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In this paper, we study the numerical solution to time-fractional partial differential equations with variable coefficients
that involve temporal Caputo derivative. A spectral method based on Gegenbauer polynomials is taken for approximating
the solution of the given time-fractional partial differential equation in time and a collocation method in space. The sug-
gested method reduces this type of equation to the solution of a linear algebraic system. Finally, some numerical examples
are presented to illustrate the efficiency and accuracy of the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

Recently, fractional differential operators are indisputably found to play a fundamental role in the modeling of a considerable number of
phenomena. Because of the nonlocal property of fractional derivative, they can utilize for modeling of memory-dependent phenomena
and complex media such as porous media and anomalous diffusion [1–4]. They have been used in modeling turbulent flow [5, 6],
chaotic dynamics of classical conservation systems [7], and even finance [8, 9] (see [1] for more information).

Also, fractional calculus emerged as an important and efficient tool for the study of dynamical systems where classical methods reveal
strong limitations. In [10], a fractional advection–dispersion equation is derived by extending Fick’s first law from isotropic media to
heterogeneous media and is particularly suitable for description of the highly skewed and heavy-tailed dispersion processes observed
in rivers and other natural media.

In the last decade or so, extensive research has been carried out on the development of numerical methods for fractional par-
tial differential equations, including finite difference method [11–13], finite element methods [14, 15], and spectral methods [16]. In
[17–19], the authors used their proposed numerical schemes to solve Bagley–Torvik equation and other ordinary fractional differential
equations. Gegenbauer polynomials have received much attention for their fundamental properties as well as for their use in applied
mathematics. The described functions are a key ingredient to the implementation of spectral and pseudo-spectral methods to solve
certain types of differential equations. Gegenbauer polynomials are a convenient basis for polynomial approximations because they
are eigenfunctions of corresponding differential operators. For numerical methods, it is usually as convenient as efficient to convert
between representations of a polynomial by expansion coefficients or by function values, respectively.

Spectral approximations, such as the Fourier approximation based upon trigonometric polynomials for periodic problems, and the
Chebyshev, Legendre, or the general Gegenbauer approximation based upon polynomials for nonperiodic problems are exponentially
accurate for analytic functions [20–23]. In [24], the authors provided collocation method for natural convection heat transfer equations
embedded in porous medium by using the rational Gegenbauer polynomials. Gottlieb and Shu in [25] used the Gegenbuaer polyno-
mials to construct an exponentially convergent approximation to overcome Gibbs phenomenon. Micheli and Viano in [26] presented
a simple and fast algorithm for the computation of the Gegenbauer coefficients of the expansion of a function in Gegenbauer poly-
nomials, which is known to be very useful in the development of spectral methods for the numerical solution of ordinary and partial
differential equations. Kadem et al. in [27] applied the Chebyshev polynomials expansion method to find both an analytical solution
of the fractional transport equation in the one-dimensional plane geometry and its numerical approximations. Parand et al. [28] have
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studied a collocation method using a weighted orthogonal system based on the rational Gegenbauer function for solving numeri-
cally a laminar boundary layer equation – a generalization of the well-known Blasius equation – on the halfline. Shamsi and Dehghan
[29] proposed a Legendre pseudospectral method for solving approximately an inverse problem of determining an unknown con-
trol parameter, which is the coefficient of the solution in a diffusion equation in a three-dimensional region. In the present paper, we
consider the following time-fractional convection–diffusion equation with variable coefficients:

