

The 7^{th} Algebraic Combinatorics Conference of Iran October 16-17, 2014, Ferdowsi University of Mashhad, Iran

A GRAPH ASSOCIATED TO GROUPS BY AUOTOMORPHISMS OF THEM

ZAHRA.BARATI 1 , AHMAD.ERFANIAN 2 , KAZEM.KHASHYARMANESH 2 , KHOSRO.NAFAR 2

- ¹ Department of mathematics, Kosar university of bojnord, Bojnord, Iran.
- ² Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O.Box 1159-91775, Mashhad, Iran.

ABSTRACT. Let G be a group. By using the set of automorphisms of G, we associate a simple graph to G denoted by $\Gamma_{\operatorname{Aut}(G)}(G)$. In this paper we study some properties of this graph.

1. Introduction

Let G be a group and Z(G) be its center. For an arbitrary element z in G, let I_z be the inner automorphism of G given by $I_z(t) = z^{-1}tz$ for all $t \in G$. Also, for $x \in G$, $\operatorname{Stab}(x) = \{f \in \operatorname{Aut}(G) : f(x) = x\}$. The non-commuting graph of G denoted by Γ_G (which was first introduced by Pual Erdős [5]) is a simple graph which its vertex set is $G \setminus Z(G)$ and two distinct vertices x and y are adjacent if and only if $xy \neq yx$. In other words $xy \neq yx$ if and only if $I_x(y) \neq y$ (or $I_y(x) \neq x$). Clearly, $I_x \in \operatorname{Stab}(x)$ for all $x \in G$.

In this paper, we are inspired by this idea and by using the set of automorphisms of G, denoted by $\operatorname{Aut}(G)$, we associate a simple graph denoted by $\Gamma_{\operatorname{Aut}(G)}(G)$ as follows: Two distinct vertices $x, y \in G$ are adjacent if and only if there is $f \in \operatorname{Stab}(x)$ with $f(y) \neq y$ or $g \in \operatorname{Stab}(y)$

77

3

=

3

3

TI TI TI

²⁰¹⁰ Mathematics Subject Classification, 05C25.

Key words and phrases. Non-commuting graph, Automorphism.

^{*} Speaker.

with $g(x) \neq x$. Also, an element $x \in G$ is a vertex of $\Gamma_{\operatorname{Aut}(G)}(G)$ if there is an element y in G such that x and y are adjacent.

In this paper, we study some combinatorial properties of $\Gamma_{Aut(G)}(G)$.

To begin with, we remind some notations in graph theory. Let X be a graph. We use the notations; $\operatorname{diam}(X)$, $\operatorname{girth}(X)$, $\alpha(X)$, $\gamma(X)$ and X^c for the diameter, girth, independence number, domination number and complement of X, respectively. In this paper our terminologies on graphs and groups are derived from [3] and [4], respectively.

2. Main results

Note that, for every group G with at most two elements, $\operatorname{Aut}(G) = \{\operatorname{id}_G\}$, and so $\Gamma_{\operatorname{Aut}(G)}(G)$ is the empty graph. So in this paper all groups G have at least three elements.

In the following proposition we determine the vertex set of $\Gamma_{\text{Aut}(G)}(G)$.

Proposition 2.1. Let G be a group with at least three elements, then $V(\Gamma_{Aut(G)}(G)) = G$.

Example 2.2. Let p be a prime number with $p \neq 2$. Then $\Gamma_{Aut(\mathbb{Z}_p)}(\mathbb{Z}_p)$ is a star graph.

In the following theorem, we study some basic properties of $\Gamma_{\operatorname{Aut}(G)}(G)$.

Theorem 2.3. Let G be a group. Then the components of $(\Gamma_{\operatorname{Aut}(G)}(G))^c$ are complete graph, and consequently $\Gamma_{\operatorname{Aut}(G)}(G)$ is a complete r-partite graph. Moreover, $\operatorname{diam}(\Gamma_{\operatorname{Aut}(G)}(G)) \leq 2$.

The next corollary immediately follows from Theorem 2.3.

Corollary 2.4. Let G be a group. If the graph $\Gamma_{Aut(G)}(G)$ has a cycle, then $gr(\Gamma_{Aut(G)}(G)) \leq 4$.

Notation. Let G be a group. It is easy to see that the set of all elements of G which are fixed by every automorphism of G is a normal subgroup of G. For simplicity of notation, we denote it by \mathcal{H} .

In the following proposition we determine the structure of parts of $\Gamma_{\operatorname{Aut}(G)}(G)$.

Proposition 2.5. Let G be a group. Then one of the parts of $\Gamma_{Aut(G)}(G)$ is \mathcal{H} and the other parts are a union of some \mathcal{H} -cosets.

The following remark is useful in our proofs.

Remark 2.6. Suppose that G is a group and x,y are two adjacent vertices in the non-commuting graph of G. Then it is easy to see that x and y are adjacent in the graph $\Gamma_{\operatorname{Aut}(G)}(G)$. This means that if the vertices x and y are not adjacent in $\Gamma_{\operatorname{Aut}(G)}(G)$, then xy=yx. On the

=

3

7

3 3

=

=

3

=

=

3

 \exists

3

 other hand, $\Gamma_{\operatorname{Aut}(G)}(G)$ is a complete r-partite graph. So, all vertices in a same part of $\Gamma_{\operatorname{Aut}(G)}(G)$ commute together.

Proposition 2.7. Let G be a non-abelian group. Then $\Gamma_{Aut(G)}(G)$ is Hamiltonian.

