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Abstract. Multi-criteria optimization of processes parameters could be used to
simultaneously achieve several conicting goals such as increasing product quality and
reducing production time. In this paper, Grey Relational Analysis (GRA) and Taguchi
method have been employed to optimize Electrical Discharge Machining (EDM) process
parameters for AISI 2312 (40CrMnMoS86) hot worked steel alloy. The experimental data
are gathered based on Taguchi L36 design matrix. The tests are conducted under varying
peak current (I), voltage (V ), pulse on time (Ton), pulse o� time (To�) and duty factor
(�). The process output characteristics include Surface Roughness (SR), Tool Wear Rate
(TWR) and Material Removal Rate (MRR). The objective is to �nd a combination of
process parameters to minimize TWR and SR and maximize MRR. The three performance
characteristics are combined into a single objective using grey relational analysis. The GRA
was followed by the signal to noise ratio to specify the optimal levels of process parameters.
The signi�cance of the process parameters on the overall quality characteristics of the EDM
process was also evaluated quantitatively using the Analysis of Variance (ANOVA) method.
Optimal results were veri�ed through additional experiments.

© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Electrical Discharge Machining (EDM) is a non-
conventional, thermo-electric process in which the ma-
terial from work piece is eroded by a series of discharge
sparks between the work and tool electrode immersed
in a liquid dielectric medium. These electrical sparks
melt and vaporize minute amounts of the workpiece,
which are then ushed away by the dielectric liquid.

These electrical discharges melt and vaporize
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minute amounts of work material, which are then
ejected and ushed away by the dielectric. Due to
the good electrical and thermal properties of tool
electrode, a very low wear in tool can be achieved
during these electrical discharges. EDM can provide
an e�ective solution for machining hard conductive
materials and reproducing complex shapes. EDM
involves the phenomena such as: spark initiation,
dielectric breakdown, and thermo-mechanical erosion
of metals [1]. A schematic illustration of EDM process
is presented in Figure 1.

EDM has several distinctive advantages over other
machining processes. It does not make direct con-
tact between the electrode and the work piece and
hence such problems as mechanical stresses, chatter
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Figure 1. Schematic illustration of electrical discharge
machining [1].

and vibration are eliminated [2,3]. Materials of any
hardness can be cut as long as the material can conduct
electricity. Complex shapes with high dimensional
accuracy and surface �nish can be produced. However,
EDM is a time consuming and costly process. The
proper selection of its process parameters is essential
to increase production rate and to improve product
quality. Like any other machining processes, the
performance of EDM is signi�cantly a�ected by its
process parameter settings. Important process pa-
rameters in EDM are peak current (I), voltage (V ),
pulse on time (Ton), pulse o� time (To�) and duty
factor (�) [4-6]. These parameters, in turn, determine
the process output characteristics among which Tool
Wear Rate (TWR), Material Removal Rate (MRR)
and Surface Roughness (SR) are the most important
ones [2]. It is essential, therefore, to �nd an accurate
relation between process tuning parameters and its
output responses. As a result, a comprehensive study
of the e�ects of EDM parameters on the machining
characteristics such as SR, TWR and MRR is of great
signi�cance.

It is well known that modeling the relationships
between the input and output variables for non-linear,
multi-variable systems are very di�cult via traditional
modeling methods [7]. In recent years, techniques
such as statistical analysis, Design Of Experiments
(DOE) and Arti�cial Neural Networks (ANN) have
increasingly been employed to establish the relations
between various process parameters and the process
outputs in variety of manufacturing industries [7,8].
Tzeng et al. [9] investigated the optimization of CNC
turning operation parameters for SKD11 (JIS) using
the Grey relational analysis and Taguchi method.
Sivasankar et al. [10] performed the grey relational
analysis and regression modeling for prediction on
tool materials performance to minimize the roughness
and tool wear rate and taper angel during EDM hot
pressed ZrB2. Mohana et al. [11] and Krishna [12]
developed ANN models based on experimental data for
EDM. The proposed ANN models were then combined
with Genetic Algorithm (GA) to minimize surface

roughness. Ling Wu et al. [13] added aluminum and
surfactant in the dielectric in order to improve the
surface �nish of SKD steel parts. It is observed
that the best distribution e�ect is found when the
concentrations of the Al powder and surfactant in the
dielectric are 0.1 and 0.25 g/l, respectively. Yang et
al. [14] proposed an optimization methodology base
on Simulated Annealing (SA) algorithm and ANN to
maximize the MRR as well as minimize the SR on steel
work pieces. Kansal et al. [15] studied the e�ect of
silicon powder mixing into the dielectric uid of EDM
for machining AISI D2 die steel. The con�rmation
runs showed that the setting of peak current at a
high level, pulse-on time at a medium level, pulse-o�
time at a low level, powder concentration at a high
level, and gain at a low level would result in optimum
MRR.

