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Abstract: Increasing the penetration of wind turbine generations, needs more study about 
controlling frequency impacts of power system. Frequency control is changed with 
unbalancing real-time system generation and load. Also wind turbine generations have 
more fluctuations and make system more unbalance. Then Automatic Generation Control 
(AGC) loop helps to adjust system frequency and the scheduled tie-line powers. The quality 
of AGC loop is measured by some indices. It is expected a proper measure shows the AGC 
performance just as it acts (operates). One of well-known measures in literature which was 
introduced by North American Electric Reliability Corporation (NERC) is Control 
Performance Standards (CPS). Previously it is claimed that a key factor in CPS index is 

PK */σ . This paper focuses on impact of a day ahead wind speed forecast error on this 
key factor and CPS. The study system is a two area system. One area has only thermal 
power and other area constitutes of significant wind farm and thermal power. Effects of 
wind speed standard deviation and also degree of wind farm penetration are analyzed and 
importance of mentioned factor criticised. After that, influence of mean speed forecast error 
on this factor is noticed. 
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1 Introduction1 
The main purpose of the electric power systems is to 
provide the customers’ demand with electricity, 
featuring high quality voltage and frequency. The errors 
in load forecasting and generation planning are the main 
factors results the frequency moving away from its 
permissible range and tie-line transmitted power 
deviating from the scheduled value. Generally, two 
approaches may be applied in order to solve afore-
mentioned problem. The first approach is to improve 
load forecasting accuracy [1] and the second solution is 
to provide sufficient reserve power for the system. 

However, technical limitations of generating units 
prevent the system from reaching desired frequency. 
Therefore, the frequency error is inevitable in the power 
systems. Thus, the AGC system tries to maintain power 
system frequency within permissible limits by adjusting 
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the system generation. To evaluate performance of the 
AGC, proper performance indices should be used. A 
suitable index should be able to reflect the actual quality 
of the AGC system. 

Due to the accelerating penetration of the Wind 
Turbine Generators (WTGs) in recent years and future 
planning, the conventional indices must be reviewed 
and modified necessarily [2]. 

The indices are divided into two categories of 
deterministic and probabilistic. Owing to the uncertain 
nature of the WTGs in the power system and the large 
forecasting error of the wind power generation, the 
probabilistic indices seem to be more appropriate. The 
main goal of this paper is to study different statistical 
indices and evaluate AGC indices in power system 
which has large penetration of the WTGs. 

Early studies on AGC were initiated in 1950. In a 
pioneering study by Cohn [3], the Area Control Error 
(ACE) was introduced as the error of the frequency 
control system, and the regulation has been analyzed 
based on different qualities of Economic Dispatch (ED) 
and AGC loop and then suitable state has been 
introduced. System frequency and tie-line power must 
be measured and then are used in frequency control 
loop. Besides, those measurements have errors. The 
influence of the measuring error in output of frequency 
control loop has been studied [4]. The requirements of 



224                                                       Iranian Journal of Electrical & Electronic Engineering, Vol. 10, No. 3, Sep. 2014 

the AGC loop have been introduced in different items, 
one of these items is the significant differences between 
settling times of AGC, Load Frequency Control (LFC) 
and ED loops. Furthermore, the appropriate constant 
values for governor and recloser dead-bands have also 
been studied in [5]. The IEEE standard terms and 
definitions on AGC can be found in [6]. 

Later on, Control Performance Standards (CPS), the 
standard rules for frequency regulation service, 
including A1, A2, B1 and B2 rules were adopted by 
North American Electric Reliability Council (NERC). 
The A1 and A2 criteria were employed during normal 
conditions while B1 and B2 rules were applied during 
emergency conditions [7]. 

In an AGC system, the goal is to keep changes in 
tie-line power error (ΔPtie) and frequency error (ΔF) as 
small as possible. However, reaching this goal results in 
too much wear and tear in generating units [8]. Hence, 
the average value of the ACE signal is forced to zero, 
not instantaneous ACE. In fact, removal of a non-zero 
value from the averaged ACE signal requires changes in 
generation level and energy transfer between control 
areas. On the other hand, in 50 % of the control actions 
to bring the negative value of ACE to zero, a positive 
change in generation has had an inverse effect on ACE 
and vice versa [6]. 

