

The 7th Algebraic Combinatorics Conference of Iran October 16-17, 2014, Ferdowsi University of Mashhad, Iran

A GENERALIZATION ON THE CONJUGATE GRAPH

FARZANEH MANSOORI1*, AHMAD ERFANIAN2 AND BEHNAZ TOLUE3

- ¹ International Branch of Ferdowsi University of Mashhad, Mashhad, Iran mansoori.farzaneh@gmail.com
- ² Department of Pure Mathematics and Center of Excellence in Analysis and Algebraic Structure, Ferdowsi University of Mashhad, Mashhad, Iran erfanian@math.um.ac.ir
- $^{3}\ Department\ of\ Pure\ Mathematics,\ Hakim\ Sabzevari\ University,\ Sabzevar,\ Iran\\ b.tolue@gmail.com$

ABSTRACT. Let G be a finite group. In this paper we introduce the generalized conjugate graph $\Gamma^c_{(G,n)}$ which is a graph whose vertices are, all the non-central subsets of G with n elements and two distinct vertices X and Y join by an edge if $X=Y^g$ for some $g\in G$. We present a condition under which two generalized conjugate graph are isomorphic. Moreover, this graph is a key to define the probability that two subsets of the group G with the same cardinality be conjugate.

1. Introduction

Recently, joining branches of group theory and graph theory together is one the most interesting topics. Erfanian et al. introduced conjugate graph Γ_G^c associated to a non-abelian group G with vertex set $G \setminus Z(G)$ such that two distinct vertices are adjacent if they are conjugate. The graph theoretical properties such as planarity, regularity

²⁰¹⁰ Mathematics Subject Classification. Primary 05C25; Secondary 20P05. Key words and phrases. Energy, generalized conjugate graph, isoclinism.

* Speaker.

and completeness of the conjugate graph are verified (see [2] for details). The idea of defining such a graph was obtained from the work of Blackburn et al., whom presented $P^c(G)$ as the probability that two elements of the group are conjugate (see [1]). By these facts in mind, we define a graph associated to a finite group G, with vertex set $\{X \subseteq G : |X| = n, X \not\subseteq Z(G)\}$ such that two distinct vertices X and Y join by an edge if there exists an element $g \in G$ with $X = Y^g$. We denote it by $\Gamma^c_{(G,n)}$ and call it, the generalized conjugate graph. If we put n = 1, then $\Gamma^c_{(G,1)}$ is known as the conjugate graph.

We discuss about some preliminary results of generalized conjugate graph. We try to combine graph theory with probability. The notion $P^c(G,n)$, which is the probability that two subsets of the group G with the same cardinality n are conjugate, is defined. By use of this probability we present a formula for the number of edges of the generalized conjugate graph. Upper and lower bounds are obtained for $P^c(G,n)$. Furthermore, we found an upper bound for $P^c(G,n)$ by use of the energy of $\Gamma^c(G,n)$.

2. Main results

Let us start with the following definition.

1

3

3

=

3

3

3

3

3

3

3

1

71 71

3

3

7

Definition 2.1. Let G be a finite group. We define the generalized conjugate graph with vertex set $V(\Gamma_{(G,n)}^c) = \{X \subseteq G : |X| = n, X \not\subseteq Z(G)\}$ such that two distinct vertices X and Y join by an edge if there exists an element $g \in G$ such that $X = Y^g$.

It is clear that when G is abelian then $\Gamma^c_{(G,n)}$ is a null graph for all $n \geq 1$, so we may always assume that G is non-abelian. If n = 1, then $\Gamma^c_{(G,1)}$ is coincide to the known conjugate graph as denoted by Γ^c_G in [2]. Now, assume that K_G is the set of all subsets of G with n elements. Define the action of G on K_G by $(A,g) \mapsto A^g := g^{-1}Ag$, for all A in K_G and $g \in G$. If A^G_i is the orbit of A_i in K_G and K(G) is the number of orbits then one can easily see that

$$K(G) = {\mid Z(G) \mid \choose n} + r,$$

where r is the number of orbits which have more than one element. It is obvious

$$|E(\Gamma^c_{(G,n)})| = \sum_{i=1}^\tau \left(\begin{array}{c} |A_i^G| \\ 2 \end{array}\right).$$

Since $A_i \not\subseteq Z(G)$ so $[G:G_{A_i}] \ge 2$ for all $1 \le i \le r$. Thus the following lower bound can be deduced.

It is clear that, if $\Gamma^c_{(G,n)}$ has t components, then its complement $\overline{\Gamma^c_{(G,n)}}$ is complete t-partite.