Kiyak and Cak�r [16] have studied the e�ects
of EDM parameter levels on surface roughness for
machining of 40CrMnNiMo864 tool steel (AISI P20)
which is widely used in the production of plastic mold
and die. It is observed that surface roughness increases
with increasing pulse current and pulse time. Low cur-
rent and high pulse time would produce good surface
�nish quality. The selection of this set of machining
parameters is not useful, however, because machining
process generally becomes very slow. Material removal
rate will be low and thus machining cost increases. This
combination should be used in �nish machining step of
EDM process [16].

As mentioned above, EDM technique is specially
useful when the workpiece is hard, and requires high
surface �nish. The distinct advantages of the EDM
method become most evident when it is employed to
machine such hard-to-machine materials as AISI 2312
hot worked steel. In addition, mechanical and physical
properties of hot worked steel, such as toughness and
high wear resistance, has made it an important material
for engineering components particularly in making
moulds and dies. To the best of our knowledge, there
is no published work to statistically study the e�ects
of EDM parameters on the most important output
characteristics, namely, MRR, TWR and SR when
machining AISI2312 hot worked steel parts. Therefore,
the main objectives of the present study are:

1. To establish the relationship between these param-
eters and the EDM input parameters;

2. To derive the optimal parameter levels for max-
imum MRR and minimum SR and TWR using
statistical analysis of the experimental data.

Finally, the article concludes with the veri�cation of
the proposed approach and a summary of the major
�ndings.
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Figure 2. Die-sinking EDM machine used for
experiments.

Table 1. Process parameters and their design levels.

No. Symbols Factors Units Level
1 2 3

1 A Pulse o� time (To�) �s 10 75 |
2 B Pulse on time (Ton) �s 25 100 200
3 C Peak current (I) A 2.5 5 7.5
4 D Duty factor (�) S 0.4 1 1.6
5 E Voltage (V ) V 50 55 60

2. Experimental equipment and Design Of
Experiment (DOE)

In this study, an Azerakhsh-304H die-sinking machine
has been used to perform the experiments (Figure 2).
The pure kerosene was used as the dielectric uid in all
experiments.

To gather the data needed for process analysis,
the Taguchi L36 matrix has been selected. The
main purpose of fractional Design Of Experiments
(DOE) techniques, including Taguchi method, is to
obtain as much information as possible from a limited
number of experiments. In many DOE schemes, it
is necessary that all process variables have the same
number of levels. Taguchi is one of the few that
allows for uneven levels. Table 1 lists the ranges
of process parameters and their corresponding levels.
As shown, pulse o� time is considered at two levels,
while all other process variables have three levels.
In DOE, the number of required experiments (and
hence the experiment cost) increases as the number
of parameters and/or their corresponding levels in-
crease. That is why it is recommended that the
parameters with less likely pronounced e�ects on the
process outputs be evaluated at fewer levels. In

addition, the limitations of test equipment may also
dictate a certain number of levels for some of the
process parameters. The die-sinking EDM machine
used for the experiments had only two settings for
pulse of time �To� (10 and 75 �s). Moreover,
reviews of the related literature and the results of
our initial tests have revealed that To� is not as
important as other process parameters and hence it
may be evaluated at fewer levels without loss of
accuracy [13,14].

The electrodes were made of 16 mm cylindrical
shape copper (99.8% purity and 8.98 g/cm3 density).
The test specimens were made of AISI 2312 hot worked
steel with dimensions of 60 mm � 20 mm � 10 mm.
A total of 4 tests were performed on each specimen,
two tests on each side. Therefore, nine samples have
been used for the 36 required tests. Several other
specimens were also used in order to determine the
feasible ranges of process parameters and to verify
the repeatability of the experiments. The machining
time for each test was 45 minutes. Furthermore,
the experiments have been done in random order to
increase accuracy.

The 36 sets of data needed for modeling are
obtained using L36 Taguchi matrix (Table 2). The
most prominent performance characteristics in EDM
are MRR, SR and TWR which can be used to evaluate
the machining quality [17].

