

Extended Abstracts

of The 3rd Biennial International

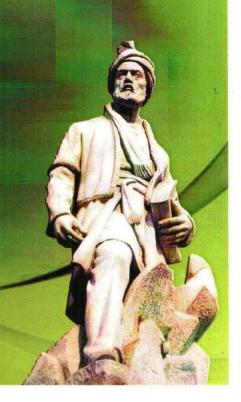
GROUP

THEORY

Conference

28-31 January 2015
Faculty of Mathematical Sciences
Ferdowsi University of Mashhad
Mashhad, Iran

Web: 3bigtc.grouptheory.ir Email: 3bigtc@um.ac.ir



3rd Biannual International Group Theory Conference (3BIGTC) January. 28-31(2015), pp. 143-146 Ferdowsi University of Mashhad, I. R. Iran

Some results on the generalized non-commuting graph of a finite group

S. Ghayekhloo 1*, B. Tolue 2 and A. Erfanian3,

¹ International Branch of Ferdowsi University of Mashhad, Mashhad, Iran. so.ghayekhloo@gmail.com

² Department of Pure Mathematics, Hakim Sabzevari University, Sabzevar, Iran. b.tolue@gmail.com

Department of Mathematics and Center of Excellence in Analysis on Algebraic Structures Ferdowsi University of Mashhad, Mashhad, Iran. erfanian@math.um.ac.ir

Abstract. In this talk, we define the generalized non-commuting graph denoted by $\Gamma_{(H,K)}$, where H and K are two subgroups of a non-ablian group G. Take $(H \cup K) \setminus (C_H(K) \cup C_K(H))$ as the vertex set of the graph and two distinct vertices x and y join by an edge, whenever x or y in H and $[x,y] \neq 1$. We obtain diameter and girth of this graph and discuss about dominating set and planarity of $\Gamma_{(H,K)}$. Moreover, we try to find a connection between $\Gamma_{(H,K)}$ and the relative commutativity degree of two subgroups denoted by d(H,K). Furthermore, we prove that if $\Gamma_{(H_1,G)} \cong \Gamma_{(H_2,G)}$ then $\Gamma_{H_1} \cong \Gamma_{H_2}$.

1 Introduction

A simple graph Γ_G is associated to a group G, whose vertex set is $G\setminus Z(G)$ and the edge set is all pairs (x,y), where x and y are distinct non-central elements such that $[x,y]=x^{-1}y^{-1}xy\neq 1$. The non-commuting graph of G was introduced by Erdös. In the next section, we introduce the generalized non-commuting graph $\Gamma_{(H,K)}$. We state some of the basic graph theoretical properties of $\Gamma_{(H,K)}$ which are mostly new or a generalization of some results in [3]. For instance determining diameter, dominating set, domination number and planarity of the graph. The third section is managed to state a connection between the generalized non-commuting graph and the commutativity degree. We will

²⁰¹⁰ Mathematical Subject Classification, 05C25

Keywords. Commutativity degree, relative commutativity degree, non-commuting graph, relative non-commuting graph.

* Speaker

3

(a) (a) (a) (a) (a)

3

present a formula for the number of edges of $\Gamma_{(H,K)}$ in terms of d(H) and d(H,K). Moreover, we observe that the generalized non-commuting star graph exists, although in [3] we see there is no relative non-commuting star graph. We also present some conditions under which we have generalized non-commuting complete bipartite and bipartite graph. In the last section, we explain some properties of $\Gamma_{(H,K)}$, where K=G.

2 The generalized non-commuting graphs

In this section, we define the generalized non-commuting graph for any non-abelian group G and subgroups H, K.

Definition 1. Let H and K be subgroups of non-abelian group G. We associate a graph $\Gamma_{(H,K)}$ to the subgroups H and K as follows. Take $(H \cup K) \setminus (C_H(K) \cup C_K(H))$ as the vertices of the graph and two distinct vertices x and y adjacent, whenever x or y in H and $[x,y] \neq 1$. We call it as the generalized non-commuting graph of subgroups H and K of G.

Proposition 1. Suppose $\Gamma_{(H.K)}$ is the generalized non-commuting graph of the non-abelian group G and its subgroups H and K.

- (i) If $x \in H \setminus K$, then $\deg(x) = |H \cup K| |C_H(x) \cup C_K(x) \cup C_H(K)|$.
- (ii) $deg(x) = |H \cup K| |C_H(x) \cup C_K(x)|$ for $x \in H \cap K$.
- (iii) If $x \in K \setminus H$, then $deg(x) = |H| |C_H(x) \cup C_K(H)|$.

Theorem 1. For non-abelian group G and its subgroups H, K with trivial center, $\operatorname{diam}(\Gamma_{(H,K)}) \leq 3$. Moreover, $\operatorname{girth}(\Gamma_{(H,K)}) \leq 4$.

Proposition 2. Let H,K be subgroups of non-abelian group G and $S\subseteq V(\Gamma_{(H,K)})$. Then S is a dominating set for $\Gamma_{(H,K)}$ if and only if $C_K(S)\cup C_H(S)\subseteq C_K(H)\cup C_H(K)\cup S$.

In graph theory an independent set is a set of vertices in a graph, no two of which are adjacent. It is clear that $V(\Gamma_{(H,K)}) \cap K$ is an independent set for $\Gamma_{(H,K)}$.

