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Maximal Invariant and Weakly Equivariant
Estimators

M. SHAMS, M. EMADI, AND N. R. ARGHAMI

Department of Statistics, School of Mathematical Sciences, Ferdowsi University
of Mashhad, Mashhad, Iran

Equivariant functions can be useful for constructing of maximal invariant statistic. In
this article, we discuss construction of maximal invariants based on a given weakly
equivariant function under some additional conditions. The theory easily extends to the
case of two or more weakly equivariant functions. Also, we derive a maximal invariant
statistic when the group contains a sharply transitive and a characteristic subgroup.
Finally, we consider the independence of invariant and weakly equivariant functions
under some special conditions.

Keywords Topological group; G-space; Sharply transitive group; Maximal
invariant statistic; Weakly equivariant function; Weakly isovariant function; Basu’s
Theorem.

Mathematics Subject Classification Primary 62F10; Secondary 54H11.

1. Introduction

Statistical decisions should not be affected by transformations on the data, so we study
invariance. For some additional discussion on the development of invariance arguments,
see Hall et al. (1965). It should be mentioned that this article is based on topological
groups and since statisticians commonly examine the invariance theory from the point of
view of transformation groups, its literature may seems unfamiliar to them. It is strongly
recommended to refer to Eaton (1989) to get a better view of the invariance theory from the
point of view of topological groups. At first, we list some symbols and well known results
about the topological groups and related arguments.

Definition 1.1 (Deitmar and Echterhoff, 2009). A map f : X → Y between topological
spaces X and Y is called continuous if f −1(U ) is open in X for every open set U ⊂ Y . This
is equivalent to the condition that f −1(C) is closed in X for every closed C ⊂ Y .
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1294 Shams et al.

Definition 1.2. (Folland, 1995). A topological group is a group G, together with a topology
on the set G such that the group multiplication and inversion,

G × G → G G → G

(g1, g2) �→ g1g2 g �→ g−1,

are both continuous maps.
It suffices to assert that the map ζ : (g1, g2) �→ g−1

1 g2 is continuous. To see this, assume
that ζ is continuous. Since x �→ (x, e) is continuous (where e is the unit element of the group
G), g �→ (g, e) �→ g−1e = g−1 and (g1, g2) �→ (g−1

1 , g2) �→ g1g2 are continuous (Deitmar
and Echterhoff, 2009).

Definition 1.3 (Deitmar and Echterhoff, 2009). A topological space X is called a Haus-
dorff space, if any two different points can be separated by disjoint neighborhoods, i.e., if
for any two x �= y in X there are open sets U,V ⊂ X with x ∈ U , y ∈ V , U ∩ V = φ.

A topological group is called a locally compact group if it is Hausdorff and every point
possesses a compact neighborhood.

Definition 1.4 (Deitmar and Echterhoff, 2009). A bijective map f : X → Y is called a
homeomorphism if f and f −1 are contiuous.

Homeomorphisms are the mappings which preserve all the topological properties of a
given space. Two spaces with a homeomorphism between them are called homeomorphic,
and from a topological viewpoint they are the same. For example, every nonempty open
interval (a, b) ⊂ R is homeomorphic to the real line R when both are equipped with the
usual topology.

The useful groups in statistics are transformation groups acting on some set or space.
Transformation groups were introduced for the first time by Fraser (1961, 1968). Group
actions are first induced on the sample space, which induce group actions on the parameter
space.

Definition 1.5 (Deitmar and Echterhoff, 2009). The set X is called a G-space iff a map
G×X → X, given by (g, x) �→ gx, satisfies the conditions g1(g2x) = (g1g2)x and ex = x

for all g1, g2 ∈ G, x ∈ X. In this case, we can also say G acts on X.
A subgroup H of G, written H ≤ G, is a subset that is again a group under the same

composition. An important class of subgroups are the normal subgroups, written H 	 G,
which are subgroups H such that gH = Hg for all g ∈ G. This means that the subgroup
H is closed under conjugation, i.e., gHg−1 = {ghg−1 : h ∈ H } = H for all g ∈ G. Let G
and H be groups. A function ρ : G → H is a homomorphism if ρ(g1g2) = ρ(g1)ρ(g2), for
all g1, g2 ∈ G. When there is a homomorphism ρ, H is called a homomorphic image of G
and we write Ḡ = H . In this case, g1g2 = g1g2 and g−1 = ḡ−1. Also, if e is the identity
in G, then ē is the identity in Ḡ. A bijective homomorphism from G on itself is called an
automorphism. Aut(G) denotes the group of all continuous automorphisms of G. If X is
a G-space and x ∈ X, then Gx = {gx : g ∈ G} is called the orbit of G (through x) and
Gx = {g : gx = x} is called the stabilizer or stability subgroup of G at x (Deitmar and
Echterhoff, 2009).
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Weakly Equivariant Estimators 1295

Example 1.1. Let G = Z2 = {±1} acts on X = {x = (x1, x2) ∈ R2 : x2
1 +x2

2 = 1} defined
by g(x1, x2) = (gx1, x2). For a given x ∈ X,

Gx =
{ {x} x = (x1, x2) = (0,±1)

{(±x1, x2)} x = (x1, x2) �= (0,±1)
,

Gx =
{

Z2 x = (x1, x2) = (0,±1)
{1} x = (x1, x2) �= (0,±1)

.

Definition 1.6. (Bredon, 1972). Let G be a group and X a G-space. The action of G on X
is said to be:

(i) trivial, if Gx = G for every x ∈ X;
(ii) free, if Gx = {e} for every x ∈ X;

(iii) transitive, if for every pair x, x ′ ∈ X, there is a g ∈ G with x ′ = gx; and
(iv) sharply transitive, if for all x, x ′ ∈ Xthere is a uniqueg ∈ G such that x ′ = gx.

Remark 1.1. If G acts transitively on X, then this action is free iff it is sharply transitive.

Example 1.2. Consider G = GLn of all real invertible n × n matrices and X = Rn − {0}.
Thus, G acts on X by gx, where gx means the matrix g times the vector x. Also, GLn

acts transitively on Rn − {0} and G = GL1 = R − {0} is free and sharply transitive on
X = R − {0}.

Definition 1.7. Suppose that X and Y are two G- spaces. Then we have the following.

(i) A measurable function f : X → Y is called G-equivariant map if f (gx) = gf (x),
for all g ∈ G and x ∈ X (Lehmann and Romano, 2005).

(ii) A measurable function f : X → Y is called weakly G-equivariant map if there
exists a continuous automorphism αf of G such that f (gx) = αf (g)f (x), for all
g ∈ G and x ∈ X (Bredon, 1972).

(iii) A measurable function f : X → Y is said to be maximal invariant if it is G-
invariant i.e., f (gx) = f (x), for all g ∈ G and x ∈ X and also, if f (x1) = f (x2)
implies x2 = gx1 for someg ∈ G (Lehmann and Romano, 2005).

(iv) A measurable function f : X → Y is called G-isovariant map if Gx = Gf (x) for
all x ∈ X (Palais, 1960).

(v) A measurable function f : X → Y is said to be weakly G-isovariant if αf (Gx) =
Gf (x) for all x ∈ X and some αf ∈ Aut(G).

Isovariant maps were introduced by Palais (1960) in order to study a classification
problem for orbit maps of G-spaces. It should be clear by now that the concept of iso-
variance can be easily extended to the case of weakly isovariance when we study weakly
G-equivariant maps (see Definition 1.7(v)).

Example 1.3. Assume that the G-spaces X and Y are Hausdorff for which the topology
has a countable base. Consider the invariant integral J (f ) = ∫X f (x)μ(dx), f ∈ K(X) (the
real vector space K(X) is the set of all continuous real valued functions f defined on X
which have compact support) which clearly satisfies the following.

(i) J (a1f1 + a2f2) = a1J (f1) + a2J (f2) for all f1, f2 ∈ K(X), a1, a2 ∈ R;
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1296 Shams et al.

(ii) J (f ) ≥ 0 whenever f ∈ K(X) and f is non negative;
(iii) J (f ) > 0 for some f ∈ K(X); and
(iv) J (Lgf ) = ∫

X
f (g−1x)μ(dx) = ∫

X
f (x)μ(dx) = J (f ) for all f ∈ K(X), g ∈ G,

where the transformation Lg : K(X) → K(X), given by (Lgf )(x) = f (g−1x) for all
x ∈ X, g ∈ G, f ∈ K(X) (Nachbin and Bechtolsheim, 1965) and μ is the corresponding
Radon measure i.e., μ �= 0 and μ(C) < +∞ for all compact sets C ⊆ X (Folland, 1995).
Given a Borel measurable weakly equivariant function ϕ from X onto Y, there is a natural
measure ν induced on Y s.t. ν(B) ≡ μ(ϕ−1(B)) for measurable subset B ⊆ Y . Suppose that
μ(ϕ−1(K)) < +∞ for all compact sets K ⊆ Y , then the integral J1(f ) = ∫

Y
f (y)ν(dy),

f ∈ K(Y ) is well defined. Since ϕ is weakly equivariant with onto αf ∈ Aut(G) and J1 is
invariant, we have

J1(Lgf ) =
∫

Y

f
(
(αf (g0))−1y

)
ν(dy) =

∫
X

f
(
(αf (g0))−1φ(x)

)
μ(dx)

=
∫

X

f
(
φ(g−1

0 x)
)
μ(dx) =

∫
X

f (φ(x)) μ(dx) = J1(f )

for all f ∈ K(X), g ∈ G and some g0 = α−1
f (g) ∈ G, so the integral J1 is invariant under

G.

The following lemma is a useful example for bijective weakly G-equivariant functions.

Lemma 1.1. Assume that G is a compact group which acts on X and x ∈ X, α ∈ Aut(G).
A natural map τx : G/α−1(Gx) → Gx, given by gα−1(Gx) �→ α(g)x, is a bijective weakly
G-equivariant mapping.

Proof. Suppose that τx(g1α
−1(Gx)) = α(g1)x = α(g2)x = τx(g2α

−1(Gx)), then
α(g−1

2 g1)x = x and so g−1
2 g1 ∈ α−1(Gx). It follows that g1α

−1(Gx) = g2α
−1(Gx). This

means that τx is injective. For any y ∈ Gx, there exists a g′ ∈ G such that y = g′x, but
there is a g ∈ G that g′ = α(g), hence τx(gα−1(Gx)) = α(g)x = g′x = y, and thus τx is
surjective. Also,

τx((h(gα−1(Gx))) = τx((hgα−1(Gx))) = α(h)(α(g)x) = α(h)τx(gα−1(Gx))

for all g, h ∈ G and therefore τx is weakly G-equivariant. �

Now, if G = On acts on X = Rn − {0} and we take H = {diag(1, 	2) : 	2 ∈ On−1},
then the left coset 	H of any 	 ∈ G consists of all orthogonal matrices with the same first
column that 	 has. Also, if x = (1, 0, . . . , 0)t , then Gx = H . Since G is compact, Lemma
1.1 implies that each orbit Gx of G acting on X, is homogeneous for G and can be regarded
as G/Gx , provided α = 1G. For all y ∈ Gx, the equation y = 	x, 	 ∈ G is equivalent to
the first column of 	 which is y. But all such 	‘s constitute a coset of G/H = G/Gx .
Thus, the function τx : G/Gx → Gx assigns to an n×n orthogonal matrix its first column
(Eaton, 1983).