In the following theorem, we determine when $\Gamma_{\operatorname{Aut}(G)}(G)$ is a complete graph.

Theorem 2.8. Let G be a group. Then $\Gamma_{Aut(G)}(G)$ is a complete graph if and only if $G \cong \underbrace{\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2}_{\ell-times}$, for some $\ell \geq 2$.

Corollary 2.9. Let G be a non-abelian group. Then $gr(\Gamma_{Aut(G)}(G)) = 3$ and $diam(\Gamma_{Aut(G)}(G)) = 2$.

Proposition 2.10. Let G be a group. Then the graph $\Gamma_{Aut(G)}(G)$ is a tree if and only if it is a star graph.

In the following proposition, we determine when $\Gamma_{\mathrm{Aut}(G)}(G)$ is a star graph.

Proposition 2.11. Let G be a group. Then $\Gamma_{\text{Aut}(G)}(G)$ is a star graph if and only if $\text{Fix}(f) = \{e\}$ for every non-identity automorphism f of G, where e is the identity element in G.

Corollary 2.12. $\Gamma_{\operatorname{Aut}(\mathbb{Q})}(\mathbb{Q})$ and $\Gamma_{\operatorname{Aut}(\mathbb{Z})}(\mathbb{Z})$ are star graph, where \mathbb{Q} and \mathbb{Z} are the set of rational numbers and integer numbers, respectively.

In the following proposition, we determine when $\Gamma_{Aut(G)}(G)$ is a cycle.

Proposition 2.13. Let G be a group. Then the graph $\Gamma_{Aut(G)}(G)$ is a cycle if and only if $G \cong \mathbb{Z}_4$.

Proposition 2.14. Let G be a group and p be the smallest prime number, which divides |G|. Then $\alpha(\Gamma_{\text{Aut}(G)}(G)) \geq p$.

Proposition 2.15. Let G be a group. Then

$$\gamma(\Gamma_{\operatorname{Aut}(G)}(G)) = \left\{ \begin{array}{ll} 1 & \text{if} \quad \mathcal{H} = \{e\}, \\ 2 & \text{otherwise}. \end{array} \right.$$

Proposition 2.16. Let G be a cyclic group. Then the elements in G of a same order, lie in the same part of $\Gamma_{Aut(G)}(G)$.

Note that the converse of Proposition 2.16 is not true in general. The planarity is one of the important properties in the study of a

simple graph. We are going to investigate the planarity of $\Gamma_{\text{Aut}(G)}(G)$, for some groups G.

Ė

Proposition 2.17. Let G be a non-abelian group. Then $\Gamma_{Aut(G)}(G)$ is non-planar.

We need the following lemma in the sequal.

Lemma 2.18. The following statements hold.

(a) Γ_{Aut(Z₂×Z₄)}(Z₂ × Z₄) is non-planar.

(b) $\Gamma_{\text{Aut}(\mathbb{Z}_2 \times \mathbb{Z})}(\mathbb{Z}_2 \times \mathbb{Z})$ is non-planar.

- (c) If n ≥ 3, then Γ_{Aut(ℤ₂n)}(ℤ₂n) is non-planar.
 (d) Let p be a prime number with p ≥ 3 and n ≥ 2. Then Γ_{Aut(ℤ_pn)}(ℤ_pn) is non-planar.
- (e) Let p be a prime number. Then $\Gamma_{\operatorname{Aut}(\mathbb{Z}_{p^{\infty}})}(\mathbb{Z}_{p^{\infty}})$ is non-planar.

In the following propositions we determine some abelian groups G with planar $\Gamma_{Aut(G)}(G)$.

Proposition 2.19. Let G be a free abelian group. Then $\Gamma_{Aut(G)}(G)$ is planar if and only if $G \cong \mathbb{Z}$.

Proposition 2.20. Let G be a finitely generated abelian group. Then $\Gamma_{\text{Aut}(G)}(G)$ is planar if and only if G is isomorphic to one of the following groups; \mathbb{Z} , \mathbb{Z}_4 , \mathbb{Z}_p and $\mathbb{Z}_2 \times \mathbb{Z}_p$, where p is a prime number.

Corollary 2.21. The following statements hold.

- (a) Let G be a finite group. Then Γ_{Aut(G)}(G) is a star graph if and only if G ≅ Z_p for some p with p ≠ 2.
- (b) Let G be an infinite finitely generated group. Then $\Gamma_{\operatorname{Aut}(G)}(G)$ is a star graph if and only if $G \cong \mathbb{Z}$.

Proposition 2.22. Let G be a divisible abelian group. Then $\Gamma_{Aut(G)}(G)$ is planar if and only if G is isomorphic to \mathbb{Q} .

References

- A. ABDOLLAHI, S. AKBARI, H.R. MAIMANI, Non-commuting graph of a group, J. Algebra 298 (2006), 468-492.
- Z. BARATI, A.ERFANIAN, K. KHASHYARMANESH AND K. NAFAR, A generalization of non-commuting graph via automorphisms of a group, Comm. Algebra 42 (2014), 174-185.
- [3] J.A. BONDY, J.S.R. MURTY, Graph Theory with Applications, Elsevier, 1977.

[4] T.W.Hungerford, Algebra, Springer-Verlag, Berlin, Heidelberg, New York (1974).

[5] B.H. NEUMANN, A problem of Paul Erdös on groups, J. Aust. Math. Soc. Ser. A 21 (1976), 467-472.