Material Removal Rate (MRR) is a measure of
machining speed and is expressed as the Work piece
Removal Weight (WRW) in a predetermined machining
time in minute (T ) that is:

MRR (gr/min) =
WRW
T

: (1)

In EDM, both the tool (electrode) and the work piece
erode due to repeated electrical discharges between
the two. The electrode (tool) wear happens on all
the surfaces in which electric discharges take place,
including the bottom surface as well as the sides (if
the machined cavity is deep). Since in EDM the shape
of the tool is projected onto the workpiece, tool wear
may cause dimensional and geometrical inaccuracies.
This problem would be more severe when machining
sharp edges or when performing the �nal (�nishing)
EDM passes on the workpiece. That is why tool wear
rate should be kept as low as possible. The tool wear
in EDM is usually measured by the Tool Wear Rate
(TWR) which is the ratio of material removed from
the electrode (TWW) to the material removed from
the work piece (WRW):

TWR (%) =
TWW
WRW

� 100: (2)

After machining, the surface �nish of each sample was
measured with an automatic digital Surtronic (3+)
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Table 2. The L36 experimental matrix for 5 input
variables.

No. To�

(�s)
Ton

(�s)
I

(A)
�

(sec)
V

(V)
1 1 1 1 1 1
2 1 2 2 2 2
3 1 3 3 3 3
4 1 1 1 1 1
5 1 2 2 2 2
6 1 3 3 3 3
7 1 1 1 2 3
8 1 2 2 3 1
9 1 3 3 1 2
10 1 1 1 3 2
11 1 2 2 1 3
12 1 3 3 2 1
13 1 1 2 3 1
14 1 2 3 1 2
15 1 3 1 2 3
16 1 1 2 3 2
17 1 2 3 1 3
18 1 3 1 2 1
19 2 1 2 1 3
20 2 2 3 2 1
21 2 3 1 3 2
22 2 1 2 2 3
23 2 2 3 3 1
24 2 3 1 1 2
25 2 1 3 2 1
26 2 2 1 3 2
27 2 3 2 1 3
28 2 1 3 2 2
29 2 2 1 3 3
30 2 3 2 1 1
31 2 1 3 3 3
32 2 2 1 1 1
33 2 3 2 2 2
34 2 1 3 1 2
35 2 2 1 2 3
36 2 3 2 3 1

SR tester. Also, to measure the MRR and TWR an
A&D electronic balance with 0.01gr accuracy was used
(Figure 3).

3. Grey relational analysis and signal to noise
ratio

3.1. Grey relational analysis
As mentioned earlier, MRR and SR are the most
important performance characteristics in EDM. How-
ever, MRR has contradictory e�ect on SR and vice
versa. This calls for multi-criteria optimization of the

Figure 3. Digital surface roughness tester and electronic
balance.

two conicting outputs. In this section, the use of
Taguchi technique with the Grey Relational Analysis
(GRA) optimization methodology for multi-criteria
optimization is discussed.

The grey theory, �rst proposed by Deng [16],
avoids the inherent defects of conventional statistical
methods and only requires a limited set of data to esti-
mate the behavior of an unknown system. During the
past two decades, the grey theory has been successfully
applied in various applications including engineering,
social sciences, economy, etc.

The �rst step in Grey Relational Analysis (GRA)
is normalizing the raw data. Suppose in a system there
are n series of data (number of run tests) and in each
series m responses (number of dependent variables)
measured. Test results are then determined by yi;j
(i = 1; 2; � � � ; n and j = 1; 2; � � � ;m) [18,19].

To perform the GRA on such systems, the follow-
ing steps are performed [16]:

a) A linear normalization of the experimental results
for the responses, namely MRR, TWR, and SR is
performed in the range between 0 and 1. In this
step, if the higher value of a response is desired,
the equation used for normalizing, which is called
\the-higher-the-better" criterion, is:

Zi;j

=
(yi;j �min(yi;j ; i = 1; 2 � � � ; n))

(max(yi;j ; i=1; 2 � � �; n)�min(yi;j ;i=1; 2 � � �; n))
:
(3)

Thus, Material Removal Rate (MRR) is normalized
by this equation. When the lower value of a re-
sponse is preferred, \the-lower-the-better" criterion
is used for normalizing, given by:

Zi;j

=
(max(yi;j ; i = 1; 2 � � � ; n)� yi;j)