Remark 1.2. If G acts freely on X, then, by Lemma 1.1, there is a one-to-one correspon-
dence between G and Gx. Furthermore, if G acts transitively on X, then by Remark 1.1, G

D
ow

nl
oa

de
d 

by
 [

M
ah

di
 E

m
ad

i]
 a

t 0
0:

30
 2

0 
M

ar
ch

 2
01

5 



Weakly Equivariant Estimators 1297

is sharply transitive on X and in this case, there is a one-to-one correspondence between G
and X.

Weakly isovariant G-equivariant maps have nice homeomorphism properties as fol-
lows.

Proposition 1.1. If f : X → Y is a weakly G- equivariant map between G-spaces, then:

(i) αf (Gx) ⊆ Gf (x) for all x ∈ X and
(ii) f is one-to-one on Gx if and only if equality holds.

Proof.

(i) If g ∈ Gx , then f (x) = f (gx) = αf (g)f (x). Thus, αf (g) ∈ Gf (x).
(ii) Assume that αf (Gx) = Gf (x) for all x ∈ X. Let x ∈ X and suppose g1, g2 ∈ G.

Then

f (g1x) = f (g2x) ⇒ αf (g1)f (x) = αf (g2)f (x) ⇒ f (x) = αf (g−1
1 )αf (g2)f (x)

⇒ αf (g−1
1 g2) ∈ Gf (x) = αf (Gx) ⇒ g−1

1 g2x = x ⇒ g1x = g2x.

It follows that f is injective on Gx.
Conversely, suppose f |Gx is injective for each x ∈ X, then

αf (g) ∈ αf (Gx) ⇔ g ∈ Gx ⇔ f (gx) = f (x) ⇔ αf (g) ∈ Gf (x).

Thus, we get αf (Gx) = Gf (x), that is f is weakly isovariant.
The following is a useful consequence of Proposition 1.1. �

Corollary 1.1. Let G be a compact topological group and let X and Y be G-spaces. A
weakly G-equivariant function f : X → Y is weakly isovariant if and only if its restriction
to each orbit in X is a homeomorphism onto its image in Y.

Proof. First assume that f is weakly isovariant, then since f |Gx : Gx → Gf (x) is a
closed, surjective and continuous map for each x ∈ X, then f |Gx is a homeomorphism if
and only if it is injective. Thus by using Proposition 1.1(ii), we will complete the proof. �

Remark 1.3. In general, if f is one-to-one, then it is one-to-one on Gx. Converse is true if
G acts transitively on X, i.e., Gx = X for all x ∈ X. Consequently, if G acts transitively on
X, then f is one-to-one iff its restriction to each orbit in X is one-to-one.

Eaton introduced a method of construct a maximal invariant in terms of a given equiv-
ariant function (Eaton, 1989, pp. 28–40). In this article, we will introduce a method for
finding maximal invariant functions by using weakly equivariant functions, which is a gen-
eralization of Eaton’s method. To apply this method we need a condition, which is only
satisfied by equivariant functions when the group of transformations is free. Thus, in this
case, our method is the same as Eaton’s. In this case, we limit ourselves to sharply transitive
groups. Thus we can consider the parameter space as a group with a new binary action.
Based on this concept, we will find maximal invariant functions by using weakly equiv-
ariant estimators, with the difference that, in this case, the functions are estimators. Notice
that when the group is sharply transitive, it is possible to change weakly G-equivariant
functions into weakly G-equivariant estimators and vice versa. In some cases, the trans-
formation group acting on the parameter space is not sharply transitive but it contains a
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1298 Shams et al.

subgroup with this property. In a special case, we will find a maximal invariant statis-
tic when the group contains a sharply transitive and a characteristic subgroup. Instead of
using the above methods, one can use two (or more) weakly G-equivariant functions to
obtain a maximal invariant function. This method immediately extends to the case where
we have two (or more) weakly G-equivariant estimators. Finally, we deal with the inde-
pendence of an invariant function and a weakly equivariant function under some special
conditions.

2. Maximal Invariant and Weakly Equivariant Estimators

In this section, we investigate the connection between maximal invariant statistics and
weakly equivariant estimators. At first, we show that a weakly equivariant function can
be used for constructing a maximal invariant and then we give a general form for the
maximal invariant. Then, under some special conditions, we construct a general maximal
invariant from two (or more) given weakly equivariant functions? Toward the end of Sec.
3, we improve this method for weakly equivariant estimators when the group is sharply
transitive.

The elementary relationship between maximal invariant functions and weakly equiv-
ariant functions is given by the following proposition.

Proposition 2.1. If X, Y, and Z are G-spaces, then:

(i) if f : X → Y is weakly equivariant and h : Y → Z is invariant, then k1 = h◦f :
X → Z is invariant;

(ii) if f : X → Y is one-to-one and h : Z → X is maximal invariant, then k2 = f ◦h :
Z → Y is maximal invariant; and

(iii) if f : X → Y is weakly equivariant and weakly isovariant and h : Y → Z is
maximal invariant, then k1 = h ◦ f : X → Z is maximal invariant.

Proof.

(i) For all x ∈ X, g ∈ G: k1(gx) = h(f (gx)) = h(αf (g)f (x)) = h(f (x)) = k1(x).
(ii) k2 = f ◦h is invariant because k2(gx) = f (h(gx)) = f (h(x)) = k2(x) for all x ∈

X, g ∈ G. Now, if k2(x1) = k2(x2), then f (h(x1)) = f (h(x2)) and since f is one-
to-one, we have h(x1) = h(x2) and by maximal invariance of h, there exists g ∈ G

such that x1 = gx2. It follows that k2 = f ◦ h is maximal invariant.
(iii) By part (i), k1 = h◦f is invariant. If k1(x1) = k1(x2), then h(f (x1)) = h(f (x2)) and

since h is maximal invariant, there exists g′ ∈ G such that f (x1) = g′f (x2). Since
αf is onto, there is a g ∈ G s.t. g′ = αf (g), and therefore f (x1) = αf (g)f (x2) =
f (gx2). But Proposition 1.1(ii) implies that f is one-to-one on Gx and thus x1 = gx2

for some g ∈ G. Thus, k1 = h ◦ f is maximal invariant. w

A maximal invariant function is constant on the orbits but for each orbit takes on a
different value. If G acts transitively on X, for all invariant functions like f, if f (x1) = y1

and f (x2) = y2, then y2 = f (x2) = f (gx1) = f (x1) = y1 for some g ∈ G and in this way,
only (maximal) invariant functions are constant and so Proposition 2.1 is trivial. The
following lemma states how are we can construst a general maximal invariant from a given
equivariant function Afterward, in Proposition 2.2, we improve it for weakly equivariant
function. �
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Weakly Equivariant Estimators 1299

Lemma 2.1. (Eaton, 1989). If δ0 : X → G is any G-equivariant function, then f (x) =
(δ0(x))−1x is maximal invariant.

Proof. f is invariant because f (gx) = (gδ0(x))−1gx = (δ0(x))−1g−1gx = f (x). Suppose
f (x1) = f (x2), then x2 = (δ0(x2)(δ0(x1))−1)x1 = gx1 and it follows that f is maximal in-
variant. �

To see how Lemma 2.1 together with Proposition 2.1 can be used for con-
structing a maximal invariant statistic, suppose that G = R acts on X = Rn by gx =
x + gen, x ∈ Rn, g ∈ R where en = (1, . . . , 1) ∈ Rn. Since δ0(x) = x̄ is G-equivariant,
then by Lemma 2.1, h(x) = (δ0(x))−1x = x − x̄en = (x1 − x̄, . . . , xn − x̄) is maxi-
mal invariant. Hence, because of Proposition 2.1(iii), for G-isovariant and weakly G-
equivariant function f : Rn → Rn, given by f (x) = (f1(x), . . . , fn(x)), we conclude
k1(x) = h◦f (x) = (f1(x)−f (x), . . . , fn(x)−f (x)) is a maximal invariant statistic where
f (x) = 1

n

∑n
i=1 fi(x). In a special case, take the order statistic f (x) = (x(1), . . . , x(n)) and

so k1(x) = (x(1) − x̄, . . . , x(n) − x̄) is a maximal invariant statistic. Furthermore, for another
G-equivariant estimator as δ′0(x) = xn, Lemma 2.1 implies that (δ′0(x))−1x = x − xnen =
(x1 − xn, . . . , xn−1 − xn, 0) and so h′(x) = (x1 − xn, . . . , xn−1 − xn) is maximal invariant.
Similarly, k′

1(x) = h′ ◦ f (x) = (x(1) − x(n), . . . , x(n−1) − x(n)) is maximal invariant.
In Lemma 2.1, and so on G acts on X and Y = G. Thus, for an equivariant function

δ0 : X → G where δ0(gx) = gδ0(x) for all g ∈ G, x ∈ X, we have δ0(x) ∈ G and in this
way, gδ0(x) ∈ G means composition of g and δ0(x), while for δ0(x) ∈ Y , gδ0(x) ∈ Y means
g acts on δ0(x).

Example 2.1. Suppose that the action of G on G is given by conjugation. For a map
η : X → G we have η(gx) = α(g)η(x)α(g−1) for all g ∈ G, x ∈ X and some α ∈ Aut(G).
Hence, if (α(g))−1g ∈ Gx , then f (x) = (η(x))−1x is weakly equivariant because:

f (gx) = (η(gx))−1gx = α(g)(η(x))−1α(g−1)gx = α(g)f (x).

To improve Lemma 2.1, for weakly G-equivariant function, first we give the following
exa mples.

Example 2.2. Assume that G is an abelian group and there exists τ : X → G with τ (gx) =
α(g)τ (x), for all g ∈ G, x ∈ X. Define f : X → X by f (x) = (τ (x))−1x. Then

f (gx) = (τ (gx))−1gx = (τ (x))−1(α(g))−1gx = β(g)f (x)

for all g ∈ G, x ∈ X, where β(g) = (α(g))−1g, but f is not weakly equivariant because in
general β /∈ Aut(G). In a special case, if τ is G- equivariant (i.e., α(g) = g), then β(g) = e,
and by Lemma 2.1, f is maximal invariant. Also, if τ is G-invariant (i.e., α(g) = e), then
β = 1G ∈ Aut(G) and in this way, f is G-equivariant.

