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Abstract 

Let g be a fixed element of a finite group G. We introduce the g-noncommuting 
graph of G whose vertex set is whole elements of the group G and two vertices x,y are 
adjacent whenever [x,y] ≠ g  and  [y,x] ≠ g. We denote this graph by g

GΓ . In this paper, 
we present some graph theoretical properties of g-noncommuting graph. Specially, we 
investigate about its planarity and regularity, its clique number and dominating number. 
We prove that if G, H are isoclinic groups with |Z (G)|=|Z (H)|, then their associated 
graphs are isomorphic. 
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Introduction 
The powerful combinatorial methods found in graph 

theory have been used to prove fundamental results in 
other areas of pure mathematics. One of the interesting 
tools in mathematics is to give a connection between 
some different areas of general mathematics which 
create some new interdisciplinary branches in 
mathematics for instance algebraic topology, algebraic 
geometry, differential geometry and algebraic graphs. 
By this method we can consider a problem in some 
different views of mathematics and find some more 
solutions for a problem. Group theory in mathematics, 
probability in statistics and graph theory in applied 
mathematics are the subject which we are going to state 
a relation between them.  

Let G be a group. The probability of commuting two 
random elements of a group was investigated by Erdos 
and Turan in [2]. It is called commutativity degree and 
is denoted by d(G). By this new concept (commutativity 
degree) we may improve some known results in group 

theory. For instance we know that if G is abelian, then 
G is nilpotent. In 1995, Lescot [8] proved that if the 
commutativity degree of a group is bigger than half, 
then G is nilpotent. Another relation between group 
theory and graph theory is to associate a graph to the 
group G, which is denoted by .GΓ The non-commuting 

graph GΓ was first introduced by Paul Erdos. He 
associated to the group G a graph whose vertices is G\ Z 
(G) and two vertices are joined by an edge whenever 
they do not commute, where Z (G) is the center of G. 
The non-commuting graph has been studied in a couple 
of papers (for instance see [1, 9, 11]).  In fact, the 
number of edges of the non-commuting graph displays 
that how much a group associated to the graph, is far 
from to be an abelian group. Similarly the number of 
edges of the non-commuting graph and commutativity 
degree are in the opposite proportion.  

Creating a graph by a group, semigroup or ring is a 
topic which is increasingly interested by authors (see 
[3,4]). Pournaki and Sobhani generalized the 
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commutativity degree to the probability of the 
commutator of two randomly chosen elements in a finite 
group G is equal to a given element g in G (see [10]). 

In this paper we extend the notion of non-commuting 
graph. We assign to the group G and its certain element 
g∈G, a graph g

GΓ namely g-noncommuting graph of G 
with vertex set G such that two vertices are adjacent if 
their commutator is not equal to g and g 1− . We prove 
that there is no g-noncommuting tree graph. The bounds 
for domination number, clique number, chromatic 
number and independence number of the g-
noncommuting graph are also presented here. Moreover, 
all the groups G for which g

GΓ  is planar will be 
determined. 

In order to classify the groups, P. Hall in [6] 
introduced the concept of isoclinism which is weaker 
than isomorphism. It is an equivalence relation on the 
class of all groups. Let us state its definition. 

Definition 1.1. Let G and H be two groups. A pair (
,ϕ ψ ) is called an isoclinism of groups G and H if ϕ  

is an isomorphism from G/Z(G) to H/Z(H), ψ  is also 

an isomorphism from G' to H' and ψ ([g 1 ,g 2 ])=[h 1 ,h 2

] whenever h i ∈ ϕ (g i Z(G)), for all g i ∈G, h i ∈H, i 
∈  {1,2 }. If there is an isoclinism from G to H, we say 
that G and H are isoclinic and denote it by G H. 

Finally, it is proved that if ( ,ϕ ψ ) is an isoclinism 
between two groups G and H such that the order of their 
centers are equal, then g

GΓ ≅ ( )g
H
ψΓ , where g∈  G'. 

Throughout the paper, graphs are simple and all the 
notations and terminologies about the graphs are 
standard (for instance see [5]).  

 

Results 
Definition 2.1. Let G be a group and g a fixed 

element of G. We denote the g-noncommuting graph of 
G by g

GΓ as the graph with vertex set G and two distinct 
vertices x and y join by an edge if  [x,y] ≠ g  and  [y,x] 
≠ g.  

