

+
( (σT

45)pred

(σT
45)exp

− 1
)2

+
( (σT

90)pred

(σT
90)exp

− 1
)2

+
( (σT

b )pred

(σT
b )exp

− 1
)2

+
( (σC

0 )pred

(σC
0 )exp

− 1
)2

+
((σC

15)pred

(σC
15)exp

− 1
)2

+
( (σC

30)pred

(σC
30)exp

− 1
)2

+
( (σC

45)pred

(σC
45)exp

− 1
)2

+
( (σC

75)pred

(σC
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= 0, (30)
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E2 =
( (RT

0 )pred

(RT
0 )exp

− 1
)2

+
((RT

15)pred

(RT
15)exp

− 1
)2

+
( (RT

45)pred

(RT
45)exp

− 1
)2

+
((RT

75)pred

(RT
75)exp

− 1
)2

+
( (RT

90)pred

(RT
90)exp

− 1
)2
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((RT

b )pred

(RT
b )exp

− 1
)2

. (31)

These error functions are minimized by the downhill simplex method to identify the material
parameters[14,22]. The RMSEs of the tensile, biaxial, and compressive yield stresses with the
tensile and biaxial R-values can be obtained by

ET
σ =

1

7

(( (σT
0 )exp − (σT

0 )pred

(σT
0 )exp

)2

+
((σT

15)exp − (σT
15)pred

(σT
15)exp

)2

+
( (σT

30)exp − (σT
30)pred

(σT
30)exp

)2

+
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45)exp − (σT
45)pred

(σT
45)exp

)2

+
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60)exp − (σT
60)pred

(σT
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)2

+
( (σT

75)exp − (σT
75)pred

(σT
75)exp

)2

+
( (σT

90)exp − (σT
90)pred

(σT
90)exp

)2) 1

2

× 100, (32)

EbT
σ =

∣

∣(σT
b )exp − (σT

b )pred

∣

∣

(σT
b )exp

× 100, (33)

EC
σ =

1
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EbT
R =

∣

∣(RT
b )exp − (RT

b )pred

∣

∣

(RT
b )exp

× 100. (36)

The yield stresses and the R-values computed from experiments for the anisotropic materials
Al 2008-T4 and Al 2090-T3 are presented in Tables 1–3[22].

Table 1 Yield stresses of Al 2008-T4 and Al 2090-T3 in tension

Material σT
0

σT
15

σT
30

σT
45

σT
60

σT
75

σT
90

σT

b

Al 2008-T4 211.67 211.33 208.5 200.03 197.30 194.30 191.56 185.00

Al 2090-T3 279.62 269.72 255.00 226.77 227.50 247.20 254.45 289.40

Table 2 Yield stresses of Al 2008-T4 and Al 2090-T3 in compression

Material σC
0

σC
15

σC
30

σC
45

σC
60

σC
75

σC
90

Al 2008-T4 213.79 219.15 227.55 230.25 222.75 220.65 214.64

Al 2090-T3 248.02 260.75 255.00 237.75 245.75 263.75 266.48

Table 3 R-values of Al 2008-T4 and Al 2090-T3 in tension

Material RT
0

RT
15

RT
30

RT
45

RT
60

RT
75

RT
90

RT

b

Al 2008-T4 0.87 0.814 0.634 0.500 0.508 0.506 0.53 1.000

Al 2090-T3 0.210 0.330 0.690 1.580 1.050 0.550 0.690 0.670

5 Results and discussion

In this part, the yield surfaces are constructed by the modified Yld2000-2d criterion and
the presented modified Burzynski criterion. The results are shown in Figs. 1–6 and compared
with the experimental results for Al 2008-T4 (a BCC material) and Al 2090-T3 (an FCC
material). The mechanical properties of these materials in different directions from the rolling
direction are available in Tables 1–3. In Tables 4 and 5, the parameters αi (i = 1, 2, · · · , 10)
and βi (i = 1, 2, · · · , 6) are computed for the yield and plastic potential functions expressed in
Eqs. (7) and (13), respectively, by minimizing the error functions E1 and E2 in Eqs. (30) and
(31) with the downhill simplex method.