Example 2.3. If the action of H 	 G on X is trivial and there exists τ : X → G with
τ (gx) = h−1ghτ (x), for all g ∈ G, x ∈ X and some h ∈ H , then f (x) = (τ (x))−1x is
maximal invariant because since Hx = H 	 G for all x ∈ X, we have:

f (gx) = (τ (gx))−1gx = (τ (x))−1h−1g−1hgx = (τ (x))−1h−1g−1gh′x

= (τ (x))−1h−1h′x = f (x)
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1300 Shams et al.

for all g ∈ G, x ∈ X and some h′ ∈ H .
We can extend Examples 2.2 and 2.3, and add some conditions for constructing maxi-

mal invariant in terms of a given weakly equivariant function.

Proposition 2.2. Assume that there exists a weakly G-equivariant mapping τ : X → G

with τ (gx) = α(g)τ (x), β(g) = (α(g))−1g ∈ Gx for all g ∈ G, x ∈ X and some α ∈
Aut(G). Then f (x) = (τ (x))−1x is maximal invariant.

Proof. Since β(g) = (α(g))−1g ∈ Gx , we obtain:

f (gx) = (τ (gx))−1gx = (τ (x))−1(α(g))−1gx = f (x)

for all g ∈ G, x ∈ X, so f is invariant. Furthermore, f is maximal invariant (see Lemma
2.1). �

Remark 2.1. In parts of statistical inference theory it is important that group actions can
be defined both on the sample space and on the parameter space, and these two types of
group actions are connected. When the results are of interest for maximal invariants in the
parameter space, similar to Proposition 2.2, if there exists a weakly G-equivariant mapping
τ :  → G with τ (gθ ) = α(g)τ (θ ), β(g) = (α(g))−1g ∈ Gθ for all g ∈ G, θ ∈  and
some α ∈ Aut(G), then f (x) = (τ (θ ))−1θ is maximal invariant. In other words, by using
Proposition 2.2, we can construct a general ?maximal invariant on the sample space X based
on a given weakly equivariant function from X to G. In a similar manner, Proposition 2.2
gives a method to derive a maximal invariant statistic on the parameter space  by using
weakly equivariant functions from  to G.

Note that if G acts freely on X, β(g) = (α(g))−1g ∈ Gx = {e} implies that α = 1G

and in this way, Proposition 2.2 and Lemma 2.1 ought to be coinciding because there is no
weakly G-equivariant mapping τ : X → G with α �= 1G such that β(g) = (α(g))−1g ∈ Gx

for all g ∈ G, x ∈ X and some α ∈ Aut(G). Hence, when τ : X → G is a weakly equvariant
function and Gx �= {e}, we need a general condition for invariance of f (x) = (τ (x))−1x

provided in Proposition 2.2, while f is maximal and hence we don’t need any condition
for maximality of f. Also, in a special case for G-equivariant mapping τ : X → G, we
have τ (gx) = α(g)τ (x) for all g ∈ G, x ∈ X where α = 1G and so β(g) = (α(g))−1g =
e ∈ Gx . Thus, by Proposition 2.2, f (x) = (τ (x))−1x is maximal invariant and in this case,
Proposition 2.2 and Lemma 2.1 ought to be coinciding. Hence, in Proposition 2.2, we
improve Lemma 2.1 (Eaton’s method) for weakly equivariant function. Now we can say in
Example 2.3,

β(g) = (α(g))−1g = h−1g−1hg = h−1g−1gh′ = h−1h′ ∈ Gx

for all g ∈ G, x ∈ X and some h, h′ ∈ H = Hx , thus by Proposition 2.2, f (x) = (τ (x))−1x

is maximal invariant. Similarly, in Example 2.2, if α = 1G, since β(g) = (α(g))−1g = e ∈
Gx , Proposition 2.2 implies that f (x) = (τ (x))−1x is maximal invariant.

Example 2.4. Consider iid p-dimensional random vectors x1, . . . , xn, which have a mul-
tivariate normal distribution Np(0, �). The problem considered here is the estimation of
the p × p covariance matrix � which is assumed to be symmetric and nonsingular and
unknown. Further, it is assumed that n > p, so that the sufficient statistics =∑n

i=1 xix
′
i is

positive definite with probability 1. Without loss of generality, estimators of � are functions
of s. Obviously, s has a Wishart distribution W (�,p, n). It is supposed that G = GLn ∩Sn
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Weakly Equivariant Estimators 1301

acts on S = GLn ∩ Sn by gs = β(g)s(β(g))t , for all g ∈ G, s ∈ S, and some β ∈ Aut(G),
respectively, where Sn is the set of n × n real symmetric matrices and GLn is the set of all
real invertible n × n matrices. It is easy to show that f (s) = cγ (s) is weakly G-equivariant
with α ∈ Aut(G) for some c > 0 where γ = β ◦ α ◦ β−1 ∈ Aut(G) because

f (gs) = cγ [β(g)s(β(g))t ] = c(β ◦ α ◦ β−1[(β(g)])γ (s)(β ◦ α ◦ β−1[β(gt )])

= β[α(g)]f (s)β[α(gt )] = α(g)f (s)

for all s ∈ S, g ∈ G. By Proposition 2.2, if (α(g))−1g ∈ Gs for all g ∈ G, s ∈ S, then
(f (s))−1s = kγ (s−1)s is maximal invariant where k > 0.

The following proposition states how we can construct a general maximal invariant
two given ?weakly equivariant functions. Notice that the result in Proposition 2.2 holds
even if the condition (α(g))−1g ∈ Gx for all g ∈ G, x ∈ X is omitted. Instead of using this
condition, one could use two weakly G-equivariant functions to obtain a maximal invariant
function.

Proposition 2.3. Assume that there exist two weakly G-equivariant functions τi , i = 1, 2
with the same α ∈ Aut(G). Then:

(i) the function f : X → G defined by f (x) = (τ1(x))−1τ2(x) is invariant and
(ii) f is maximal invariant if at least one of the τi : X → G is weakly G-isovariant.

Proof.

(i) f is invariant because

f (gx) = (τ1(gx))−1τ2(gx) = (τ1(x))−1(α(g))−1α(g)τ2(x) = f (x).

(ii) Assume that one of the two, say τ2 weakly G-isovariant. Let x ∈ X and suppose that
g1, g2 ∈ G. Since τ2 is weakly G-isovariant and weakly G-equivariant, Proposition
1.1 (ii) implies that τ2 is one-to-one on the orbit Gx. By part (i), it is enough to
show that f is maximal. To see this, suppose that

f (x1) = (τ1(x1))−1τ2(x1) = (τ1(x2))−1τ2(x2) = f (x2),

since α ∈ Aut(G) is onto and τ1(x1), τ1(x2) ∈ G, there exist g1, g2 ∈ G such that
(τ1(x1))−1 = α(g1), (τ1(x2))−1 = α(g2), and so α(g1)τ2(x1) = α(g2)τ2(x2). Using
the fact that τ2 is weakly G-equivariant, thus τ2(g1x1) = τ2(g2x2). On the other
hand, τ2 is one-to-one on each orbit Gx, and hence x1 = gx2 where g = g−1

1 g2 ∈ G,
and the result follows. �

Example 2.5. Let (x1, x2) be a single random variable with density (σ1e
−σ1x1 )

(σ2e
−σ2x2 ) where σ1, σ2 > 0 and x1, x2 > 0. Suppose that G = R+ acts on X =

{(x1, x2) : x, y ∈ R+}, Y = R+ by g × (x1, x2) = (gx1, gx2), g ⊗ y = gny for all g ∈ G,
(x1, x2) ∈ X, y ∈ Y and some integer n, respectively. (Since G(x1, x2) = X and G(x1,x2) =
{1} for all (x1, x2) ∈ X, we can say the action of G on X is sharply transitive.)

The functions τi : X → G, i = 1, 2, given by τ1(x1, x2) = xm
1 xm

2 , τ2(x1, x2) = x2m−1
1 x2

are two weakly G-equivariant functions with the same α(g) = n
√

g2m where m is an even
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1302 Shams et al.

integer, respectively. For example, we can see that τ1 is weakly G-equivariant because

τ1(g(x1, x2)) = τ1((gx1, gx2)) = g2mxm
1 xm

2 = (α(g))nτ1(x1, x2) = α(g) ⊗ τ1(x1, x2)

for all g ∈ G, (x1, x2) ∈ X. Proposition 2.3(i) implies that

f (x1, x2) = (τ1(x1, x2))−1τ2(x1, x2) = x2m−1
1 x2/x

m
1 xm

2 = (x1/x2)m−1

is invariant. By the way α(G(x1,x2)) = Gτ1(x1,x2) = {1} and so τ1 is weakly G-isovariant.
Hence, by Proposition 2.3(ii), f (x1, x2) = (x1/x2)m−1 is maximal invariant.

Notice that (α(g))−1g = n
√

gn−2m /∈ G(x1,x2) = {1} for all g ∈ G, (x1, x2) ∈ X, hence
the condition in Proposition 2.2 does not hold. In this example, since G acts freely on X,
we thus can not use this proposition for constructing a maximal invariant statistic.

Proposition 2.3 can be improved by using more weakly G-equivariant functions for
constructing a maximal invariant statistics as follows.

Corollary 2.1. Assume that τi : X → G, i = 1, . . . , 2n are weakly G-equivariant func-
tions with the same α ∈ Aut(G). Then the function f : X → G defined by f (x) =∏n

i=1 (τ2i−1(x))−1τ2i(x) is maximal invariant if at least one of the τ1 or τ2n is weakly
G-isovariant.

Proof. Proposition 2.3(i) implies that fi(x) = (τ2i−1(x))−1τ2i(x), i = 1, . . . , n are invari-
ant, thus f (x) =∏n

i=1 fi(x) is invariant too. Assume that one of the two, say or τ2nis
weakly G-isovariant.

By Proposition 1.1(ii), τ2n is one-to-one on the orbit Gx. Now, if f (x1) = f (x2), then

n−1∏
i=1

fi(x1)(τ2n−1(x1))−1τ2n(x1) =
n−1∏
i=1

fi(x2)(τ2n−1(x2))−1τ2n(x2).

But α ∈ Aut(G) is onto and so there exist g1, g2 ∈ G such that

n−1∏
i=1

fi(xj )(τ2n−1(xj ))−1 = α(gj ),j = 1, 2

and then α(g1)τ2n(x1) = α(g2)τ2n(x2). Using the fact that τ2n is weakly G-equivariant
and one-to-one on each orbit Gx, the result follows, similar to the proof of Proposition
2.3(ii). �

We illustrate above corollary by the following examples.