It is clear that g
GΓ =

1g
G

−

Γ and the non-commuting 

graph GΓ is an induced subgraph of 1
GΓ . Also the 

commuting graph of G is an induced subgraph of g
GΓ

when g ≠ 1. It is easy to see that diam( g
GΓ )=2 and 

girth( g
GΓ )=3, where g ≠ 1. Indeed, 1

GΓ is 
disconnected, because elements of the center of G are 

isolated. However, if we consider its subgraph GΓ , 

then it would be connected and diam( GΓ )=2 (see [1]).  
In the following lemma we give the degree of each 

vertex in g
GΓ for all cases.  

Lemma 2.2.  Let x∈G. 
(i) If 2g ≠ 1, then  deg(x)=|G|-ε | GC  (x)|-1, 

where ε =1  if  x is conjugate to xg or  x 1g − ,but not 

both, and ε =2  if x is conjugate to xg and x 1g − . 

(ii)  If 2g = 1 and g ≠ 1, then deg(x) =|G|-| GC
(x)|-1 whenever xg   is conjugate to x. For g=1 we 
have deg(x) =|G|-| GC (x)|. 

(iii)  If xg and x 1g − are not conjugate to x, then 
deg(x) =|G|-1. 
 
Proof. Suppose there is an element y in the group G 

such that yx =xg. This means we have [ ] gyx =, .  
Now we must answer to this question that how many 
elements like y exist in the group G? Obviously these 
elements are not adjacent to x. If we consider the 
conjugates of x, then how many of them are equal to 
xg?  It is clear that   21 yy xx = , whenever  ∈−1

21 yy

GC  (x). Hence there are | GC  (x)| elements like y 
which does not join x.  

(i) If  x and xg  are conjugate, then |{y∈G: yx
=xg}|=| GC  (x)|. Also if x and x 1g −  are conjugate, then 

|{y∈G: yx =x 1g − }|=| GC  (x)|. The second and third 
part is clear.  

A dominating set for a graph Γ is a subset D of V( Γ ) 
such that every vertex which does not belong to D joins 
to at least one member of D by an edge. The domination 
number γ  ( Γ )   is the number of vertices in a smallest 
dominating set for Γ . 

Proposition 2.3. Let g be an element of the group G 
of even order. Then γ  ( g

GΓ ) = 1. 
Proof.  The singleton {g} is a dominating set, 

because if x is a vertex which is not adjacent to g, then 
[g,x]=g. Thus |g|=| 2g |, which is a contradiction. 

Proposition 2.4. The g-noncommuting graph of a 
non-trivial group G is not a tree, unless |G|=2 and g ≠ 1. 

Proof.  Since 1
GΓ is a disconnected graph, it is 

certainly not a tree. Assume that g ≠ 1. If G is abelian, 
then g

GΓ is a complete graph which is a tree only if 
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|G|=2. Suppose that G is a non-abelian group. If 2g =1, 
then there is no vertex of degree one.  Assume 
otherwise x is a vertex of degree one, then 1=deg(x) 
=|G|-| GC  (x)|-1 which implies that |G|=4, a 

contradiction. In the case that 2g ≠ 1, by the same 
method, we can deduce that |G|=4 or 6. Since G is non-
abelian, we have G ≅ 3S .  However, 

3

(123)
SΓ is not a 

tree. 
The above proposition implies that there is no g-

noncommuting star graph, except for a group of order 2 
and a non-trivial element g. 

Theorem 2.5. If G is a non-abelian group and Γ is 
the induced subgraph of g

GΓ with vertex set G\ Z (G), 
then Γ is not a tree. 

Proof.   Suppose Γ is a tree. If g=1, then there is a 
vertex x in Γ such that deg(x) =|G|-| GC (x)|=1, which 

is a contradiction. Suppose that  g ≠ 1. If 2g =1 and x is 

a vertex such that deg(x) =|G|-|Z (G)|-| GC  (x)|-1=1, 

then |Z (G)|=1 or 2. If |Z (G)|=1, then (k-1)| GC (x)|=3, 
for the positive integer k. Consequently k=2 and G ≅

3S . But for all g∈ 3S such that 2g =1, Γ  is complete. 