Table 4 αi (i = 1, 2, · · · , 10) in modified Burzynski criterion of Al 2008-T4 and Al 2090-T3

Material α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

Al 2008-T4 0.004 8 −0.185 0 0.182 1 0.002 5 0.202 5 2.718 4 10.065 3 0.000 5 0.000 0 0.000 2

Al 2090-T3 0.014 7 0.000 5 −0.003 8 −0.012 5 0.014 7 −0.007 6 0.012 1 0.091 5 0.756 8 0.076 7

Table 5 βi (i = 1, 2, · · · , 6) in modified Burzynski criterion of Al 2008-T4 and Al 2090-T3

Material β1 β2 β3 β4 β5 β6

Al 2008-T4 1.073 9 1.011 8 0.959 4 1.084 7 0.830 7 1.127 1

Al 2090-T3 0.011 0 0.008 2 0.009 9 0.011 2 0.010 0 0.010 7
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The obtained yield and plastic potential surfaces for Al 2008-T4 are shown in Fig. 1. From
the figure, we can see that the results of the modified Burzynski criterion are in the exterior
of the results of the modified Yld2000-2d criterion in all quadrants. The difference between
these criteria is more obvious in the third quadrant. However, both these two criteria can
predict the experimental results properly. Therefore, it can be concluded that the presented
modified Burzynski criterion can successfully predict the yield surface in the σxxσyy-plane for
Al 2008-T4.

Fig. 1 Yield and plastic potential surfaces for Al 2008-T4

Figure 2 shows the modified effective stress σ̄e versus the modified hydrostatic pressure σ̄m

for Al 2008-T4 according to Eq. (6) and the parameters α8, α9, and α10 in Table 4. It is
observed that a modified Burzynski Torre paraboloid is obtained.

Fig. 2 σ̄eσ̄m-plane for Al 2008-T4

The obtained yield and plastic potential surfaces for Al 2090-T3 are shown in Fig. 3. From
the figure, we can see that the results of the presented modified Burzynski criterion are in the
exterior of those of the modified Yld2000-2d criterion in the first and third quadrants while are
in the interior of those of the modified Yld2000-2d criterion in the second and fourth quadrants.
However, both the two criteria can predict the experimental results properly. Therefore, it can
be deduced that the presented modified Burzynski criterion is appropriate to predict the yield
surface in the σxxσyy-plane for Al 2090-T3.

Figure 4 displays the modified effective stress σ̄e versus the modified hydrostatic pressure
σ̄m for Al 2090-T3 according to Eq. (6) and the parameters α8, α9 and α10 in Table 4. The
results show that a modified Burzynski ellipse is obtained and the effective deviatoric stress
and the hydrostatic pressure are independent.
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Fig. 3 Yield and plastic potential surfaces for Al 2090-T3

As mentioned previously, the presented modified Burzynski Torre paraboloid and the mod-
ified Burzynski ellipse are applicable to Al 2008-T4 and Al 2090-T3 for the prediction of the
experimental results in the σxxσyy-plane.

Fig. 4 σ̄eσ̄m-plane for Al 2090-T3

Figure 5 shows the tensile and compressive yield stresses of Al 2008-T4 versus the angle
from the rolling direction. From Fig. 5(a), we can see that the results of the presented modified
Burzynski criterion underestimate in the range of 0◦ 6 θ 6 15◦ and overestimate the experi-
mental data in the range of 15◦ 6 θ 6 90◦. In general, the results of the modified Yld2000-2d
criterion predict the tensile yield stresses more precisely in comparison with the experimental
data. From Fig. 5(b), we can see that except θ = 30◦ and θ = 45◦, the presented modified
Burzynski criterion overestimates the experimental data. However, the obtained results are
much more precise than those of the modified Yld2000-2d criterion.

Figure 6 illustrates the tensile and compressive yield stresses of Al 2009-T3 versus the
angle from the rolling direction. From the figure, we can see that the tensile yield stresses
obtained by the presented modified Burzynski criterion overestimate the experimental results
at θ = 45◦ and θ = 60◦ while underestimate the experimental results at other θ. Moreover, the
compressive yield stresses obtained by the presented modified Burzynski criterion underestimate
the experimental results at θ = 15◦, 30◦, 75◦ while overestimate the experimental results at other
θ.

From these observations, it can be concluded that the proposed modified Burzynski criterion
is very suitable for predicting experimental results, especially for the compressive yield stresses
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Fig. 5 Comparison of yield stress directionality for Al 2008-T4

of Al 2008-T4 and Al 2090-T3.
In the current research, the number of the required data to calibrate the yield function for

the compressive yield stresses increases from two (σC
0 , σC

90) to seven (σC
0 , σC

15, σ
C
45, σ

C
60, σ

C
75, σ

C
90).