D˛t u.x, t/C a.x/
@u.x, t/

@x
C b.x/

@2u.x, t/

@x2
D f .x, t/, 0 < x < 1, 0 < t � T , (1.1)

with initial condition

u.x, 0/ D g.x/, 0 < x < 1, (1.2)

and boundary conditions

u.0, t/ D h1.t/, u.1, t/ D h2.t/, 0 < t � T , (1.3)

where a.x/, b.x/ ¤ 0 are continues functions and 0 < ˛ � 1. Here, the time-fractional derivative is defined as the Caputo fractional
derivative. Saadatmandi et al. [30] used the Sinc–Legendre collocation method for the solution of Equation 1.1 with homogeneous
boundary conditions, and Uddin and Haq [31] applied radial basis functions for solving this problem with constant coefficients. In
[32] and [33], numerical methods based on finite difference and finite element, respectively, are utilized for the cases a.x/ D 0 and
b.x/ D �1. The author of [34] developed implicit unconditionally stable numerical methods to solve (1.1) on the condition that
a.x/ D 0, b.x/ D �1 and f .x, t/ D 0. Sakar and Erdogan [35] introduced homotopy analysis method and Adomians decomposition
method (ADM) for solving time-fractional Fornberg–Whitham equation. Also in [36], the approximate analytical solutions to the non-
linear Fornberg–Whitham equation with fractional time derivative has been obtained by using a reliable algorithm like the variational
iteration method (VIM). Authors of [37] investigated the homotopy analysis method to solve nonlinear fractional partial differential
equations such as fractional KdV, K(2, 2), Burgers, BBM-Burgers, cubic Boussinesq, coupled KdV, and Boussinesq-likeB(m,n)equations.
Authors of [38] investigated the high-order and unconditionally stable difference scheme for the solution of modified anomalous
fractional sub-diffusion equation by the inclusion of a secondary fractional time derivative acting on a diffusion operator. In [39], a
numerical method developed for solving the fractional Fisher’s equation by the quadratic spline functions. A truncated Legendre series
together with the Legendre operational matrix of fractional derivatives are used for numerical integration of fractional differential
equations is introduced in [40]. A numerical scheme for solving the fractional convection–diffusion equation presented in [41] that is
applied biorthogonal multiwavelet basis to construct operational matrix of fractional derivative.

The main advantage of spectral methods lies in their accuracy for given number of unknowns. Spectral methods are a nice and
powerful approach for numerical solution of fractional partial differential equations, due to the being global of fractional operator
and the being global of basis functions of the method. When solving a fractional partial differential equation to high accuracy and
if the data defining the problem are smooth, then spectral methods are usually the best tool. In the present paper, we extend the
application of spectral methods with Gegenbauer polynomials for solution of fractional partial differential equations, which we refer to
it as Gegenbauer spectral method (GSM). Issues regarding the convergence of the GSM will be addressed in Section 2. The remaining
part of this paper is organized as follows. In Section 2, we introduce the Caputo type of fractional derivative and the Gegenbauer
polynomials and discuss their properties, in particular exponential rate of convergence of the Gegenbauer approximation of a function.
We continue by introducing collocation spectral method and use it to solve the problem that is developed in Section 3. In Section 4,
numerical results will show the efficiency of the GSM approach.

2. Preliminaries

2.1. The fractional derivative in the Caputo sense

Among different approaches to the generalization of the notation of differentiation in fractional sense (Grünwald-Letnikov, Riemann-
Liouville, etc.), we pay attention to the approach suggested by Caputo [42], because of its possible usefulness for the formulation and
solution of applied problems and their transparency. Indeed, the Caputo’s approach allows the formulation of initial conditions for
initial-value problems for fractional-order differential equations in a form involving only the limit values of integer-order derivatives
at the initial time t D 0. We describe some useful definitions and mathematical preliminaries of the fractional calculus theory in the
Caputo sense, which is required for our development [43].

Definition 1
A real function f .x/, x > 0, is said to be in the space C�, � 2 R if there exist a real number p.> �/, such that f .x/ D xpf1.x/, where
f1.x/ 2 CŒ0,1/, and it is said to be in the space Cm

� iff f .m/ 2 C�, m 2 N .