Now, we deal with the planarity of $\Gamma_{(H.K)}$. As we have seen in [2], the non-commuting graph Γ_G is planar whenever G is isomorphic to S_3 or D_8 or Q_8 . Since $\Gamma_{(H.K)}$ is the subgraph of Γ_G , then it is obvious that $\Gamma_{(H.K)}$ is planar if $G \cong S_3$ or D_8 or Q_8 . Furthermore, one can easily check that if $H \neq S_3$ or D_8 or Q_8 , then $\Gamma_{H.K}$ is not planar. Since Γ_H is a subgraph of $\Gamma_{(H.K)}$. Indeed, we can see that $\Gamma_{(S_3,S_4)}$ is not a planar graph because we can obtain complete graph K_5 with vertex set $\{(1\ 2), (2\ 3), (1\ 3), (1\ 2\ 3), (2\ 3\ 4)\}$ which is a subgraph of $\Gamma_{(S_3,S_4)}$. In general, $\Gamma_{(S_3,S_n)}$ is not planar for every $n \geq 4$

3 The generalized non-commuting graphs and d(H, K)

For any finite group G, the commutativity degree of G, denoted by d(G) is the probability that two randomly chosen elements of G commute with each other [5]. It can be defined as the following ratio:

$$d(G) = \frac{1}{|G|^2} |\{(x,y) \in G \times G : [x,y] = 1\}|.$$

Similarly, if H and K are two subgroups of G, then the generalized commutativity degree of H, K in G is defined as follows

THE THE THE THE CITE OF THE CITE OF

$$d(H,K) = \frac{1}{|H||K|}|\{(h,k) \in H \times K : [h,k] = 1\}|.$$

It is clear that if G is abelian or one of H or K is a central subgroup, then d(H,K)=1 (see [2]). In this section, we present a formula for the number of edges of the generalized non-commuting graph $\Gamma_{(H,K)}$. Consequently we will give an upper bound for $|E(\Gamma_{(H,K)})|$.

Proposition 3. Let H, K be subgroups of non-abelian group G. Then the number of edges for the generalized non-commuting graph is obtained by,

$$|E(\Gamma_{(H,K)})| = |H||K|(1 - d(H,K)) + \frac{|H|^2}{2}(1 - d(H)) - \frac{|H \cap K|^2}{2}(1 - d(H \cap K)). \tag{1}$$

Example 1. In this example we compute the number of edges for some certain groups.

- (i) Suppose $D_8=\langle a,b:a^4=b^2=1,a^b=a^{-1}\rangle$ is the dihedral group of order $8,H=\langle ab\rangle$ and $K=\langle b\rangle$ are two subgroups of D_8 . Obviously $V(\Gamma_{(H,K)})=\{ab,b\},d(H)=1,d(H,K)=3/4,|E(\Gamma_{(H,K)})|=1$ and $\Gamma_{(H,K)}=1$.
- (ii) Let $S_3 = \{e, (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\}$ be the symmetric group of order $6, H = \{e, (1\ 2)\}$ and $K = \{e, (1\ 3)\}$ be subgroups of S_3 . It is clear that again $\Gamma_{(H,K)} = K_2$.

Corollary 1. Let $\Gamma_{(H,K)}$ be a generalized non-commuting graph. Then

$$|E(\Gamma_{(H,K)})| \leq |H|(|K| + \frac{3}{16}|H| - 1) - |C_H(K)|(|K| - 1).$$

Now, we recall that the star graph as a tree on n vertexes in which one vertices of degree n-1 and the others of degree 1.

Example 2. Let $D_{2n}=\langle a,b;a^n=b^2=1,a^b=a^{-1}\rangle$ be the dihedral group of order $2n,H=\langle a\rangle$ and $K=\langle b\rangle$. Then $\Gamma_{(H,K)}$ is a star graph.

If n is an even number, then $V(\Gamma_{(H,K)})=n-1$, $\deg(a^i)=1$, $i\neq\frac{n}{2}$, $1\leq i\leq n-1$ and $\deg(b)=n-2$. Therefore $\Gamma_{(H,K)}$ is a star graph. Moreover, d(H,K)=(n+2)/2n and by Proposition 3 or by the fact $\Gamma_{(H,K)}$ is a star graph follows $|E(\Gamma_{(H,K)})|=n-2$. If n is an odd number, then $V(\Gamma_{(H,K)})=n$. Furthermore, $\deg(a^i)=1$, $1\leq i\leq n-1$ and $\deg(b)=n-1$. Hence $\Gamma_{(H,K)}$ is a star graph. We deduce d(H,K)=(n+1)/2n and so $|E(\Gamma_{(H,K)})|=n-1$.

As a consequence of the above corollary, one can see that K = G then $\Gamma_{(H,G)}$ is empty graph if and only if H is abelian subgroup of G, with this properties we can prove the following theorem.

Theorem 2. Let H_1 and H_2 be subgroups of non-abelian group G such that $\Gamma_{(H_1,G)} \cong \Gamma_{(H_2,G)}$. Then $\Gamma_{H_1} \cong \Gamma_{H_2}$.

Theorem 3. Let H be an on-abelian subgroup of G such that $\Gamma_{(H,G)} \cong \Gamma_S$, for some non-abelian finite simple group S. Then $H = G \cong S$.

References

- [1] A. Abdollahi, S. Akbari and H. R. Maimani, Non-commuting graph of a group, J. Algebra 298, (2006), 468-492.
- [2] A. K. Das and R. K. Nath, On generalized relative commutativity degree of a finite group, Internation Electronic Journal of Algebra 7, (2010), 140-151.
- [3] A. Erfanian, B. Tolue, Relative non-commuting graph of a finite group, J. Algebra and its Applications, (2012).

- [4] W. H. Gustafon, what is the probability that two group elements commute, Amer. Math. Monthly 80, (1973), 1031-1304.
- [5] A. R. Moghaddamfar, W. J. Shi, W. Zhou and A. R. Zokayi, On noncommuting graph associated with a finite group, Siberian Math. J., 46(2), (2005), 325-332.