Proposition 2.2. Let G be a group. Then

- (i) $diam(\overline{\Gamma_{(G,n)}^c}) = 2$.
- (ii) girth($\overline{\Gamma_{(G,n)}^c}$) = 3 or 4, where t > 2 or t = 2 respectively.
- (iii) $\chi(\overline{\Gamma_{(G,n)}^c}) = \omega(\overline{\Gamma_{(G,n)}^c}) = t$.
- (iv) Let $\Gamma_{(G,n)}^c = K_{r_1,\dots,r_t}$, where $r_1 \leq r_2 \leq \dots \leq r_t$. If $r_1 + \dots + r_{t-1} \geq r_t$, then $\overline{\Gamma_{(G,n)}^c}$ is Hamiltonian.

Theorem 2.3. If $\Gamma_{(G,n)}^c$ has t complete components, K_{r_1}, \dots, K_{r_t} , then $\mathcal{E}(\Gamma_{(G,n)}^c) = 2(r_1 + r_2 + \dots + r_t) - 2t$.

The energy of the graph Γ is the sum of the absolute values of the eigenvalues of the adjacency matrix of the graph, which is denoted by $\mathcal{E}(\Gamma)$. The graph Γ of order n whose energy satisfies $\mathcal{E}(\Gamma) > 2(n-1)$ is called hyper-energetic and otherwise nonhyper-energetic. Clearly $\Gamma^c_{(G,n)}$ is a nonhyper-energetic. Recall that Γ is an integral graph whenever all eigenvalues of its adjacency matrix are integer. Obviously $\Gamma^c_{(G,n)}$ is an integral graph.

Theorem 2.4. Let $\Gamma_{(G,n)}^c$ be generalized conjugate graph with complete components K_{r_i} , $1 \leq i \leq t$. Then the number of spanning forests of $\Gamma_{(G,n)}^c$ is $\prod_{i=1}^t r_i^{r_i-2}$.

3. Generalized conjugate graph and probability

Blackburn in [1] introduced the probability that a pair of elements of a finite group are conjugate. We generalized it as follows.

Definition 3.1. Let G be a finite group. We define the probability that two sets with the same cardinality are conjugate by the following ratio,

$$P^{c}(G,n) = \frac{|\{(X,Y) \in K_G \times K_G : X = Y^g\}|}{|K_G|^2},$$

where K_G is the set of all *n*-element subsets of G.

It is clear that if K_G is the set of all singletons of the group G then $P^c(G, n)$ corresponds to the probability which was defined by Blackburn. Consider the set $A = \{(X, Y) \in K_G \times K_G : X = Y^g\}$. Now by use of $P^c(G, n)$ we can obtain the number of edges of $\Gamma^c_{(G, n)}$. We

have

73 73

=

3

3

3

=

 \exists

3

3

3

3

3

3

3

3

3

3

$$|K_G|^2 P^c(G, n) = |A| = |K_G| + |\{(X, Y) \in K_G \times K_G : X = Y^g, X \neq Y\}|$$
$$= |K_G| + 2|E(\Gamma^c_{(G, n)})|,$$

where $|E(\Gamma_{(G,n)}^c)|$ denote the number of edges of the graph and $|K_G| = \binom{|G|}{n}$. Therefore we have

$$|E(\Gamma_{(G,n)}^c)| = \frac{|K_G|(|K_G|P^c(G,n)-1)}{2}.$$
(3.1)

Theorem 3.2. Let $\Gamma^{c}_{(G,n)}$ be the generalized conjugate graph associated to the group G. Then

$$P^c(G,n) \leq \frac{\frac{1}{2}\mathcal{E}(\Gamma^c_{(G,n)}) + |K_G|}{|K_G|^2}$$

Proposition 3.3. Let G be a finite group. Then

$$P^{c}(G, n) < \frac{|Z(G)|!(|G| - n)!}{|G|!(|Z(G)| - n)!}$$

By mimicking the proof of Theorem 1.2 in [1] we conclude the following theorem.

Theorem 3.4. If G and H are two isoclinic groups, then $|K_G|P^c(G,n) = |L_H|P^c(H,n)$, where K_G and L_H is the set of all n element sets of G and H respectively.

REFERENCES

- S. R. Blackburn, J. R. Britnell and M. Wildon, The probability that a pair of elements of finite group are conjugate, to appear.
- [2] A. Erfanian and B. Tolue, Conjugate graph, Discrete Math. Algorithms Appl. (4) 2 (2012) 1250035 (8 pages).