(max(yi;j ; i=1; 2 � � �; n)�min(yi;j ;i=1; 2 � � �; n))
:
(4)

By the same token, the above relationship is used
to normalize observed Surface Roughness (SR) and
Tool Wear Rate (TWR).
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b) The Grey Relational Coe�cient (GRC) for the
normalized values through the following equation
is calculated:

(Zo; Zi;j) =
�min + ��max

�oj(k) + ��max
; (5)

where � is the distinguishing coe�cient and 0 �
� � 1. The weighting of parameters depends on the
relative importance of each response [19]. When
weighting coe�cients are equal, the value of � is
set to 0.5. In Table 3, GRG is the weighted for the

Table 3. Results for GRCs, GRGs and S/N ratios.

No. GRC of
MRR

GRC of
TWR

GRC of
SR

GRG S/N

1 0.334 0.676 0.882 0.631 -4.004
2 0.404 0.906 0.574 0.628 -4.042
3 0.566 0.983 0.338 0.629 -4.027
4 0.333 0.725 1.000 0.686 -3.273
5 0.376 0.881 0.586 0.614 -4.231
6 0.576 0.990 0.356 0.640 -3.871
7 0.336 0.783 0.897 0.672 -3.448
8 0.502 0.903 0.502 0.636 -3.936
9 0.398 0.979 0.361 0.580 -4.746
10 0.338 0.819 0.814 0.657 -3.645
11 0.362 0.865 0.544 0.590 -4.576
12 1.000 0.981 0.333 0.771 -2.255
13 0.366 0.396 0.766 0.509 -5.857
14 0.389 0.762 0.517 0.556 -5.099
15 0.346 0.961 0.636 0.678 -3.771
16 0.355 0.396 0.789 0.513 -5.788
17 0.381 0.783 0.436 0.533 -5.467
18 0.352 0.972 0.669 0.664 -3.556
19 0.338 0.402 0.755 0.498 -6.045
20 0.403 0.684 0.580 0.555 -5.107
21 0.345 0.960 0.614 0.639 -3.882
22 0.353 0.375 0.766 0.498 -6.048
23 0.453 0.752 0.488 0.565 -4.961
24 0.334 0.903 0.644 0.627 -4.051
25 0.374 0.336 0.695 0.695 -6.588
26 0.343 0.955 0.669 0.656 -3.667
27 0.367 0.984 0.399 0.583 -4.681
28 0.369 0.345 0.755 0.490 -6.193
29 0.341 0.947 0.789 0.692 -3.190
30 0.371 0.986 0.385 0.581 -4.721
31 0.362 0.359 0.755 0.492 -6.156
32 0.336 0.9186 0.629 0.628 -4.045
33 0.447 0.979 0.484 0.636 -3.924
34 0.345 0.333 0.755 0.478 -6.414
35 0.340 0.945 0.695 0.660 -3.607
36 0.483 1.000 0.443 0.642 -3.848

three process outputs. Zo(k) is called the reference
sequence and it could take either the largest or
smallest values given by Eqs. (3) and (4). When
the higher value of a response is preferred, it is
the largest value among all Zi;j , and when the
lower value of a response is desired, Zo(k) takes
the smallest value of all Zi;j : �oj is the absolute
value of the di�erence between Zo(k) and Zi;j(k);
�oj = jZo(k) � Zi;j j. �min and �max are the
smallest and the largest value of di�erence between
Zo(k) and Zi;j(k) which are given by:

�min = min jZo(k)� Zi;j j;
�max = max jZo(k)� Zi;j j: (6)

c) Grey Relational Grade (GRG) for any response is
computed by:

Grade(Zo; Zi;j) =
nX
k=1

�k(Zo; Zi;j); (7)

where:
nX
k=1

�k(Zo; Zi;j) = 1;

in which �k is the weighting factor of each re-
sponse [16].

3.2. Signal to Noise (S/N) ratio
Taguchi method uses design of experiments to study
the entire parameters space with small number of
experiments. It also makes use of signal-to-noise (S/N)
ratios as performance measures to optimize the output
quality characteristic against such variations in noise
factors. In this method, a loss function is de�ned to
calculate the deviation between the experimental value
and the desired value. This loss function is further
transformed into S/N ratio. Based on the process
under consideration, the S/N ratio calculation may be
decided as \the Lower the Better, (LB)" or \the Higher
the Better, (HB)" as given in the following [7]:

LB: S/N(�) = �10 log

 
1
n

nX
i=1

z2
i

!
; (8)

HB: S/N(�) = �10 log

 
1
n

nX
i=1

1
z2
i

!
; (9)

where n is the number of iteration in a trial, in this
case, n = 1 and zj is the jth measured value in a run.
The experimental results of GRGs for 36 tests and their
corresponding S/N ratios are listed in Table 3.