It is observed that the compressive yield stresses can predict the experimental results more ac-
curately than the modified Yld2000-2d criterion. To calibrate the presented modified Burzynski
criterion for the tensile yield stresses, we select three experimental data (σT

0 , σT
45, σ

T
90), where

σT
0 is the same as that in the modified Yld2000-2d criterion. However, it is observed that the

experimental results are nearer to the modified Yld2000-2d criterion. For the biaxial yield stress
(σT

b ), one point is selected for both the criteria, and the results are nearly the same (see Figs. 1
and 3). The relative errors for these cases are computed at the end of this section.

Fig. 6 Comparison of yield stress directionality for Al 2090-T3

In Fig. 7, the R-values for Al 2008-T4 are plotted versus various angles from the rolling
direction. The results show that the presented modified Burzynski criterion underestimates the
experimental results in the range of 0◦ 6 θ 6 45◦ while overestimates the experimental results
in the range of 45◦ < θ 6 90◦. In Fig. 8, for Al 2090-T3, the presented modified Burzynski
criterion predicts all experimental results properly except at θ = 45◦. Therefore, the presented
modified Burzynski Torre paraboloid and ellipse are applicable for Al 2008-T4 and Al 2090-T3.

To obtain the presented plastic potential function, we select seven experimental data as
follows: RT

0 , RT
15, R

T
45, R

T
60, R

T
75, R

T
90. The number of the selected parameters is larger than that

of the modified Yld2000-2d criterion, where three experimental data, i.e., RT
0 , RT

45, R
T
90, are
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Fig. 7 Comparison of R-value directionality
for Al 2008-T4

Fig. 8 Comparison of R-value directionality for
Al 2090-T4

needed. The modified Yld2000-2d criterion can predict the experimental results more precisely
for Al 2008-T4. However, for Al 2090-T3, the presented modified Burzynski criterion is much
more accurate than the modified Yld2000-2d criterion, compared with the experimental results.
To calibrate these criteria to predict RT

b , one point is selected for both the presented modified
Burzynski criterion and the modified Yld2000-2d criterion. The obtained results show that
both these criteria can be used to predict RT

b .
Tables 6 and 7 show the relative errors for Al 2008-T4 and Al 2090-T3, respectively. The

parameters ET
σ , EC

σ , EbT
σ , ET

R , and EbT
R are the relative errors for computing the tensile yield

stress, the compressive yield stress, the tensile biaxial yield stress, the R-value, and the tensile
biaxial R-value, respectively. For both materials, EC

σ obtained by the modified Burzynski
criterion is less than that of the modified Yld2000-2d criterion. EbT

σ and EbT
R are close to zero.

For Al 2090-T3, ET
R obtained by the modified Burzynski criterion is less than that obtained by

the modified Yld2000-2d criterion.

Table 6 Errors for Al 2008-T4 compared with experimental results (in percentage)

Criterion ET
σ EC

σ EbT
σ ET

R
EbT

R

Modified Yld2000-2d 0.270 4 1.591 5 0 3.985 0.018 7

Modified Burzynski 0.796 2 0.763 4 0.002 1 4.52 0.046 4

Table 7 Errors for Al 2090-T3 compared with experimental results (in percentage)

Criterion ET
σ EC

σ EbT
σ ET

R
EbT

R

Modified Yld2000-2d 0.735 0 2.465 1 0 12.889 0.001 7

Modified Burzynski 1.025 8 1.105 0 0 8.415 7 0.034 5

6 Conclusions

The Burzynski criterion for isotropic materials is extended for anisotropic asymmetric met-
als, considering the NAFR in plasticity. The presented modified yield function and the potential
function are pressure dependent and pressure independent. The presented yield function can
be calibrated with ten experimental data, i.e., the tensile yield stresses (σT

θ ) at 0◦, 45◦, and 90◦,
the compressive yield stresses (σC

θ ) at 0◦, 15◦, 30◦, 45◦, 75◦, and 90◦ from the rolling direction,
and the biaxial tensile yield stress (σT

b ). The presented modified plastic potential function
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can be calibrated by six experimental data, i.e., the tensile R-values (RT
θ =

dεp

yy

dε
p

zz

) at 0◦, 15◦,

45◦, 75◦, and 90◦ from the rolling direction and the tensile biaxial R-value (RT
b =

dεp

yy

dε
p

xx

). The
downhill simplex method is used to solve ten and six high nonlinear equations for the yield and
plastic potential functions, respectively. The presented modified Burzynski criterion can also
be equipped for three-dimensional problems because of the pressure independency of its plastic
potential function. The modified Yld2000-2d criterion allows the associated flow rule and its
plastic potential to be pressure dependent. It is generally demonstrated that the presented
modified Burzynski criterion is more appropriate than the modified Yld2000-2d criterion in
predicting the experimental results.
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