Now if |Z (G)|=2, then G ≅ 8D   or   8Q . Consider 8D
=< a,b: 4a = 2b =1, ba = 1a − > and 8Q ={±1, ±i, ±j, 

±k}, where  2( 1)− =1, 2i = 2j = 2k =-1,ij=-ji=k, jk=-

kj=i, ki=-ik=j. In both cases Γ is disconnected.  If 2g
≠ 1, then there is a vertex x such that deg(x) =|G|-|Z 
(G)|- ε | GC (x)|-1=1, where ε =1 or 2. For the case ε
=1, we have a similar argument as above. If ε =2, then 
|Z (G)|=1 or 2. Let |Z (G)|=1. Then |G|=9, which is 
impossible. Suppose that |Z (G)|=2. Then G ≅ 12D or T, 

where 12D =<a,b: 6a = 2b =1, ba = 1a − > and T=< a,b: 
6a =1, 2b = 3a , ba = 1a − >. Suppose that G ≅ 12D or 

T. We have G'= {1, 2a , 4a } and Z (G)={1, 3a  }. Thus 

in 
2a

GΓ =
4a

GΓ , the vertices a , 2a and 4a  make a cycle. 
Thus Γ  is not a tree. Hence the assertion follows. 

Let us recall that we use the notations ω (X), χ (X) 
and α (X) to denote clique, chromatic and 
independence number of the graph X. 

Central elements of the group G join to all other 
vertices and make a clique for g

GΓ whenever g ≠ 1. 
Proposition 2.6.  If   g   is a non-central element of 

the group  G then ω ( g
GΓ ) ≥ |Z(G)|+2. 

Proof.  We claim that there exists x ∈  G\ Z(G) 
adjacent to g and so  Z(G) ∪ {g,x}  would be a clique 
in g

GΓ  . Suppose on the contrary that [x,g]= 
1g −
 for all 

x∈G\ Z(G),  x ≠ g. Thus GC (g) = {g} ∪ Z(G) and so 

|Z(G)|=1. Hence | GC (g)|=2  and  2g =1  which is a 
contradiction. The above proposition implies that if g is a non-
central element of the group G, then χ ( g

GΓ ) ≥
|Z(G)|+2 and α ( g

GΓ ) ≤ |G|-|Z(G)|-2. Furthermore, if   g

≠ 1, then α ( g
GΓ ) ≥max{|x|-1: x∈G}. 

Proposition 2.7.  Let g and h be two conjugate 
elements of G, then g

GΓ ≅ h
GΓ . 

Proof.  Suppose h= xg for some x∈G. The bijection 

ψ : V( g
GΓ ) →V( h

GΓ ) which maps  t  to  xt   for every  
t∈G, preserves edges. 

One can see that if G is abelian, then g
GΓ  is regular, 

for every g∈G. The following theorem deals with 
regularity of non-abelian groups. 

Proposition 2.8. Let G be a non-abelian group. Then 
g
GΓ is a regular graph if and only if  g∉K(G), where 

K(G)={[x,y]: x,y∈G}. 
Proof.  It is clear that 1

GΓ is not regular. Suppose g

≠ 1 and g
GΓ is a regular graph. Since degree of the 

identity element is |G|-1, so deg(t)=|G|-1  for every  t∈
G. This means [t,t'] ≠ g  for all  t,t'∈G and g∉K(G). 
The converse is clear. 

 
Theorem 2.9. Let Γ be the induced subgraph of 

g
GΓ with vertex set G\ Z (G), where G is a non-abelian 

group. Then 
(i) Γ is not  2-regular. 
(ii) Γ is  3-regular if and only if G is a group of 

order  16  and |Z(G)|=4, for  g ≠ 1. 
(iii) Γ is  4-regular if and only if  G ≅ 8D  or 8Q  

and  g=1. 
(iv)  Γ  is  5-regular if and only if  G is a group of 

order  27  and |Z(G)|=3,  for  g ≠ 1. 
Proof.   (i) Suppose Γ  is 2-regular. By Lemma 2.2 

we have all the possibilities for the degree of vertices. If 
g=1, then deg(x)=|G|-| GC (x)|  for all  x∈V( Γ ). 

Therefore | GC (x)|=2 and |G|=4 which is a 

contradiction. If xg and x 1g − are not conjugate to x, 
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then deg(x) =|G|-|Z(G)|-1. Thus |Z (G)|=1 or 3 which 
implies G ≅ 3S  then Γ  the induced subgraph of 

3

(1,2,3)
SΓ =

3

(1,3,2)
sΓ is not 2-regular. If 2g ≠ 1 or ( 2g =1, g

≠ 1), then deg(x)=|G|-|Z(G)|- ε | GC (x)|-1, where ε =1 
or 2. Since Γ is 2-regular, |Z (G)|=1 or 3. First, assume 
|Z (G)|=1 so | GC (x)|=2 or 4. If | GC (x)|=2, then G ≅

3S . But it is not acceptable. Now suppose | GC (x)|=4, 

then G ≅  4A for which the associated graph is not 2-
regular. Similarly, for |Z(G)|=3, G  is a non-abelian 
group of order 18 and the degree of vertices in this case 
are 2 and 5. 