Definition 2
Caputo type of the fractional order derivative of f 2 Cn

�,� � �1 is defined as

D˛f .x/ D
1

�.n � ˛/

Z x

0

f .n/.�/

.x � �/˛C1�n
d�, n � 1 < ˛ < n, n 2 N ,

where ˛ > 0 is the order of the derivative, �.�/ is the Euler’s Gamma function, n D Œ˛�C 1, with Œ˛� denoting the integer part of ˛.
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Diethelm in [44] discussed the relationship between the Caputo fractional derivative and Riemann–Liouville approach. Similar to
integer-order differentiation, Caputo fractional differentiation is a linear operator,

D˛.c1f1.x/C c2f2.x// D c1D˛f1.x/C c2D˛f2.x/,

where c1 and c2 are constants. D˛t u.x, t/ in the Equation 1.1 is the Caputo fractional derivative of order 0 < ˛ � 1 in time and is
defined as

D˛t u.x, t/ D
1

�.1 � ˛/

Z t

0

@u.x, �/

@�

d�

.t � �/˛
.

An important property of fractional derivatives is that when the order goes to an integer, the fractional derivative approaches to the
integer-order derivative. For ˛ 2 N , the Caputo differential operator coincides with the usual differential operator of integer order. For
the Caputo derivative, we have [43]

D˛C D 0, .C is a constant/

D˛xˇ D

(
0, for ˇ 2 N0 and ˇ < d˛e,

�.ˇC1/
�.ˇC1�˛/xˇ�˛ , for ˇ 2 N0 and ˇ � d˛e or ˇ 62 N and ˇ > b˛c

We use the ceiling function d˛e to denote the smallest integer greater than or equal to ˛ and the floor function b˛c to denote the
largest integer less than or equal to ˛. Also N and N0 stand for f1, 2, � � � g and f0, 1, 2, � � � g, respectively.

2.2. Gegenbauer polynomials

In this section, we recall some useful results about the Gegenbauer polynomials C�n .z/ of degree n and associated with the real
parameter � that are a family of orthogonal polynomials and possess many applications [45].

Definition 3
The Gegenbauer polynomial C�n .z/ is defined for � > � 1

2 ,� ¤ 0 by the Rodrigues’ formula

C�n .z/ D

�
�

1

2

�n �
�
�C 1

2

�
�.nC 2�/

nŠ�.2�/�
�

nC �C 1
2

� �1 � z2
� 1

2��
dn

dzn

��
1 � z2

�nC�� 1
2

�
. (2.1)

It turns out that the Gegenbauer polynomials, C�n .z/, appear as the eigensolutions to the following singular Sturm–Liouville problem
restricted to the finite domain Œ�1, 1� [45, 46],

d

dz

 �
1 � z2

��C 1
2

dC�n .z/

dz

!
C n.nC 2�/

�
1 � z2

��� 1
2 C�n .z/ D 0,

that is, they are essentially the symmetric Jacobi polynomials, P
.�� 1

2 ,�� 1
2 /

n .z/, although normalized differently because

C�n .z/ D
�
�
�C 1

2

�
�.nC 2�/

�.2�/�
�

nC �C 1
2

� P
.�� 1

2 ,�� 1
2 /

n .z/.

There exist useful relations between Legendre polynomials Ln.z/ and Chebyshev polynomials of the first kind and second kind,
Tn.z/, Un.z/, respectively, and the Gegenbauer polynomials C�n .z/ as [45],

Ln.z/ D C1=2
n .z/, Un.z/ D C1

n.z/,

and

Tn.z/ D
n

2
lim
�!0

��1C�n .z/, n � 1.

The Gegenbauer polynomials satisfy the following orthogonality relation [47]

Z 1

�1
C.�/m .z/C.�/n .z/w�.z/ dz D ��n ımn,

where the even function w�.z/ D
�
1 � z2

��� 1
2 is the weight function for the Gegenbauer polynomials and

��n D
�21�2��.nC 2�/

�.nC 1/.nC �/Œ�.�/�2
,
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is the normalization factor and ımn is the Kronecker delta function. The Gegenbauer polynomials can be generated through the
following recursion formula:

.nC 1/C�nC1.z/ D 2z.�C n/C�n .z/ � .2�C n � 1/C�n�1.z/, n � 1,

where the starting terms are

C�0 .z/ D 1, C�1 .z/ D 2�z.