Example 2.6. Let x1, . . . , xn be iid normal distribution N (θ, σ 2), where σ 2 > 0 is known
and θ is unknown. Suppose that G = R acts on X = Rn, by g × x = (x1 + g, . . . , xn + g),
g ⊗ y = y + g for all g ∈ G, x = (x1, . . . , xn) ∈ X, y ∈ Y , respectively. The functions τi :
X → G, given by τi(x1, . . . , xn) =∑n

j=1 mi,j xj , i = 1, . . . , 2n, are weakly G-equivariant
functions with the same α(g) = (

∑n
j=1 mi,j )g, where mi,j ‘s, i = 1, . . . , 2n, j = 1, . . . , n

are chosen to satisfy
∑n

j=1 mi,j = c, for all i = 1, . . . , 2n and some integer c. Corollary
2.1 implies that

f (x1, . . . , xn) =
n∑

i=1

(τ2i(x1, . . . , xn) − τ2i−1(x1, . . . , xn))
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Weakly Equivariant Estimators 1303

=
n∑

i=1

⎛
⎝ n∑

j=1

[m2i,j − m2i−1,j ]xj

⎞
⎠ =

n∑
j=1

ωjxj

is invariant where ωj =∑n
i=1 (m2i,j − m2i−1,j ) for all j = 1, . . . , n. Notice that

(α(g))−1g = g − (
∑n

j=1 mi,j )g ∈ G(x1,...,x2) = {0} for all g ∈ G, (x1, . . . , x2) ∈ X iff∑n
j=1 mi,j = 1, and then in this case, the condition in Proposition 2.2 hold the result

follows. Thus, Proposition 2.2 implies that

h(x1, . . . , xn) =
⎛
⎝ n∑

j=1

mi,j xj

⎞
⎠

−1

× (x1, . . . , xn)

=
⎛
⎝x1 −

n∑
j=1

mi,j xj , . . . , xn −
n∑

j=1

mi,j xj

⎞
⎠

is a maximal invariant statistic provided
∑n

j=1 mi,j = 1. In the general case of example 2.6
suppose that

G =
{

(g1, . . . , gn) ∈ (R+)n :
n/2∏
i=1

g2i−1/g2i = 1

}

acts on X = {(x1, . . . , xn) ∈ (R+)n :
∏n/2

i=1 x2i−1/x2i = 1}, Y = R+ by g × x =
(g1x1, . . . , gnxn), g⊗y =∏n

j=1 g
mi,j

j y for all g = (g1, . . . , gn) ∈ G, x = (x1, . . . , xn) ∈ X,
y ∈ Y and some integers mi,j where i = 1, . . . , 2n, j = 1, . . . , n, respectively, s.t. n
is an even integer and πi =∏n

j=1 g
mi,j

j = π for all i = 1, . . . , 2n and some positive

numberπ . The functions τi : X → G, given by τi(x1, . . . , xn) =∏n
j=1 x

mi,j

j , i = 1, . . . , 2n,

are G-equivariant functions. Corollary 2.1 implies that f (x1, . . . , xn) =∏n
j=1 x

ωj

j =∏n/2
j=1 (x2j−1/x2j )k is invariant where ωj =∑n

i=1 (m2i,j − m2i−1,j ) for all j = 1, . . . , n

and ω2j = −k, ω2j−1 = k for all j = 1, . . . , n/2 and some odd integer k. In this case,
f (x1, . . . , xn) =∏n/2

j=1 (x2j−1/x2j )k is maximal invariant. This can also be seen directly
from the fact that if f (x1, . . . , xn) = f (x ′

1, . . . , x
′
n), there exist gj = xj/x′j , for all

j = 1, . . . , n where (x1, . . . , xn) = g(x ′
1, . . . , x

′
n) s.t. g = (gmi,1

1 , . . . , g
mi,n

n ) ∈ G and

mi,j =
{

1 j = 1, 3, . . . , n − 1
−1 j = 2, 4, . . . , n

for all i = 1, . . . , 2n.

Example 2.7. Let xi’s be iid according to the exponential distribution with den-
sity σe−σxi , i = 1, . . . , n, where σ > 0 and xi > 0. Suppose that G = R+ acts on
X = (R+)n, Y = R+ by g × x = g(x1, . . . , xn) = (gx1, . . . , gxn), g ⊗ y = gy for all
g ∈ G, x = (x1, . . . , xn) ∈ X, y ∈ Y , respectively. The functions τi : X → G, given by
τi(x1, . . . , xn) =∏n

j=1 x
mi,j

j , i = 1, . . . , 2n, are weakly G-equivariant functions with the

same α(g) = g
∑n

j=1 mi,j where mi,j ‘s, i = 1, . . . , 2n, j = 1, . . . , n are chosen to satisfy

D
ow

nl
oa

de
d 

by
 [

M
ah

di
 E

m
ad

i]
 a

t 0
0:

30
 2

0 
M

ar
ch

 2
01

5 



1304 Shams et al.

∑n
j=1 mi,j = t , for all i = 1, . . . , 2n and some odd integer t. Corollary 2.1 implies that

f (x1, . . . , xn) =
n∏

i=1

τ2i(x1, . . . , xn)/τ2i−1(x1, . . . , xn) =
n∏

j=1

x
∑n

i=1 (m2i,j −m2i−1,j )
j

is invariant. Assume that n is an even integer. Let ωj =∑n
i=1 (m2i,j − m2i−1,j ) for

all j = 1, . . . , n. If ω2j = −k, ω2j−1 = k for all j = 1, . . . , n/2 and some odd in-
teger k, we conclude that f (x1, . . . , xn) =∏n

j=1 x
ωj

j =∏n/2
j=1 (x2j−1/x2j )k is invariant.

Also, f (x1, . . . , xn) =∏n/2
j=1 (x2j−1/x2j )k is maximal invariant if n = 2. But (α(g))−1g =

g/g
∑n

j=1 mi,j ∈ G(x1,...,x2) = {1} for all g ∈ G, (x1, . . . , x2) ∈ X iff
∑n

j=1 mi,j = 1. There-
fore, Proposition 2.2 implies that

h(x1, . . . , xn) =
⎛
⎝ n∏

j=1

x
mi,j

j

⎞
⎠

−1

× (x1, . . . , xn) =
⎛
⎝x1

/
n∏

j=1

x
mi,j

j , . . . , xn

/
n∏

j=1

x
mi,j

j

⎞
⎠

is another maximal invariant statistic provided
∑n

j=1 mi,j = 1.

3. Maximal Invariant Under Sharply Transitive Groups

In this section, we limit ourselves to sharply transitive groups. In this class, we can consider
the parameter space as a group with a new binary action. Based on this concept, it is possible
to change weakly G-equivariant functions into weakly G-equivariant estimators and so we
can find maximal invariant functions by using weakly equivariant estimators. In a special
case, we derive maximal invariant statistic when the group contains a sharply transitive
and a characteristic subgroup. Furthermore, Proposition 2.2 immediately extends to the
case of weakly equivariant estimators. Afterwards ?we offer a simple way for constructing
a maximal invariant function based on two given weakly G-equivariant estimators and
improve Proposition 2.3 for weakly G-equivariant estimators.

Let G be a group and  a G-space. When G is sharply transitive on , we may index
G by . (see Remark 1.2). We can pick one arbitrary basis point θ0 ∈  and α ∈ Aut(G),
then write every element θ ∈  in a unique way as α(gθ )θ0 = θ . Clearly, e corresponds to
θ0. Since G is sharply transitive on , by Remark 1.1, G acts freely on  and in this way,
the identity α(ghθ )θ0 = hθ = hα(gθ )θ0 implies that α(ghθ ) = hα(gθ ) for all θ ∈ , h ∈ G.
Also, we can say ηα :  → G, given by ηα(θ ) = α(gθ ), is a bijective G-equivariant mapping
because ηα(hθ ) = α(ghθ ) = hα(gθ ) = hηα(θ ) for all θ ∈ , h ∈ G. Similarly, η(θ ) = gθ =
α−1(ηα(θ )) is a bijective and weakly G-equivariant mapping with α−1 ∈ Aut(G). Since G
acts transitively on , the only (maximal) invariant functions are constant which, by Lemma
2.1, are equal to f (θ ) = (η(θ ))−1θ = (α(gθ ))−1θ = θ0.

Example 3.1. Let  be the class of all increasing and continuous cdf’s and G be the
class of all strictly increasing bijective continuous maps acting coordinatewise on X. G
acts on  by g.F = F ◦ g−1. Now, G is sharply transitive on , because for F1, F2 ∈ ,
the transformation g given by g(x) = F−1

1 F2(x) is the unique member of g satisfying
g.F1 = F2. Fix an arbitrary point θ0 = F0 ∈  and define gF to be the unique g ∈ G

satisfying g.Fo = F , for all F ∈ . Thus, gF = F−1F0.
Let P be the family of all continuous distributions on the real line having unique

medians. The group G of real-valued bijective increasing functions on R acts coordinatewise
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Weakly Equivariant Estimators 1305

on X = Rn. The group action on X induces a group action on  = R. For P ∈ P, let
τ (P ) = F−1

P (1/2) where FP is the cdf associated with P. θ (P ) is thus the median associated
with P. The function τ : P → R is G-equivariant because:

τ (gP ) = F−1
gP (1/2) = (g.FP )−1(1/2) = (FP ◦ g−1)−1(1/2) = gF−1

P (1/2) = gτ (P ),

for all g ∈ G, P ∈ P. In fact, Berk (1967) proved that equivariant estimators of medians
(or any other fractile) must be order statistics.

Definition 3.1 (Robinson, 1995). A subgroup H of a group G is said to be characteristic in
G if α(H ) ≤ H for all α ∈ Aut(G). Notice that if H is characteristic in G and α ∈ Aut(G),
then α(H ) = H since α(H ) ≤ H and α−1(H ) ≤ H .

Obviously, characteristic subgroupbs are normal. To see this, take α ∈ Aut(G) such
that α(g) = g0gg−1

0 for all g0 ∈ G, hence H = α(H ) = {α(h) : h ∈ H } = {g0hg−1
0 : h ∈

H } = g0Hg−1
0 for all g0 ∈ G. It follows that H 	 G.

Lemma 3.1. Assume that G contains a characteristic subgroup H which is sharply transi-
tive on . Fix an arbitrary point θ0 ∈  and define hθ to be the unique h ∈ H satisfying
α(h)θ0 = θ where α ∈ Aut(G). Then:

(i) hα(g)θ = ghθg
−1 for all g ∈ α−1(Gθ◦), θ ∈  and some hθ ∈ H ,

(ii) hgθ = α−1(g)hθα
−1(g−1) for all g ∈ Gθ◦ , θ ∈  and some hθ ∈ H , and

(iii) η :  → H , given by η(θ ) = α(hθ ), is weakly Gθ◦−equivariant.

Proof.