However, the S/N analysis could determine the
best set of parameters levels so as only a single objec-
tive is optimized. Here, the problem under considera-
tion has three distinctive (some conicting) objectives
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Table 4. Response (mean) of S/Ns.

Symbol Level 1 Level 2 Level 3

A -4.199 -4.840 |

B -5.288 -4.327 -3.944

C -3.678 -4.808 -5.074

D -4.760 -4.397 -4.402

E -4.346 -4.640 -4.574

and, in many practical cases, it is desirable to make
a balance among these objectives. To overcome this
shortcoming of S/N, we have employed GRA to turn
all three objectives into a single criterion called GRGs.
Although in our example problem the weighting factors
are considered to be equal, the weights can be adjusted
based on the relative importance of the objectives. The
S/N analysis is then applied to the GRGs in order
to determine optimal levels of parameters settings for
multi criteria optimization. In the next step, since the
higher values of the GRGs are preferred, the S/N ratio
values are calculated for observed GRGs by taking into
consideration Eq. (9).

4. Results and discussion

4.1. Selecting optimal levels
To determine the e�ect of any parameter on the output
response, it is enough to compute the average of S/N for
each test containing this parameter in desired level [20].
For example, mean e�ect of To� in level 1 is obtained
from averaging test runs number 12 up to 18. In this
way, the mean e�ects of parameters are computed and
listed in Table 4. Since larger value of mean S/N is
always favorable, with respect to the data in Table 4,
optimal set of parameters are: To� at level 1, Ton at
level 3, I at level 1, � at level 2 and V at level 1, i.e.,
(A1 B3 C1 D2 E1).

4.2. Performing ANOVA
Using Minitab software, the Analysis of Variance
(ANOVA) is performed to determine how well a model
�ts the experimental data and, therefore, represents the
actual process under study [19]. The results of ANOVA
for S/Ns values with A, B, C, D, and E are shown in Ta-
ble 5. According to ANOVA procedure, large F-value
indicates that the variation of the process parameter
makes a big change on the performance characteristics.
In this study, a con�dence level of 95% is selected
to evaluate parameters signi�cances. Therefore, F-
values of machining parameters are compared with
the appropriate values from con�dence table, F�;v1;v2 ,
where � is risk, v1 and v2 are degrees of freedom
associated with numerator and denominator illustrated
in Table 5 [19]. Within 95% con�dence limit, ANOVA
results indicate that peak current, pulse on time, and

Table 5. Result of ANOVA for S/N.

EDM
parameters

Degree of
freedom
(Dof)

Sum of
square
(SSj)

Mean
square

F-value

A 1 3.699 3.699 9.65�

B 2 11.507 5.753 15.01�

C 2 13.177 6.588 17.19�

D 2 1.038 0.519 1.35
E 2 0.572 0.286 0.75

Error 26 9.963 0.383 |
Total 35 39.957 | |

�: Signi�cant parameter

Figure 4. The e�ect of machining parameters on signal
to noise (S/N).

pulse o� time are, respectively, the most important
input parameters.

The optimum level of these signi�cant parameters
has been found by examining the level averages of the
factors. For each process output response, the S/N ra-
tio determined from the experimentally observed values
has been statistically evaluated by ANOVA technique
(Figure 4). Generally, a greater S/N corresponds to
a better performance and hence the optimal level of
each machining parameter is the level with the greatest
S/N value [20]. As shown, Figure 4 demonstrates
that the optimal combination of parameters settings for
maximizing S/N value is 1-3-1-2-1 which corresponds
to To� = 10 �s, Ton = 200 �s, I = 2:5 A, � = 1 s and
V = 50 V.

ANOVA results may provide the percent contribu-
tions of each parameter [21]. The percent contributions
of the EDM parameters on the three weighted process
parameters are shown in Figure 5. According to this
�gure, peak current is the major factor a�ecting the
process outputs with 38% contribution. It is followed
by pulse on time and pulse o� time with 31% and 15%,
respectively. Figure 5 reveals that duty factor and
voltage have no signi�cant e�ects on process output
responses. The 9% error shown may be related to the
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Figure 5. Percent contributions of machining parameters
on the three weighted process outputs.

uncontrolled parameters and process noises, given as:

Pi(%) =
SSi � (DOFi �MSerror)

Total sum of square
: (10)

In the above formula, according to the ANOVA results
(Table 5), Pi is contribution percentage, SSi is the sum
of square, DOFi is the degree of freedom of ith factor,
and MSerror is the mean sum of square of error [21].