An explicit formula for the Gegenbauer polynomials is given by the following finite series:

C�n .z/ D
nX

mD0

.�1/n�m.2�/nCm

mŠ.n �m/Š
�
�C 1

2

�
m

�
zC 1

2

�m

,

where .	/n is the Pochhammer symbol, means 	.	 C 1/.	 C 2/ � � � .	 C n � 1/ for n � 1 and .	/0 D 1.
The first four Gegenbauer polynomials of degree n and associated with the parameter � can be read as follows:

C�0 .z/ D 1,

C�1 .z/ D 2�z,

C�2 .z/ D
.�/2

2Š
.2z/2 � �,

C�3 .z/ D
.�/3

3Š
.2z/3 � 2.�/2z.

The formal Gegenbauer expansion of a function f .x/, defined in the interval Œ�1, 1�, reads [46]

f .x/ D
1X

nD0

f�n C.�/n .x/, (2.2)

where the Gegenbauer coefficients are given by

f�n D
1

��n

Z 1

�1
f .x/C.�/n .x/w�.x/ dx.

Spectral convergence of Gegenbauer expansion (2.2) is obtained for sufficiently smooth functions f .x/. In fact, let f .x/ be analytic on
the closed segment Œ�1, 1�. Then the expansion (2.2) of f .x/ is convergent (in the complex plane C) within the greatest ellipse with
foci at˙1, in which f .x/ is regular (stated for the more general family of Jacobi polynomials in ([45], Theorem 9.1.1). In particular, there
exists some constant 0 < 
0 < 1 such that the function f .x/ has a unique analytic extension onto the elliptical region:

D� :D

�
z 2 C : 2z D 
ei� C

�

ei�

��1
, 0 � 	 � 2� , 0 < 
 � 
0

	
. (2.3)

Consider the .NC 1/-term truncated Gegenbauer expansion of f .x/

f .�/NC1.x/ :D
NX

nD0

f�n C.�/n .x/,

then, the series (2.2) converges at exponential rate [48]

max
x2Œ�1,1�

jf .x/ � f .�/NC1.x/j � C

 
.NC �/.NC 2�/NC2�

NN�1.2�/2�

! 1
2


N,


 being defined in (2.3) and C is a generic constant. This very fast rate of convergence motivates the use of expansions as (2.2) in
numerical computations, in particular in spectral methods for fractional partial differential equations. For practical use of Gegenbauer
polynomials on the time interval of interest t 2 Œ0, T�, it is necessary to shift the defining domain by the following variable substitution:

z D
2

T
t � 1, 0 � t � T .

Let the shifted Gegenbauer polynomials C�n
�

2
T t � 1

�
be denoted by G�n .t/, then G�n .t/ can be obtained by

G�n .t/ D
nX

mD0

1

T m

.�1/n�m.2�/nCm

mŠ.n �m/Š
�
�C 1

2

�
m

tm, 0 � t � T . (2.4)

Note that the values G�n .0/ D .�1/n �.nC2�/
nŠ�.2�/ and G�n .T/ D

�.nC2�/
nŠ�.2�/ are fulfilled at the endpoints. We determine the Caputo fractional

derivative of G�n .t/ in the following theorem.

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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Theorem 1
Let G�n .t/, 0 � t � T denote the shifted Gegenbauer polynomials of degree n and associated with the parameter �, and also, suppose
˛ > 0 then the derivative of order ˛ in the Caputo sense for G�n .t/ is

D˛
�

G�n .t/
�
D

nX
mDd˛e

b.˛,�/
n,m tm�˛ ,

where

b.˛,�/
n,m D

.�1/n�m.2�/nCm

T m.n �m/Š
�
�C 1

2

�
m
�.mC 1 � ˛/

.