(i) For all g ∈ G, let θ = α(g)θ0. Since H is sharply transitive on , there is a unique
hθ ∈ H s.t. θ = α(hθ )θ0. Thus, we have g◦ = α(h−1

θ g) ∈ Gθ◦ and hence, since H is
characteristic in G, we conclude that g = hθα

−1(g◦) ∈ Hα−1(Gθ◦) = α−1(HGθ◦).
Therefore, G = HGθ◦ , that is H and Gθ0 generate G. For any g ∈ α−1(Gθ◦),
the identity α(hα(g)θ )θ◦ = α(g)θ = α(g)α(hθ )θ◦ shows that g◦ = h−1

α(g)θghθ ∈
α−1(Gθ◦ ). Since H 	 G, we can find h′ ∈ H such that ghθ = hα(g)θg◦ = g◦h′.
Thus, g−1

◦ g = h′h−1
θ ∈ H ∩ α−1(Gθ◦), i.e., α(g−1

◦ g)θ◦ = θ◦ such that g−1
◦ g ∈ H .

But H is sharply transitive and characteristic and also α is one-to-one. It follows
that g = g◦ = h−1

α(g)θghθ and then hα(g)θ = ghθg
−1 for all g ∈ α−1(Gθ◦), θ ∈ 

and some hθ ∈ H .
(ii) Substituting go = α(g) ∈ Gθ0 into (i), yields (ii).

(iii) By part (ii), we have η(gθ ) = α(hgθ ) = gη(θ )g−1 for all g ∈ Gθ0 , θ ∈ , where
the action of Gθ◦ on H is given by conjugation. �

An immediate consequence of Lemma 3.1 is the following theorem. Here, we find a
maximal invariant statistic when the group contains a sharply transitive and a characteristic
subgroup.

Theorem 3.1. Assume that G contains a characteristic subgroup H which is sharply
transitive on . Furthermore, if

(i) α(h0) = h0 for all h0 ∈ H ,
(ii) there exists a weakly Gθ◦−equivariant mapping τ0 :  → Gθ0 with α ∈ Aut(G),

s.t. (α(go))−1go ∈ Gθ for all go ∈ Gθ0 , θ ∈ , and
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1306 Shams et al.

(iii) τ :  →  is an Gθ◦−equivariant function where τ is one-to-one on each orbit
Hθ , then f ′(θ ) = (τ0 ◦ τ (h−1

θ θ )))−1τ (h−1
θ θ ) is maximal invariant on , where

hθ ∈ H is a unique element of H such that α(hθ )θ◦ = θ , for fixed θ0 ∈ , α ∈
Aut(G).

Proof. Let θ0 ∈ , α ∈ Aut(G). By (i) and Remark 2.1, f0 :  → , given by f0(θ ) =
(τ0(θ ))−1θ , is maximal Gθ◦−invariant. Define fH :  →  by fH (θ ) = τ (α(h−1

θ )θ ) where
hθ ∈ H is a unique element of H such that α(hθ )θ◦ = θ . Use Lemma 3.1(ii) to verify

fH (gθ ) = τ
(
α(h−1

gθ )gθ
) = τ (gα(h−1

θ )g−1gθ ) = gfH (θ )

for all g ∈ Gθ0 , θ ∈ . It follows that fH is Gθ◦−equivariant. Clearly,

fH (h′θ ) = τ
(
α(h−1

h′θ )h′θ
) = τ

(
α(h−1

θ )(h′)−1h′θ
) = fH (θ )

for all h′ ∈ H , θ ∈ . This proves is H-invariant. It’s easy to show that fH is maximal
H-invariant provided τ is one-to-one on each orbit Hθ . Now, define f ′ :  →  by
f ′ = f0 ◦ fH . Since Lemma 3.1 implies that G = HGθ◦ , for all g ∈ G, we can choose
go ∈ Gθ0 and hθ ∈ H that g = hθg0 and in this way

f ′(gθ ) = f0 ◦ fH (hθg0θ ) = f0 ◦ fH (g0θ ) = f0(g0fH (θ )) = f0(fH (θ )) = f ′(θ )

for all g ∈ G, θ ∈ . This proves f ′ is G-invariant. Now, if

f ′(θ1) = f0(fH (θ1)) = f0(fH (θ2)) = f ′(θ2),

it follows from f0 being maximal Gθ◦−invariant and fH being Gθ◦−equivariant, that

fH (θ1) = g0fH (θ2) = fH (g0θ2),

for some g0 ∈ Gθ0 . But fH is maximal H-invariant if τ is one-to-one on Hθ for all θ ∈ .
Thus, there exists hθ ∈ H s.t. θ1 = hθg0θ2. Consequently, θ1 = gθ2 for some g ∈ G, and
in this way,

f ′(θ ) = f0
[
τ
(
α
(
h−1

θ

)
θ
)] = [τ0 ◦ τ

(
α(h−1

θ )θ
)]−1

τ
(
α(h−1

θ )θ
)

= [γ (α(h−1
θ )θ

)]−1
τ
(
α(h−1

θ )θ
)

is maximal G-invariant where γ :  → Gθ0 , given by γ = τ0 ◦ τ , is weakly
Gθ◦−equivariant, such that γ (gox) = α(go)γ (x) for all go ∈ Gθ0 , x ∈ X that τ :  →  is
one-to-one on each orbit Hθ and Gθ◦−equivariant where (α(go))−1go ∈ Gθ for all go ∈ Gθ0 ,
θ ∈ .

Similar to the proof of Theorem 3.1, suppose that G contains a characteristic sub-
group H which is sharply transitive on , for fixed θ0 ∈ . If there exist f0 :  → 

which is maximal Gθ◦−invariant and fH :  →  which is Gθ◦−equivariant and maximal
H-invariant, then f ′ :  → , given by f ′ = f0 ◦ fH , is maximal G-invariant. Theo-
rem 3.1, as in the case α = 1G ∈ Aut(G) is trivial, which is illustrated by the following
example. �

Example 3.2. Let G = {diag(a1, . . . , an) : a1, . . . , an �= 0} ⊂ GLn be the group of n×n

diagonal matrices wherediag(a1, ..., an) is an n×n diagonal matrix with positive diagonal
elements (a1, ..., an). Assume that G acts on  = {θ = (θ, ..., θ )t : θ ∈ R} by (g, θ ) �→ gθ
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Weakly Equivariant Estimators 1307

for all g ∈ G, θ ∈ . (This is usefull when we have i.i.d. p-dimensional random vectors
x1, . . . , xn distributed as Np(θ,�) with unknown θ = (θ, . . . , θ )t ∈  and known �.)
Clearly, G contains a characteristic subgroup H = {diag(a, . . . , a) : a �= 0} ≤ G which
is sharply transitive on . Fix a reference point θ0 = (θ0, . . . , θ0)t ∈  and index G by
 and for all θ ∈ , define hθ to be the unique h ∈ H satisfying α(hθ )θ0 = θ with α =
1G ∈ Aut(G). Thus, we have α(h0) = h0 for all h0 ∈ H . The stabilizer subgroup Gθ0 is
given by Gθ0 = {I }, where I is the n × n identity matrix, which is the identity element
of the group. It then follows that G is free and hence, by Remark 1.1, G is sharply
transitive on . Suppose that τ0 :  → Gθ0 is a weakly Gθ0−equivariant function with
α ∈ Aut(G) and τ :  →  is an Gθ0−equivariant function which is one-to-one on each
orbit Hθ = {aθ = (aθ, . . . , aθ )t : a �= 0} = , for all θ ∈ . Theorem 3.1 implies that
f ′(θ ) = (τ0 ◦ τ (θ0)))−1τ (θ0) = τ (θ0) is maximal invariant.

Definition 3.2 (Robinson, 1995). In a group G, for G1,G2 ≤ G the subgroup

[G1,G2] = {[g1, g2] = g1g2g
−1
1 g−1

2 : g1 ∈ G1, g2 ∈ G2} ≤ G

is called commutator G1 and G2. The subgroup of G generated by all the commutators in G
is called the derived subgroup of G. It is commonly denoted by G′ = [G,G]. Alternatively,
one may define G′ as the smallest subgroup that contains all the commutators.

Remark 3.1. It is easy to see that the derived subgroup G′ is characteristic in G. Because
for all α ∈ Aut(G):

α(G′) = α([G,G]) = {α[g1, g2] : g1, g2 ∈ G}
= {α(g1)α(g2)(α(g1))−1(α(g2)))−1 : g1, g2 ∈ G}
= [α(G), α(G)] = [G,G] = G′.

The following example provides a few illustrations and additional comments.

Example 3.3. It is supposed that

G =
{[

a b

0 d

]
: a �= 0

}
⊂ GL2

acts on  = {θ = (θ ′, c)t : θ ′ ∈ R} by (g, θ ) �→ gθ for all g ∈ G, θ ∈  where c �= 0. (This
is usefull when we have i.i.d. p-dimensional random vectors x1, . . . , xn with multivariate
normal distribution Np(θ,�), where the mean vector is θ ∈ , s.t. θ ′is unknown and c is
known and the p ×p covariance matrix � is non singular and known.) Clearly, the derived
subgroup of G is

G′ =
{[

1 b

0 1

]
: b ∈ R

}

which is characteristic in G (see Remark 3.1). Also, G contains a sharply transitive and a
characteristic subgroup H = G′. Let θ0 = (θ ′

0, c)t ∈  be a fixed point where θ ′
0 = 0 and
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1308 Shams et al.

suppose that

τ0 :  → Gθ0 ,

(θ ′, c)t �→
[
koθ

′ 0
0 1

]

and

τ :  → ,

(θ ′, c)t �→ (kθ ′, c)t

are Gθ0−equivariant functions for some k0, k �= 0 s.t. the stabilizer subgroup Gθ0 is given
by

Gθ0 =
{[

a (1 − a)θ ′
0

/
c

0 1

]
: a �= 0

}
=
{[

a 0
0 1

]
: a �= 0

}
.

Notice that τ is one-to-one on each orbit

Hθ =
{[

1 b

0 1

] [
θ ′

c

]
=
[

θ ′ + bc

c

]
: b ∈ R

}
= 

for all θ = (θ ′, c)t ∈ . Now, define fH :  →  by fH (θ ) = τ (α(h−1
θ )θ) = τ (θ0), where

hθ =
[

1 (θ ′
0 − θ ′)/c

0 1

]
=
[

1 −θ ′/c
0 1

]
∈ H

is a unique element of H such that α(hθ )θ◦ = θ , for all θ = (θ ′, c)t ∈  and some α ∈
Aut(G) given by

α

([
1 b

0 1

])
=
[

1 −b

0 1

]
.

Clearly, fH is Gθ◦−equivariant and maximal H-invariant and thus Theorem 3.1 implies
that f ′(θ ) = f0(fH (θ )) = (τ0(τ (θ0)))−1τ (θ0) is maximal invariant on .