Large rate of changes in ACE may require fast 
changes in the units' generations with its associated 
financial cost. Furthermore, large values of ACE result 
in large deviation in the units' generations. It is to be 
noted that repeatation rate and amplitude of changes are 
important, and ACE doesn’t reflect deviation speed. So 
ACE is not a good index for AGC. A good AGC index 
must be directly related to AGC quality [9]. 

In 1999, CPS1 and CPS2 indices were introduced by 
NERC. Compared with previous indices, there is less 
maneuvering and wear & tear in the units’ generation 
when these indices reach to accepted standard values. 
So system operation using NERC indices is more 
economic. 

CPS1 and CPS2 are based on limiting the standard 
deviation of Δf, during different periods of time. The 
time-window for calculating the average values has a 
great impact on their results [9]. Short time-window 
used for average calculation reduces the effect of the 
idea of using the statistical information and is getting 
closer to calculations with online data. On the other 
hand, long time-window does not monitor deviations of 
the system. These indices have also been used as control 
signals in AGC (in replacement of ACE integral) [10]. 

It is proven that permitted values of error in CPS1, 
guarantees permitted value of CPS2 [11]. Indicator of 
Regulating Trajectory Tracking (IRTT) and Regulating 
Help Indicator (RHI) indices have also been defined by 
EDF [12]. Like CPS1 and CPS2, these indices are based 
on the average calculation of the product of the two 
terms. These two terms are functions of ΔPtie and ΔF 
(or ACE). There are some differences in the monitoring 

of the system operation using CPS or RHI. In some 
situations, RHI index detects the system status as 
improper and identifies a need for emergency 
operations, while CPS rules detect the system situation 
as normal or correctable with normal control methods 
and does not require emergency operations. 

On the other hand, from the viewpoint of the power 
generation regulation, fossil fuel generators have basic 
differences with WTGs. For instance, to regulate the 
power generation in a certain value, the fuel should be 
provided and the technical condition of the unit should 
be proper. 

Although ambient temperature is one of the 
technical parameters of the generation units, it is 
possible to forecast it with a great accuracy for the next 
days [13]. Therefore, appropriate generation planning 
could be done for the next days if sufficient fuel is 
available. In this condition, the error of actual 
generation and planned generation will be very small. 
Although such a small error is not considerable, but 
accumulation of the small errors of the units or loads in 
the system will result in large frequency and tie-line 
power errors. This would be important for the system. 

To decrease the frequency error of the system, units 
with fast maneuvering ability serve as the AGC units. 
These units can easily change their output in less time 
compared to other units. Since the generation of the 
WTGs is usually at their maximum power point, they 
cannot increase their generations to take part in the 
AGC. On the other hand, due to the large error in wind 
speed forecasting, power generation error of a WTG is 
much more than a conventional unit. Therefore, not only 
WTGs cannot operate in AGC, but also their presence in 
the system requires participation of more thermal units 
in the AGC. 

Hence due to ever-increasing penetration of WTG, a 
crucial question arises: Are conventional control 
performances enough in power systems with large-scale 
wind power penetration? In this paper, we are going to 
find an answer to this question. 

The rest of this paper is organized as follows. In 
section 2, a test system is explained and the relevant 
mathematical equations are presented. In section 3, 
probabilistic equations are defined. The zero-mean error 
in wind speed forecasting is discussed in subsection 3-1 
and the non-zero mean condition is addressed in 
subsection 3-2. Finally, concluding remarks are 
presented in section 4. 
 
2 Problem Description 

In this paper, the test system consists of two control 
areas. Errors in generation planning and load forecasting 
have been considered for both control areas. 

The system frequency error and tie-line power error 
is denoted by ∆f and ∆Ptie, respectively and Ki shows 
the frequency response characteristic of the i-th control 
area. Unit of “f” and “∆f” is Hz. Units of P, ∆P, P1, P2, 
∆R1, ∆R2, ∆G1, ∆G2, ∆L1, ∆L2 are MW. Units of K1, K2 
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and K are pu.MW/Hz. If the load forecasting error and 
generation planning error in area 1 are denoted by ∆L1 
and ∆G1, respectively, then the overall error in load 
forecasting and generation planning of the first area 
would be [14]: 

1 1 1R G LΔ = Δ − Δ  (1) 
Hence: 

1 2( ) / ( * )f R R K PΔ = Δ + Δ  (2) 
where: 

1 2P P P= +  (3) 

1 1 2 2( * * ) /K K P K P P= +  (4) 
and 

2 2 1 1 1 2( * * * * ) / ( * ))tieP K P R K P R K PΔ = Δ − Δ  (5) 

where, P1 and P2 are generation capacities of the two 
control areas in Fig. 1. 