(ii) Let Γ be a 3-regular subgraph of g-
noncommuting  graph g

GΓ . Similar to the last part, for 

g=1 follows G ≅ 3S  which is not associated to a 3-
regular graph. Clearly, it is not possible that deg(x) = 
|G|-|Z (G)|-1=3. In the case deg(x)=|G|-|Z (G)|-ε | GC
(x)|-1 follows |Z (G)|=2 or 4, where ε =1 or 2. |Z (G)|=2 
implies G ≅ 8D  or 8Q  ,  12D or T for which clearly 

8D  and 8Q  are not associated to 3-regular graph and 
also the degree of the vertices are 1 or 3 for the graph 
assigned to G ≅ 12D or T. Now, assume |Z(G)|=4. 
Consequently |G|=16 or 24. We have 4 non-abelian 
group of order 24 with center of order 4, but all the 
vertex of their associated graph have degree 3 or 7. 
There are 6 non-abelian groups of order 16 with center 
of size 4 and degree of all vertices are 3. Conversely, if  G is a group of order  16  and |Z 
(G)|=4, then the order of all centralizers of vertices of 
this graph is 8. Moreover,  [G:Z(G)]=4  and since  G  is 
not abelian  G/Z(G)  is elementary abelian 2-group of 
order 4. By [7, Lemma 3.1.1]  follows  G' ≅ 2Z . Now, 
we claim   deg(x) ≠ |G|-|Z(G)|-1  for every vertex  x in 
Γ . Otherwise,   [x,y] ≠ g  and 1g −  for all  y∈G. 
Therefore [x,y]=1, which implies x  is a central element 
and a contradiction. Consequently, by Lemma 2.2   
deg(x) = 3  and the graph associated to G is 3-regular. 

(iii) Assume Γ  is   4-regular. Thus   G ≅ 8D  or 8Q .  
Γ  is not  4-regular if  g ≠ 1, although it is clear that Γ
associated to 8D or 8Q  is  4-regular for  g=1. 

(iv) Suppose Γ  is 5-regular. Similar to the previous 
cases, we obtain possible orders for the group G such 
that among them |G|=27 and  |Z(G)|=3  is acceptable. By 
an easy computation in GAP we can see that there exist 
2 groups of order 27 with the center of order 3 whose 

associated graphs are 5-regular. 
Remark 2.10.  We deduce there are 6 non-abelian 

groups of order 16 which satisfy part (ii) of Theorem 
2.9 and their graphs are the union of three 4K , by using 
the group theory package GAP. Obviously for g=1, the 
graphs associated to them are 8-regular. 

If  G  is an abelian group and  g ≠ 1, then clearly 
g
GΓ  is Hamiltonian. Furthermore, if  G is not abelian 

and g∉ K(G)  then g
GΓ is Hamiltonian. In [1] was 

proved that the non-commuting graph of  G is 
Hamiltonian. 

Recall from [1]   that GΓ is planar if and only if G

≅ 3S , 8D  or 8Q . Since it is a subgraph  of 1
GΓ , we 

conclude that 1
GΓ is planar whenever G ≅ 3S , 8D  or 

8Q . Therefore, in the following theorem we consider 
g
GΓ  where g is a non-identity element of K(G). 
 
Theorem 2.11.  Let  g  be a non-identity element of 

a finite group  G. Then g
GΓ  is a planar graph if and 

only if G  is  isomorphic to 3S , 8D  , 8Q   or an abelian 
group of order at most  4. 

Proof.   If G  is an abelian group, then g
GΓ  is a 

complete graph, so we must have  |G| ≤4. Now suppose 
that  G  is not abelian. If  A  is an abelian subgroup of  
G, then  |A| ≤4. Therefore the order of every element of 
G is at most 4 and so   |G|= 2n 3m .  Clearly  |Z (G)|< 3. 
Thus G  is not a 3-group. If  m=0, then |Z(G)|=2 and 
there is an element x∈G of order 4. Easily GC  (x) = < 
x >  and < Z (G), x >  is an abelian subgroup of  G. So < 
Z (G), x > =< x >. Therefore 2x ∈Z (G)  and  G/Z(G)  
is elementary abelian 2-group which implies that  G  is 
an extra-special 2-group all its proper centralizers are 
maximal. Hence n=3 and G ≅ 8D  or 8Q  . 