When G is sharply transitive on , by Lemma 1.1, since Gθ = {e}, Gθ = , we
conclude that λ : G → , given by g �→ α(g)θ0, is a homeomorphism where α ∈ Aut(G)
and θ0 ∈  is a fixed point. Thus the group elements correspond to elements of a parameter
space . The action of G on X requires that (, ∗) is a group, with binary operation ∗
which gθgω = gθ∗ω. Since λ(e) = α(e)θ0 = θ0, we have e which corresponds to θ0. Hence,
if we define gθ ∈ G as a unique element of G such that α(gθ )θ0 = θ , for some α ∈ Aut(G),
we can rewrite

λ(gθ ) = θ,θ ∗ ω = α(gθ )α(gω)θ0 = α(λ−1(θ )λ−1(ω))λ(e).

Thus, (, ∗) is a group with identity element θ0 = λ(e) and inverse element θ−1 =
α(g−1

θ )θ0. The group action on X induces a group action on , such that for each gθ ∈ G,
there is a α(gθ ) ∈ G for some α ∈ Aut(G), satisfying α(gθ )ω = θ ∗ ω.

Example 3.4. Let x1, . . . , xn be iid from N (θ, θ2), where θ > 0 and x, y > 0. Clearly,
(z1, z2) = (x̄,

∑n
i=1 (xi − x̄)2) is sufficient for θ > 0. Suppose G = R+ acts on Z =

R × R+ by g × (z1, z2) = (gz1, g
2z2). Define the G-equivariant estimator δ0 : Z → G by

δ0(z1, z2) = √
z2, then by Lemma 2.1, f (z1, z2) = (δ0(z1, z2))−1 × (z1, z2) = (z1/

√
z2, 1)
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Weakly Equivariant Estimators 1309

and so h(z1, z2) = z1/
√

z2 is maximal invariant. Now, δ1 : Z → G, given by δ1(z1, z2) =
z
m1
2 , is weakly G-equivariant with α1(g) = g2m1 , for some m1 ∈ Q because:

δ1(g × (z1, z2)) = δ1(gz1, g
2z2) = g2m1z

m1
2 = α1(g)δ1(z1, z2).

But G is sharply transitive on  = {(θ1, θ2) : θ1 = θ, θ2 = θ2} and the action is given
by (g, (θ1, θ2)) �→ (gθ1, g

2θ2) and in this way, we can define g(θ1,θ2) as the unique g ∈ G

satisfying (α(g), (1, 1)) �→ (θ1, θ2) for some α ∈ Aut(G). Thus,

α(g(θ1,θ2)) = θ1 =
√

θ2 = θ, λ(g(θ1,θ2)) = (θ1, θ
2
1 ).

Let α(g) = g2m, for some m ∈ Q, so g(θ1,θ2) = 2m
√

θ1. Also, let (, ∗) be a group such
that

(θ1, θ2) ∗ (ω1, ω2) = λ(g(θ1,θ2)g(ω1,ω2)) = λ
(

2m
√

θ2
2m
√

ω2
) = (θ2ω2, (θ2ω2)2).

An immediate concequence is Corollary 3.1. In this corollary, we construct maximal
invariant based on a given weakly equivariant estimator when the group is sharply transitive
on the parameter space.

Corollary 3.1. Assume that G is sharply transitive on . Let θ0 ∈  be a fixed point
and write every element θ ∈  in a unique way as α(g)θ0 = θ , where α ∈ Aut(G). The
function λ : G → , given by λ(gθ ) = θ , is weakly G-equivariant. Also, if there exists
a weakly equivariant estimator τ : X →  with τ (gθx) = α(gθ )τ (x), for all gθ ∈ G and
x ∈ X, then f (x) = g−1

τ (x)x is maximal invariant.

Proof. λ is weakly G-equivariant because

λ(ggθ ) = α(ggθ )θ0 = α(g)α(gθ )θ0 = α(g)θ = α(g)λ(gθ ),

for all g ∈ G, θ ∈ . Hence, λ is a bijective weakly G-equivariant mapping.
f is invariant because

f (gθx) = g−1
τ (gθ x)gθx = g−1

α(gθ )τ (x)gθx = g−1
θ∗τ (x)gθx = (gθgτ (x))

−1gθx

= g−1
τ (x)g

−1
θ gθx = f (x)

for all gθ ∈ G and x ∈ X. If f (x) = f (x ′), then g−1
τ (x)x = g−1

τ (x′)x
′, and so x = gωx ′ for some

gω = gτ (x)g
−1
τ (x ′) ∈ G, that is f (x) = g−1

τ (x)x is maximal invariant. �

Remark 3.2. In the general situation similar to Corollary 3.1, f (x) = ρ(g−1
τ (x))x is maximal

invariant for some ρ ∈ Aut(G), provided (ρ(g))−1g ∈ Gx is true for all g ∈ G and x ∈ X

(see Proposition 2.2).

Example 3.5. In location-scale model x = μ + σz, where z has a known density f0, and
the parameter space is  = {(μ, σ ) : μ ∈ R, σ ∈ R+}, define a group action by gθx =
g(μ,σ )x = μ + σx, so that the group operation is

g(μ1,σ1)g(μ2,σ2) = μ1 + σ1μ2 + σ1σ2 = g(μ1+σ1μ2,σ1σ2) = g(μ1,σ1)∗(μ2,σ2).
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1310 Shams et al.

The set of such transformations is closed with identity g(0,1). It is easy to check that
g−1

(μ,σ ) = g
(− μ

σ
,

1
σ

)
. It follows that G = {g(μ,σ ) : (μ, σ ) ∈ } constitutes a group under the

composition of functions operation ◦, as defined above. The induced group action on  is
given by

α(g(μ1,σ1))(μ2, σ2) = (μ1, σ1) ∗ (μ2, σ2) = (μ1 + σ1μ2, σ1σ2).

Identity and inverse element of the group  are θ0 = λ(g(0,1)) = (0, 1), θ−1 =
α(g−1

(μ,σ ))θ0 = α(g
(− μ

σ
,

1
σ

)
)θ0 = (−μ

σ
, 1

σ
), respectively. Take a random sample x =

(x1, . . . , xn) of this model, so τ (x) = (x̄, s) is a weakly equivariant estimator, where
x̄ = 1

n

∑n
i=1 xi and s2 = 1

n−1

∑n
i=1 (xi − x̄)2, because:

τ (g(μ,σ )x) = (μ + σ x̄,

√√√√(n − 1)−1
n∑

i=1

(μ + σXi − μ − σ x̄)2) = (μ + σ x̄, σ s)

= α(g(μ,σ ))τ (x)

It follows that

f (x) = g−1
τ (x)x = g−1

(x̄,s)x = g
(− x̄

s
,

1
s

)
x = − x̄

s
+ 1

s
x = ( x1−x̄

s
, . . . , xn−x̄

s
)

is maximal invariant.
It is possible to change weakly G-equivariant functions into weakly G-equivariant

estimators and vice versa. This is summarized in the following proposition.

Proposition 3.1. Assume that G is sharply transitive on . Let θ0 ∈  be a fixed point,
and write every element θ ∈  in a unique way as α(g)θ0 = θ , where α ∈ Aut(G). As
previously mentioned, define λ : G →  by λ(gθ ) = θ . For a given weakly G-equivariant
function τ : X → G, with ατ ∈ Aut(G), there exists a weakly G-equivariant estimator
δ : X →  with αδ = α◦ατ ∈ Aut(G), given by δ = λ◦τ . Conversely, there exists a weakly
G-equivariant function τ : X → G with ατ = α−1 ◦ αδ ∈ Aut(G), given by τ = λ−1 ◦ δ,
such that δ : X →  is a weakly G-equivariant estimator with αδ ∈ Aut(G).

Proof. Suppose that τ is a weakly G-equivariant function. It follows from Corollary 3.1
that λ is weakly G-equivariant with α ∈ Aut(G), thus

δ(gx) = λ(τ (gx)) = λ(ατ (g)τ (x)) = α(ατ (g))λ(τ (x)) = αδ(g)δ(x),

for all g ∈ G, x ∈ X. Thus, δ is a weakly G-equivariant estimator with αδ = α ◦ ατ ∈
Aut(G).

On the contrary, if δ is a weakly G-equivariant estimator with αδ ∈ Aut(G), as previ-
ously mentioned, α(ghθ ) = hα(gθ ) for all θ ∈ , h ∈ G, we can conclude that:

τ (gx) = λ−1(δ(gx)) = λ−1(αδ(g)δ(x)) = gαδ (g)δ(x) = α−1(α(gαδ(g)δ(x)))

= α−1(αδ(g)α(gδ(x)))

= α−1(αδ(g))α−1(α(gδ(x))) = α−1 ◦ αδ(g)gδ(x) = ατ (g)λ−1(δ(x)) = ατ (g)τ (x)

for all g ∈ G, x ∈ X. Hence, τ is a weakly G-equivariant function with ατ = α−1 ◦ αδ ∈
Aut(G). �
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Weakly Equivariant Estimators 1311

Example 3.6. It is easy to see that in Example 3.4, G is sharply transitive on  and in
this way, we can define g(θ1,θ2) as the unique g ∈ G satisfying α(g(θ1,θ2)) = θ1 = √

θ2 = θ

for some α ∈ Aut(G). Thus, λ(g(θ1,θ2)) = (θ1, θ
2
1 ). Let α(g) = g1/m, for some m ∈ Q,

so g(θ1,θ2) = θm
1 and in this way, λ(θm

1 ) = (θ1, θ
2
1 ). By the way τ : Z → G, given by

τ (z1, z2) = zm
2 , is weakly G-equivariant with ατ (g) = g2m. Hence, by Proposition 3.1, there

exists a weakly G-equivariant estimator δ : Z →  with αδ(g) = α(ατ (g)) = α(g2m) = g2

given by

δ((z1, z2)) = λ(τ (z1, z2)) = λ(zm
2 ) = (z2, z

2
2

) =
⎛
⎝ n∑

i=1

(xi − x̄)2,

(
n∑

i=1

(xi − x̄)2

)2
⎞
⎠ .

Now we will be interested in improving Proposition 2.2 for weakly equivari-
ant estimators. Proposition 2.2 together with Proposition 3.1 yields the following
result.

Corollary 3.2. Assume that G is sharply transitive on . Let θ0 ∈  be a fixed point,
and write every element θ ∈  in a unique way as α(g)θ0 = θ , where α ∈ Aut(G).
For a given weakly G-equivariant estimator δ : X →  with αδ ∈ Aut(G) such that
β(g) = α−1(αδ(g−1))g ∈ Gx for all g ∈ G, x ∈ X, f (x) = [λ−1(δ(x))]−1x is maximal
invariant.

Notice that the condition in Proposition 2.2 leads to the following condition in
Corollary 3.2:

β(g) = (ατ (g))−1g = (α−1(αδ(g)))−1g = α−1(αδ(g−1))g ∈ Gx,

for all g ∈ G, x ∈ X. In the special case when α = αδ , we can omit this condition.