Proof
Taking the fractional derivative of order ˛ on the definition of G�n .t/ in finite series (2.4), we have

D˛
�

G�n .t/
�
D

nX
mD0

1

T m

.�1/n�m.2�/nCm

mŠ.n �m/Š
�
�C 1

2

�
m

D˛.tm/

D

nX
mDd˛e

1

T m

.�1/n�m.2�/nCm�.mC 1/

mŠ.n �m/Š
�
�C 1

2

�
m
�.mC 1 � ˛/

tm�˛

D

nX
mDd˛e

1

T m

.�1/n�m.2�/nCm

.n �m/Š
�
�C 1

2

�
m
�.mC 1 � ˛/

tm�˛

We could easily conclude the proof by noting that D˛.tm/ D 0 for m D 0, 1, : : : , d˛e � 1 and ˛ > 0.

We use a stable formula for computing coefficients b.˛,�/
n,m when 0 < ˛ � 1:

b.˛,�/
n,mC1 D

�.2�C nCm/.n �m/

T.�C 1
2 Cm/.mC 1 � ˛/

b.˛,�/
n,m , m D 1, 2, : : : ,

where we start with the following equation:

b.˛,�/
n,1 D

.�1/n�1.2�/nC1

T.n � 1/Š
�
�C 1

2

�
�.2 � ˛/

.

3. Solving the problem with spectral method

Let x0, x1, : : : , xM be MC 1 distinct nodes in Œ0, 1�, and 'm.x/, m D 0, 1, : : : , M be the m-th Lagrange interpolation polynomials based on
the aforementioned nodes, which are expressed as

'm.x/ D
MY

jD0,j¤m

x � xj

xm � xj
, m D 0, 1, : : : , M.

By noting that '00m.x/ is a polynomial of degree m � 2, we have

'00m.x/ D
MX

kD0

'00m.xk/'k.x/,

or in the matrix form

ˆxx D H.2/ˆ,

while the vector ˆ is given by ˆ D Œ'0.x/ '1.x/ � � �'M.x/�T , and ˆxx refers to the second-order derivative of the ˆ, and H.2/ Dh
h.2/mk

i
D



'00m.xk/

�
is the second-order derivative matrix. For calculating the entries of H.2/, we need to compute the entries of

differentiation matrix H D Œhmk� D


'0m.xk/

�
. According to [49]

hmk D

8̂<
:̂

dk
dm
.xk � xm/

�1, m ¤ k,

�
MP

lD0,l¤k

hlk , m D k,

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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where dj D
QM

lD0,l¤j.xj � xl/. The computation of ration dm
dk

in hmk may cause round-off error; therefore, to avoid this problem as
mentioned in [49], we can compute them as follows:

qj D

MX
lD0,l¤j

ln.jxj � xlj/,
dk

dm
D .�1/kCmeqk�qm .

Now, the entries of matrix H.2/ can be computed recursively by the entries of H as follows:

h.2/mk D

8̂̂<
ˆ̂:

2.hkkhmk � .xk � xm/
�1hmk/, m ¤ k,

�
MP

lD0,l¤k

h.2/lk , m D k.

To solve the problem (1.1)-(1.3), we approximate u.x, t/ by (N + 1) shifted Gegenbauer polynomials truncated as .NC1/-term truncated
Gegenbauer expansion of (2.2) and (M + 1) Lagrange polynomials in the following form:

u.�/M,N.x, t/ D
MX

mD0

NX
nD0

cmn'm.x/G
�
n .t/. (3.1)

We derive in the following lemma an appropriate form for the fractional and classical partial derivative of the approximate solution (3.1).

Lemma 3.1
Let ˛ > 0 and xk be the spatial collocation points. Then the following relations hold:

D˛t

�
u.�/M,N.xk , t/

�
D

NX
nDd˛e

nX
rDd˛e

cknb.�,˛/
n,r tr�˛ ,

@u.�/M,N.xk , t/

@x
D

MX
mD0

NX
nD0

cmnhmkG�n .t/,

@2u.�/M,N.xk , t/

@x2
D

MX
mD0

NX
nD0

cmnh.2/mk G�n .t/.