Now suppose  m,n ≠ 0. If |Z(G)|= 2, then there are 
elements  x∈Z (G) of order 2 and  y∈G of order 3. 
Clearly,  xy  is an element of order 6, a contradiction. 
Therefore, G has a trivial center such that the order of 
its elements is at most 4. We claim that m=1 and  n ≤3. 
If  m>1, then the Sylow 3-subgroup of G has an abelian 
subgroup of order 9, a contradiction. Also maximal 
abelian subgroups of a Sylow 2-subgroup P of G are of 
order at most 4. As proved above, |P| divides 8. 
Therefore |G|=6, 12  or 24. The only groups of order 6, 
12 or 24 with trivial center are 3S , 4A  and 4S . We 

have 4A '={(1),(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)}. Clearly 



A Kind of Non-commuting Graph of Finite Groups 

383 

{(1),(1 2)(3 4),(2 3 4),(2 4 3),(1 2 3)} is a complete 
subgraph of 

4

(12)(34)
AΓ which implies 

4

(12)(34)
AΓ  is not 

planar. 
4

(13)(24)
AΓ and  

4

(14)(23)
AΓ  are not also planar, 

because they are isomorphic to 
4

(12)(34)
AΓ . Hence 

4

g
AΓ is 

not planar, for all 1 ≠ g ∈ 4A '. It is enough to verify the 

planarity of 
4

(12)(34)
SΓ and 

4

(123)
SΓ . Since 

4

(12)(34)
AΓ is a 

subgraph of 
4

(12)(34)
SΓ , that follows 

4

(12)(34)
SΓ is not 

planar. The complete graph with 5 vertices {(1),(3 4),(2 
3),(2 4 3),(2 3 4)}  is a subgraph of 

4

(123)
SΓ , so it is not 

planar. Hence
4

g
SΓ is not planar for all non-identity 

elements g∈ 4S ' = 4A . Finally, if G ≅ 3S then 
3

g
SΓ is 

planar for all non-identity elements  g∈ 3A . 
Corollary 2.12.  Let G be a non-abelian group such 

that g
GΓ ≅

3

s
sΓ  (s ∈  3A ),  then  G ≅ 3S . 

One may ask if two graphs are isomorphic then 
which properties will be inherited from one to another. 
We answer to this question for the property of being an 
extra-special p-group of rank 2 in the following 
proposition. 

Proposition 2.13.  Let  G  be an extra-special p-
group of rank 2 and  g

GΓ ≅ h
HΓ  for some finite group 

H, where  g∈G' and  g ≠  1. If  |Z (G)|=|Z (H)|  then  H 
is an extra-special p-group of rank 2. 

Proof.  Clearly  |G|/|Z (G)|=|H|/|Z (H)|= 2p .  By  [7, 
Lemma 3.1.1],  |H'| ≤p.  Since  H is not abelian |H'|=p  
and  H/Z (H) ≅ pZ × pZ . Hence  H'=Z (H)  and the 
result follows. 

It is clear that if  G  and  H  are two groups such that 
a
GΓ ≅ b

HΓ and   a ∈  K(G), then  b∈K(H).   
In [9]  the probability (G)gP  that the commutator of 

two randomly chosen elements in a finite group is equal 
to a given  element  g of that group was studied. 
Actually we have the following ratio 

(G)gP =|{(x,y) ∈ 2G : [x,y]=g}|/ 2| G | . 
We use this probability and obtain a formula for the 

number of edges of  g
GΓ . Let us note that if we consider  

g = 1 then 1 ( )P G  is the probability that two randomly 
chosen elements of  G  commute and is known as the 
commutativity degree of  G. 

Proposition 2.14.  Let  G be a finite group. Then 
(i)  for a non-identity element  g∈G'  such that 

2g ≠ 1  we have  

|E( g
GΓ )|= ( )2 2| G | | G | 2 | G | ( )gP G− − /2. 

(ii)  for a non-identity element   g∈G'  such that  
2g = 1  we have  

|E( g
GΓ )|= ( )2 2| G | | G | | G | ( )gP G− − /2. 

 Moreover, if  g∉G'  then |E( g
GΓ )|=

( )2| G | | G |− /2. 