Example 3.7. In Example 3.4, τ0 : Z → G, given by τ (z1, z2) = √
z2, is G-equivariant.

Proposition 3.1 implies that there exists a weakly G-equivariant estimator δ : Z →  with
α = αδ ∈ Aut(G) given by

δ((z1, z2)) = λ(
√

z2) = ( 2m
√

z2,
m
√

z2) =
⎛
⎝ 2m

√√√√ n∑
i=1

(xi − x̄)2, m

√√√√ n∑
i=1

(xi − x̄)2

⎞
⎠ .

On the other hand, condition β(g) = α−1(αδ(g−1))g = 1 ∈ Gx for all g ∈ G, x ∈ X is
satisfied. Corollary 3.2 implies that:

f (z1, z2) = [λ−1(δ((z1, z2)))]−1 × (z1, z2)

= [λ−1( 2m
√

z2,
m
√

z2
)]−1 × (z1, z2)

= (√z2
)−1 × (z1, z2) = (z1/

√
z2, 1)

and hence z1/
√

z2 = x̄/
∑n

i=1 (xi − x̄)2 is maximal invariant.
To illustrate the difference between Proposition 2.2 and Corollary 3.2, note that in

Proposition 2.2, we will find maximal invariant by using weakly equivariant functions,
while in Corollary 3.2, we will want to introduce a way for finding maximal invariant by
using weakly equivariant estimators. Notice that Proposition 2.2 usually has applications
in mathematics, because it suggests that, we should use weakly equivariant functions to
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1312 Shams et al.

find maximal invariant, but to make it useful in statistics, we combine weakly equivariant
functions with a suitable function to make it a weakly equivariant estimator and then use
Corollary 3.2.

Proposition 2.3 states how are can construct a general ?maximal invariant two given
weakly equivariant functions? Instead of using two ?weakly equivariant functions, one
could use two weakly G-equivariant estimators to obtain a maximal invariant function.
At first, we change weakly G-equivariant estimators into weakly G-equivariant functions
(Proposition 3.1), then we can construct a general ?maximal invariant (Proposition 2.3).
The details are given in the following proposition.

Proposition 3.2. Suppose that G is sharply transitive on . Let θ0 ∈  be a fixed point,
and write every element θ ∈  in a unique way as α(g)θ0 = θ , where α ∈ Aut(G). As-
sume that there exist two weakly G-equivariant estimators δi : X → , i = 1, 2 with
the same αδ ∈ Aut(G) such that at least one of the δi is weakly G-isovariant. Then
f (x) = (λ−1(δ1(x)))−1λ−1(δ2(x)) is maximal invariant.

Proof. By Proposition 3.1, τi : X → G, given by τi = λ−1 ◦ δi , i = 1, 2, are weakly G-
equivariant functions with the same ατ = α−1 ◦ αδ ∈ Aut(G). Assume that one of the two,
say δ2 is weakly G-isovariant, i.e., Gδ2(x) = αδ(Gx) for all x ∈ X. Since λ−1 is one-to-one,
we conclude that τ2 is weakly G-isovariant because:

Gτ2(x) = {g : gτ2(x) = τ2(x)}
= {g : gλ−1(δ2(x)) = λ−1(δ2(x))}
= {g : λ−1(α(g)δ2(x)) = λ−1(δ2(x))}
= {α−1(α(g)) : α(g)δ2(x) = δ2(x)}
= α−1(Gδ2(x)) = α−1 ◦ αδ(Gx) = ατ (Gx)

for all x ∈ X. Hence, Proposition 2.3 implies that

f (x) = (τ1(x))−1τ2(x) = [λ−1(δ1(x))]−1λ−1(δ2(x))

is maximal invariant. �

We illustrate this proposition with the following example.

Example 3.8. Let (xi, yi)‘s be iid from the pdf (σe−σx)(σ−1e−y/σ ), i = 1, . . . , n, where
σ > 0 and x, y > 0. This is the model in the Nile problem considered by Fisher (1973).

Clearly, (z1, z2) = (x̄, ȳ) is a minimal sufficient statistic. If G = R+ acts on Z =
R+ × R+ by

g × (z1, Z2) = (g−1z1, gz2)

then G acts on  = {(θ1, θ2) : θ2 = θ−1
1 = σ > 0} by

(g, (θ1, θ2)) �→ (g−1θ1, gθ2)

Furthermore, since G(z1,z2) = {1} for all (z1, z2) ∈ Z, G is sharply transitive on  and
in this way, we can define g(θ1,θ2) as the unique g ∈ G satisfying (α(g), (1, 1)) �→ (θ1, θ2)
for some α ∈ Aut(G). Thus, α(g(θ1,θ2)) = θ2 = θ−1

1 = σ , λ(g(θ1,θ2)) = (θ−1
2 , θ2). Let α(g) =
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Weakly Equivariant Estimators 1313

g2k , for some k ∈ Q, so g(θ1,θ2) = 2k
√

θ2 and then λ(θ2) = (θ−2k
2 , θ2k

2 ). The functions τi : Z →
G, i = 1, 2, given by τ1(z1, z2) = zm

2 /zn
1, τ2(z1, z2) = z2m−n

2 /z2n−m
1 for some m, n ∈ Q,

are weakly G-equivariant with the same ατ (g) = gm+n, respectively. Using Proposition
3.1, these functions can be improved upon by using the weakly G-equivariant estimators
δi : Z → , i = 1, 2 as follows

δ1 ((z1, z2)) = λ (τ1(z1, z2)) = λ
(
zm

2 /zn
1

) = (z−2mk
2 /z−2nk

1 , z2mk
2 /z2nk

1

)
δ2 ((z1, z2)) = λ (τ2(z1, z2)) = λ

(
z2m−n

2 /z2n−m
1

)
= (z4nk−2mk

2 /z4mk−2nk
1 , z4mk−2nk

2 /z4nk−2mk
1

)
,

with the same αδ(g) = α(ατ (g)) = α(gm+n) = g2mk+2nk .
On the other hand, since G is sharply transitive on , we have α(G(z1,z2)) = Gδ1(z1,z2) =

{1} and so δ1 is weakly G- isovariant. It follows from Proposition 3.2 that

f (x) = (λ−1(δ1(x)))−1λ−1(δ2(x)) = (zm
2 /zn

1

)−1
z2m−n

2 /z2n−m
1 = (z1z2)m−n

is maximal invariant.

4. Independence, Invariance and Weakly Equivariance

In the rest of this article, we deal with the independence of an invariant function and a
weakly equivariant function under some special conditions, which is a generalization of
Bondesson’s method. If a weakly equivariant estimator τ (x) is sufficient then it contains
all the information in the sample about the parameters. Thus if, h(x) is an ancillary, there
is some reason to believe that τ (x) and h(x) might be independent. We know if the group
G acts transitively on , then any invariant function will be ancillary (Lehmann and
Romano, 2005, pp. 395–396). Also, h is invariant iff h is a function of a maximal invariant
statistic. This suggests that a maximal invariant statistic h(x) will be independent of weakly
equivariant estimator τ (x) as explained as follows (Eaton, 1983). Bondesson (1997) proved
the independence of invariant and equivariant functions under special conditions. This
property also holds for weakly equivariant functions.

Proposition 4.1. Suppose (X,β1) and (Y, β2) are measurable spaces acted on by a lo-
cally compact and σ -compact topological group G. The mapping G × Y → Y , given by
(α(g), x) �→ α(g)x, is jointly measurable where α ∈ Aut(G) and G acts transitively on Y.
Assume that τ : X → Y is a measurable weakly G-equivariant function. Also, let (Z, β3)
be a measurable space and let h : X → Z be a measurable G-invariant function. For a
random variable x ∈ X, with distribution Po, set y = τ (x), z = h(x) and assume that τ (x)
is a sufficient statistic for the family {gPo : g ∈ G} of distributions on (X,β1).Under these
assumptions, y and z are independent when x ∈ X has distribution gPo for g ∈ G.

Proof. First, assume that x ∈ X has distribution Po and let Qo be the induced distribution
of τ (x). Fix a bounded measurable function f on Z and let Hg(y) = EgP0 (f (h(x))|τ (x) = y)
(the conditional expectations are well defined since f is bounded). Since τ (x) is a sufficient
statistic for the family {gPo : g ∈ G}, there is a measurable function H on Y s.t. Hg(y) =
H (y) for y /∈ Ng , where Ng is a set of α(g)Q0−measure zero (see Eaton, 1983, Proposition
7.17, p. 288). Hence, α(g)Q0(Ng) = Q0(α(g−1)Ng) = 0. Also, He(y) is the unique a.e.
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1314 Shams et al.

(Q0) function that satisfies the equation∫
Y

k(y)He(y)Q0(dy) = EQ0 (k(y)He(y))

= EQ0EP0 (k(y)f (h(x))|τ (x) = y)

= EP0 (k(τ (x))f (h(x)))

=
∫

X

k(τ (x))f (h(x))P0(dx) (4.1)

for all bounded measurable k. The probability measure gP0, satisfies the equation∫
X

l(x)gP0(dx) =
∫

X

l(gx)P0(dx) (4.2)

for all bounded l. Since τ is weakly G-equivariant, this implies that τ (x) has distribution
α(g)Q0 when x has distribution gPo for g ∈ G. Using this and the invariance of f ◦ h (see
Proposition 2.1(ii)), we have, for all bounded k,∫

Y

k(y)He(y)Q0(dy)
(4.1)=
∫

X

k(τ (x))f (h(x))P0(dx)

=
∫

X

k(α(g−1)τ (gx))f (h(gx))P0(dx)

(4.2)=
∫

X

k(α(g−1)τ (x))f (h(x))gP0(dx)

(4.1)=
∫

X

k(α(g−1)y)Hg(y)(α(g)Q0)(dy)

(4.2)=
∫

X

k(y)Hg(α(g)y)Q0(dy).