4.3. Con�rmation experiments
The �nal step is to predict and verify the improvement
of the quality characteristics using the optimal level
of the EDM process parameters. Since the optimum
values of parameter levels were not included in the main
experiments, an indirect method has been employed to
predict both single and multiple characteristics. The
predicted optimum value of each response (�opt) at
optimum set (A1 B3 C1 D2 E1) is determined by [20]:

�opt = �m +
�X
i=1

(�i � �m); (11)

where �m is total average of any response, �i is pre-
dicted mean response at optimum level i of parameter
j, and � is the number of main design parameters that
a�ect the performance measure.

In Table 6, the predicted and actual (experimen-
tal) S/N values for MRR, SR and TWR based on
the optimal parameter levels are listed. Moreover, in
the �rst column of this table, the S/N value for the
best set of parameters in L36 Taguchi matrix is given
(experiment No. 12). The predicted optimal settings

results in the S/N ratios of -2.044 which shows an
improvement of more than 9% over the best settings
in L36 Taguchi matrix. For comparison purposes, we
have conducted a veri�cation test using these optimal
settings whose S/N ration is reported in the third
column (-1.84). The error between the predicted and
actual optimal S/N ratios is around 9.5%. Given
the nature of EDM process and its many variables,
the result is quite acceptable and proves that the
experimental result is correlated with the estimated
value.

5. Conclusion

The quality of �nal product in EDM is signi�cantly
a�ected by the choice of process parameters levels. On
the other hand, the interactions of these parameters
call for simultaneous selection of their optimal values.
In this study, the e�ects of EDM process parameters
settings on the three important output characteris-
tics for AISI 2312 hot worked steel alloy have been
investigated. Also, based on GRG values, the multi
criteria process parameters optimization is successfully
carried out. First, using Taguchi technique, a set of
experiments has been performed to collect required
data. Then, Grey Relational Grades (GRG) has
been employed to combine three important process
characteristics, including material removal rate, surface
roughness and tool wear rate, into a single multi-
criteria measure of performance. The results of analysis
of variance, performed on the S/N of GRG values,
indicate that peak current, pulse on time and pulse o�
time are, respectively, the most e�ective parameters
a�ecting EDM characteristics. Next, mean of S/N
values have been used to determine the optimal levels
of process parameters. It is shown that by setting
To� at level 1, Ton at level 3, I at level 1, � at
level 2 and V at level 1, the combined measure of
performance would be optimized. Using the optimal
settings, tool wear rate and surface roughness have
been signi�cantly improved while material removal rate
has been reduced. However, it is noted that the rela-
tive importance of the three measures of performance
could be accommodated by changing the corresponding
weights in GRG analysis. The approach proposed
here, with minor changes, may be implemented for
modeling and optimization of other manufacturing

Table 6. Comparison between optimal S/N values (predicted vs. experimental).

Best set of parameters
in L36 (No.12)

Prediction Experiment

Setting level A1B3C3D2E1 A1B3C1D2E1 A1B3C1D2E1

S/N -2.255 -2.044 -1.845

Error between optimal predicted and experimental S/N values: 9.5%.
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processes and engineering materials. In this work,
Grey Relational Analysis and Signal to Noise method
have been employed for multi-criteria optimization
of EDM parameters. Using other heuristic proce-
dures, such as Genetic Algorithm (GA) and Simu-
lated Annealing (SA), for multi-criteria optimization
of machining parameters could be a promising area of
research. In such study the optimization results may
be compared with those of present work as benchmark
analysis.

Nomenclature

n Number of test runs
m Number of dependent variables

measured
yi;j Identi�cation of test results (i =

1; 2; � � � ; n and j = 1; 2; � � � ;m)
� The distinguishing coe�cient

(0 � � � 1)
Zo(k) The reference sequence (Zo(k) = 1 or

0, k = 1; 2 � � � ;m);
�oj The absolute value of the di�erence

between Zo(k) and Zi;j(k)
�k Weighting factor of each response
n Number of iterations in a trial (for LB

and HB equations)
yj The jth measured value in a run
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