 
Proof.   The number of edges of the graph g

GΓ  is the 

number of pairs  (x,y) ∈ 2G  such that  [x,y] ≠  g and  
[y,x] ≠ g.  Suppose  A={(x,y) ∈ 2G : [x,y]=g}.  For 
the case (i) if  (x,y) ∈  A, then  (y,x) ∉A  also by 
definition of this graph there is no edge between  x  and  
y. Thus we put aside  2 2| G | (G)gP  number of pairs 
out of total pair of elements. Furthermore, we lay aside  
|G| number of pairs of elements because this graph does 
not have any loop. For the second part, if  (x,y) ∈  A  
then  (y,x) ∈A. Therefore we must put aside  2| G |

(G)gP   from total number of pairs of elements  2| G | . 

Hence, (ii) follows similarly. If g∉ G'  then (G)gP =0  
and the rest of assertion is clear. 

Obviously, if  g=1  then  |E( 1
GΓ )|=

( )2 2
1| G | | G | ( )P G− /2.  Moreover, if  g

GΓ  ≅  
a
GΓ  

and |g|=|a|=2 or |g|,|a| ≠  2  then  (G)gP = ( )aP G . 
Proposition 2.15.  Let  G  be an extra-special 2-

group. If  1 ≠  g∈G', then 
|E( g

GΓ )|= ( )2
1| G | ( )P G− /2. 

Proof.   Since  G  is an extra-special 2-group we have  
G'={1,g}. Therefore, the commutator of every two 
elements of the group is  g  or  1. Thus, two vertices of 
the graph g

GΓ  join by an edge if they commute and the 
assertion follows. 

A character theoretical formula for  (G)gP  was 
given in [10]. Pournaki et al. presented explicit formulas 
to compute (G)gP  for some special groups. They also 

gave upper bounds for (G)gP . Thus we can use all 
their results here to obtain formulas for the number of 
the edges of the graph just by substitution, when  G  is a 
certain group. 

 
Theorem 2.16.  Let  G and  H be two finite isoclinic 
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groups with  |Z(G)|=|Z(H)|. If   (ϕ ,ψ ) is an isoclinism 

between  G  and  H, then  g
GΓ ≅ ( )g

H
ψΓ . 

Proof.   Suppose  |G/Z(G)|=|H/Z (H)|=n  and  θ
:Z(G) →Z(H)  is a bijection. If  isoclinism (ϕ ,ψ )  is 

defined by  ϕ  ( ig Z (G))= ih Z (H)  and  ψ  ([ ig 1z ,

jg 2z ])= [ ih 1z ', jh 2z '],   1 ≤ i,j ≤  n where  ig  and 

ih  are transversal of  G/Z(G)  and  H/Z(H), respectively  

1z , 2z ∈Z (G) and 1z ', 2z '∈  Z(H) . Clearly  α : V(
g
GΓ ) →V( ( )g

H
ψΓ )  which maps  ig z  to  ih θ  (z)  is a 

bijection which preserves edges. 
 

 

References 
1. Abdollahi A., Akbari S. and Maimani H. R. Non-

commuting graph of a group. J. Algebra, 298: 468-492 
(2006). 

2.  Erdos P. and Turan P. On some problems of statistical 
group theory.  Acta Math. Acad. Sci. Hung., 19: 413-435 

(1968). 
3. Erfanian A. and Tolue B.  n-th non-commuting graphs of 

finite groups. Bull. Iranian Math. Soc., 39(4): 671-682 
(2013). 

4. Erfanian A. and Tolue B.  Relative non nil-n graphs of 
finite groups. Science Asia, 38: 201-206  (2012). 

5. Godsil C. D. and Royle G. Algebraic graph theory 
Graduate texts in mathematics 207. Springer-Verlag, New 
York (2001). 

6.  Hall P. The classification of prime-power groups. J. Reine 
Ang. Math., 182: 130-141 (1940). 

7.  Karpilovsky G. The Schur multiplier. London Math. Soc. 
Monographs,  New Series 2  (1987). 

8. Lescot P. Isoclinism classes and commutativity degrees of 
finite groups, J. Algebra, 177: 847–869 (1995). 
9.  Moghaddamfar A. R., Shi W. J., Zhou W. and Zokayi 
A. R. On the noncommuting graph associated with a finite 
group. Siberian Math. J., 46(2): 325-332 (2005). 

10. Pournaki  M. R., Sobhani R., Probability that the 
commutator of two group elements is equal to a given 
element. J. Pure Appl. Algebra, 212: 727-734 (2008). 

11. Pyber L., The number of pairwise noncommuting 
elements and the index of the centre in a 

finite group.  J. London Math. Soc., 35(2): 287-295 (1987). 

 