Therefore, He(y) = Hg(α(g)y) a.e. (Q0). Since H (y) = He(y) a.e. (Q0) and
Hg(α(g)y) = H (α(g)y) for α(g)y /∈ Ng , where Q0(α(g−1)Ng) = 0, we have Hg(α(g)y) =
H (α(g)y) a.e. (Q0), and this implies that H (y) = H (α(g)y) a.e. (Q0). Hence, there
exists a G-invariant measurable function, say H̃ , s.t. H = H̃ a.e. (Q0). Since G acts
transitively on Y, H̃ must be a constant, so H is a constant a.e. (Q0). Therefore,
He(y) = EP0 (f (h(x))|τ (x) = y) is a constant a.e. (Q0). Now, if k is a bounded function on
(Y, β2) and H (y) = H (y0) for y ∈ Y , then

EP0 [k(τ (x))f (h(x))] = EP0EQ0 (k(τ (x))f (h(x))|τ (x) = y)

=
∫

Y

EP0 [k(τ (x))f (h(x))|τ (x) = y]Q0(dy)

=
∫

Y

k(y)EP0 [f (h(x))|τ (x) = y]Q0(dy)

=
∫

Y

k(y)H (y)Q0(dy) = H (y0)
∫

Y

k(y)Q0(dy)

=
∫

Y

H (y)Q0(dy)EP0k(τ (x))
(4.1)= EP0f (h(x))EP0k(τ (x))
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Weakly Equivariant Estimators 1315

and this implies that y = τ (x) and z = h(x) are independent when x ∈ X has distribution
Po. When x has distribution P̃o = g1Po, we note that {gPo : g ∈ G} = {gP̃o : g ∈ G}, so
τ (x) is sufficient for {gP̃o : g ∈ G}. The argument given for Po now applies for P̃o. Thus,
y = τ (x) and z = h(x) are independent when x ∈ X has distribution g1Po. �

Since G acts transitively on {gPo : g ∈ G} and z = h(x) is G-invariant, the distribution
of z is the same under each gPo, g ∈ G, and so z is an ancillary statistic. Basu’s Theorem
(Basu, 1955), asserts that a complete sufficient statistic is independent of an ancillary
statistic. Although no assumptions concerning invariance are made in the statement of
Basu’s Theorem, most applications are to problems where invariance is used to show that
a statistic is ancillary. In Proposition 4.1, the completeness assumption of Basu’s Theorem
has been replaced by the invariance assumptions and, most particularly, by the assumption
that the group G acts transitively on the space Y (Eaton, 1983). Let (X,β) be a measurable
space acted on by locally compact and σ -compact topological group G and assume βS

is a sufficient subfield of β, βI is the σ -field of invariant members of β, and βSI is the
intersection of βI and βS . Hall, Wijsman and Ghosh (1965) proved that under certain
conditions βI and βS are conditionally independent given βSI . Hence, Proposition 4.1 is
similar to their result. We illustrate this proposition with the following example.

In a special case, suppose that in Proposition 4.1, τ : X → Y is weakly G-isovariant,
then by Proposition 1.1(ii), τ is one-to-one on the orbit Gx. We can take y1 = τ (x1),
y2 = τ (x2) for all x1, x2 ∈ X, and since G acts transitively on Y and α ∈ Aut(G) is onto, we
can say there exists g ∈ G such that y2 = τ (x2) = α(g)τ (x1) = α(g)y1. But τ is weakly G-
equivariant and so τ (x2) = τ (gx1) and then x2 = gx1, for some g ∈ G. Thus in Proposition
4.1 we conclude that G acts transitively on X, provided τ is weakly G-isovariant. In this
case, any invariant function on X will be ancillary. Therefore, Proposition 4.1 asserts
that a weakly G-equivariant sufficient statistic is independent of an invariant (ancillary)
statistic. Hence, in Proposition 4.1, the completeness assumption of Basu’s Theorem has
been replaced by the assumptions that the group G acts transitively on the space Y and τ is
weakly G-isovariant and G-equivariant sufficient statistic.

Example 4.1. Let x1, . . . , xn be iid from Gamma distribution 	(a, b) with density

fa,b(x) = xa−1e
− x

b

	(a)ba−1
, x > 0,

where a > 0 is known and b > 0 is unknown. If G = R+ acts on X = (R+)n by g×x = gx,
then the complete sufficient statistics for b, that is δ0(x) =∑n

i=1 xi is equivariant too. By
Lemma 2.1,

f (x) = (δ0(x))−1 × x =
(

x1

/ n∑
i=1

xi, . . . , xn

/ n∑
i=1

xi

)

is maximal invariant. But k0 : X → X given by

k0(a1, . . . , an) =
(

a1

n∑
i=1

ai

/
an, . . . , an−1

n∑
i=1

ai

/
an, an

n∑
i=1

ai

/
|an|
)

is one-to-one and in this way, by Proposition 2.1(ii),

h(x) = k0 ◦ f (x) = (x1/xn, . . . , x1/xn−1, xn/|xn|)
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1316 Shams et al.

is maximal invariant. For a continuous automorphism α1(g) = gm1 , for some m1 ∈ Q,
τ (x) = α1(δ0(x)) = (

∑n
i=1 xi)m1 is weakly G-equivariant with α1 ∈ Aut(G), because

τ (gx) = gm1

(
n∑

i=1

xi

)m1

= α1(g)τ (x).

(Notice that since G is sharply transitive on  = R+, we can define gb as the unique g ∈ G

satisfying α(g) = b for some α ∈ Aut(G).)
Finally, Proposition 4.1 implies that τ (x) = (

∑n
i=1 xi)m1 and h(x) =

(x1/xn, . . . , x1/xn−1, xn/|xn|) are independent.
The following example shows that Proposition 4.1 provides an easy way to prove the

independence of weakly G-equivariant sufficient statistic and G-invariant statistic when
weakly G-equivariant sufficient statistic is not complete and Basu’s Theorem is not appli-
cable.

Example 4.2. Let X be distributed as

Pθ (X = x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ2(1 − θ )/2 x = ±5
θ (1 − θ )2/2 x = ±4
θ3/2 x = ±3
(1 − θ )3/2 x = ±2
θ (1 − θ ) x = ±1

with range DX = D = {±1,±2,±3,±4,±5}. The totality of ancillary statistics is then
obtained by

V (a) =
{

v1 a ∈ D′

v2 a ∈ D − D′

s.t. D′ = {d1, d2, d3, d4, d5} ⊂ D satisfying di �= ±dj for all di, dj ∈ D′, i �= j where
i, j = 1, 2, 3, 4, 5. This can be described as follows. All statistics are given by V (a) = vi

for all a ∈ Di , s.t. {Di} is a countable partition of D. Let D′ be a non empty subset of D,
where V (a) = v for all a ∈ D′. Thus,

Pθ (V = v) =
∑
i∈D′

Pθ (X = i) =
∑
i∈D

εiPθ (X = i)

= 1

2
[σ4 − σ5 + σ3 − σ2]θ3 +

[
1

2
σ5 − σ4 + 3

2σ2 − σ1

]
θ2

+
[

1

2
σ4 − 3

2
σ2 + σ1

]
θ + 1

2
σ2,

where εi = Ii∈D′, σi = ε−i +εi for all i = 1, . . . , 5. It is easy to check that Pθ (V = v) does
not depend on θ iff σi = σ for all i = 1, . . . , 5 where σ ∈ {0, 1, 2}.

If σ = 0, then εi = 0 for all i = 1, . . . , 5 and henceD′ = φ, which is clearly
impossible.

If σ = 2, then εi = 1 for all i = 1, . . . , 5 and so in this case, the ancillary is trivially
satisfying V (a) = v for all a ∈ D.
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Weakly Equivariant Estimators 1317

Finally, if σ = 1, then we have εi = 0, ε−i = 1 or εi = 1, ε−i = 0 for all i = 1, . . . , 5.
Therefore, D′ = {d1, . . . , d5} satisfying di �= ±dj for all di, dj ∈ D′, i �= j , where i, j =
1, . . . , 5 and then the totality of ancillary statistics is obtained by

V (a) =
{

v1 a ∈ D′

v2 a ∈ D − D′ .

Now, let G = {g1, g2} acts on D = {±1, . . . ,±5}, where g1(x) = x, g2(x) = −x,
which induce a group action on the parameter space  = (0, 1) as gθ = g(θ ) = θ for
all θ ∈ , g ∈ G. Obviously, the model is invariant under the group G acting on X and
. Ancillary statistics are G-invariant if they are trivial. Thus, here only trivially ancillary
statistics are invariant. Let V0(a) = v for all a ∈ D which is G-invariant. Clearly, T : DX =
{±1, . . . ,±5} → DY = {1, . . . , 5}, given by T = |X|, is a minimal sufficient statistic for
θ , which is not complete and so in this case, Basu’s Theorem is not applicable. But T
is G-invariant or equivalently weakly Ḡ-equivariant with α = 1Ḡ ∈ Aut(Ḡ) where Ḡ =
{g1} ≤ G acts trivially on DY = {1, . . . , 5} (see Definition 1.6(i)). It is easy to show that
P (V0 = vi |T = t) = P (V0 = vi) = 1

2 for all t = 1, . . . , 5, i = 1, 2 and this implies that V0

is independent of T where we can conclude that the same result by using Proposition 4.1.
Similarly, U : DX → DX, given by U = U (X) = X, is weakly G-equivariant sufficient
statistic with α = 1G ∈ Aut(G) and so by Proposition 4.1, U and V0 are independent.

Acknowledgments

The authors are deeply grateful to the referees for constructive criticisms which greatly
facilitated an improved presentation of this article.

References

Basu, D. (1955). On statistics independent of a complete sufficient statistic. Sankhya 15:377–380.
Bondesson, L. (1977). A note on sufficiency and independence. Preprint, University of Lund, Lund,

Sweden.
Bredon, G. H. (1972). Introduction to Compact Transformation Groups. New York: Academic Press.
Berk, R. H. (1967). A special group structure and equivariant estimation. Ann. Math. Statist.

38(5):1436–1445.
Deitmar, A., Echterhoff, S. (2009). Principles of Harmonic Analysis. New York: Springer.
Eaton, M. L. (1983). Multivariate Statistics: A Vector Space Approach. New York: Wiley.
Eaton, M. L. (1989). Group Invariance Applications in Statistics. Hayward, CA: Institute of Mathe-

matical Statistics and American Statistical Association.
Fisher, R. A. (1973). Statistical Methods and Scientific Inference. New York: Hafner.
Folland, G. B. (1995). A Course in Abstract Harmonic Analysis. Boca Raton, FL: CRC Press.
Fraser, D. A. S. (1961). The fiducial method and invariance. Biometrika 48:261–280.
Fraser, D. A. S. (1968). The Structure of Inference. New York: Wiley.
Hall, W. J., Wijsman, R. A., Ghosh, J. K. (1965). The relationship between sufficiency and invariance

with applications in sequential analysis. Ann. Math. Stat. 36:575–614.
Lehmann, E. L., Romano, J. P. (2005). Testing Statistical Hypotheses. 3rd ed. New York: Springer.
Nachbin, L., Bechtolsheim, L. (1965). The Haar Integral. Princeton N.J, Toronto.:D. Van Nostrand.
Palais, R. S. (1960). Classification of G-spaces, Mem. Am. Math. Soc. 36.
Robinson, D. J. S. (1995). A Course in the Theory of groups. 2nd ed. New York: Springer-Verlag.

D
ow

nl
oa

de
d 

by
 [

M
ah

di
 E

m
ad

i]
 a

t 0
0:

30
 2

0 
M

ar
ch

 2
01

5 