Assuming ∆R2 = 0 we'll have: 
)P*K/(Pf 22tieΔ=Δ  (6) 

Therefore, according to Eq. (6), an increase in the 
power transmitted from the first area results on the 
frequency increase in the power system. It’s different of 
a general system. In general, we think that after 
increasing output power of an area or increasing loads 
of that area. 

Therefore, according to Eq. (6), an increase in the 
power transmitted from the first area results on the 
frequency increase in the power system. It’s different of 
a general system. In general, we think that after 
increasing output power of an area or increasing loads 
of that area, frequency of that system must be 
decreased. So, the system operator in the first area 
detects this condition as unusual. On the other hand, the 
second area senses the frequency increase as a normal 
and expected response of the system, since the 
additional power is transmitted into this area through 
tie-line (although the second area does not need this 
power). 

Considering ∆R1 = 0, we will have 
)P*K/(Pf 11tieΔ−=Δ  (7) 

In Fig. 2, the operating line with negative slope is 
related to Eq. (7). The behavior of the system in this 
condition is opposite to the system behavior associated 

with positive-slope line. According to Eq. (7), increase 
in the transmitted power from the first control area 
decreases the frequency of power system, which is quite 
in the contrary to the system behavior associated with 
Eq. (6). However, if ∆R1 and ∆R2 are non-zero, then the 
slope of the operation is the function of the parameters 
of these two control areas (K1, K2, P1, P2) and the load 
disturbances (∆R1, ∆R2). This condition holds in the 
power system during at all times.

 Generally, if the operating point lies in quadrature 1 
or 3, it means that control area 1 is the main source of 
disturbances, but if it lines in quadrature 2 or 4, the 
major part of the load disturbance happens in the control 
area 2. Probabilistic approaches have been used here to 
study these behaviors. 
 
3 AGC Probabilistic Modeling 

It's assumed in this paper that the first control area 
has significant WTG penetration. The wind speed 
forecast error has a non-zero mean and significantly 
large standard deviation. In proportion to the wind 
speed forecast error, is the difference between the 
planned generation and the actual generation. Hence, it's 
reasonable to say that the error in estimation of the 
WTGs generation has a non-zero mean and large 
standard deviation. The probability distribution of the 
load and generation error in the control areas have been 
considered as normal distribution: 

),(N)R(PDF 111 σμ=Δ  
(8) 

),(N)R(PDF 222 σμ=Δ

Second area does not have any WTGs. Therefore, 
generation of this area has zero-mean error. Also the 
correlation between the generation and load planning 
errors of these two control areas is neglected and it is 
assumed that these parameters are independent. Hence, 
we'll have: 
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21 RRR Δ+Δ=Δ  (10) 

),0(N*),(N)RRR,R(PDF 211121 σσμ=Δ−Δ=ΔΔ  (11) 

1 1
1 2

1 2 1

2
1 1

2 2
1 22 1

2 2 2
1 2 1
2 2 2 2
1 2 1 2

2
1

2 2 2
1 2 1

21( exp
2

2 1 1exp exp
2 2

2
1exp 12

1exp exp
2

( R μ )
PDF R , R)

π σ σ σ

( R R ) μ
π σ σσ σ

σ σ σ
ΔR ΔR

σ σ σ σ

μΔR R
σ σ σ

⎡ ⎤Δ −⎢ ⎥Δ Δ = × − ×
× × ⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤Δ − Δ⎢ ⎥− = × − ×⎢ ⎥× ×⎢ ⎥ ⎣ ⎦⎣ ⎦
⎡ ⎤⎡ ⎤⎛ ⎞+⎢ ⎥⎢ ⎥− × − ×⎜ ⎟⎢ ⎥⎢ ⎥× +⎝ ⎠⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤
− × ×Δ⎢ ⎥+⎣ ⎦

1

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (12) 

Fig. 1 schematic diagram of the test system. 
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Fig. 2 ∆Ptie–∆f
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