Proof

D˛t

�
u.�/M,N.xk , t/

�
D

MX
mD0

NX
nD0

cmn'm.xk/D
˛G�n .t/

D

MX
mD0

NX
nDd˛e

nX
rDd˛e

cmnb.�,˛/
n,r 'm.xk/t

r�˛

D

MX
mD0

NX
nDd˛e

nX
rDd˛e

cmnb.�,˛/
n,r ım,ktr�˛

D

NX
nDd˛e

nX
rDd˛e

cknb.�,˛/
n,r tr�˛ ,

@u.�/M,N.xk , t/

@x
D

MX
mD0

NX
nD0

cmn'
0
m.xk/G

�
n .t/

D

MX
mD0

NX
nD0

cmnhmkG�n .t/,

@2u.�/M,N.xk , t/

@x2
D

MX
mD0

NX
nD0

cmn'
00
m.xk/G

�
n .t/

D

MX
mD0

NX
nD0

cmnh.2/mk G�n .t/.�

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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Now, we are ready to solve (1.1)-(1.3). By substituting Equation (3.1) in Equation (1.1), we obtain

D˛t u.�/M,N.x, t/C a.x/
@u.�/M,N.x, t/

@x
C b.x/

@2u.�/M,N.x, t/

@x2
D f .x, t/. (3.2)

We collocate Equation (3.2) in certain nodes right now. A good choice for these nodes is the Chebyshev–Gauss nodes associated with
interval Œ0, 1� for spatial collocation, that is,

xk D
1

2
�

1

2
cos

�
.2kC 1/�

2.MC 1/

�
, k D 0, 1, 2, : : : , M.

For suitable collocation points in time, we use the shifted Gegenbauer roots �l , l D 0, 1, 2, : : : , N of G�NC1.t/ associated with interval
Œ0, T�. So using Lemma 3.1, we have

NX
nDd˛e

nX
rDd˛e

cknb.�,˛/
n,r � r�˛

l C a.xk/

MX
mD0

NX
nD0

cmnhmkG�n .�l/C b.xk/

MX
mD0

NX
nD0

cmnh.2/mk G�n .�l/

D f .xk , �l/, k D 1, : : : , M � 1, l D 0, 1, : : : , N � 1. (3.3)

Also by applying Equation (3.1) in the initial and boundary conditions (1.2) and (1.3), respectively, one can write

MX
mD0

NX
nD0

cmn'm.x/G
�
n .0/ D g.x/, (3.4)

MX
mD0

NX
nD0

cmn'm.0/G
�
n .t/ D h1.t/, (3.5)

MX
mD0

NX
nD0

cmn'm.1/G
�
n .t/ D h2.t/. (3.6)

Collocating Equation (3.4) in M � 1 points xk and Equations (3.5) and (3.6) in N points �l , we have

NX
nD0

ckn.�1/n .2�/n

nŠ
D g.xk/, k D 0, : : : , M, (3.7)

MX
mD0

NX
nD0

cmn'm.0/G
�
n .�l/ D h1.�l/, l D 0, 1, : : : , N � 1, (3.8)

MX
mD0

NX
nD0

cmn'm.1/G
�
n .�l/ D h2.�l/, l D 0, 1, : : : , N � 1. (3.9)

The number of the unknown coefficients cmn is equal to .N C 1/.M C 1/ and can be obtained from Equations (3.3), (3.7)–(3.9).
Consequently, u.�/M,N.x, t/ given in Equation (3.1) can be calculated.

4. Numerical illustrations

Example 4.1
Consider the following time-fractional diffusion equation

D˛t u.x, t/ �
@2u.x, t/

@x2
D 2

�
1

�.3 � ˛/
t2�˛ � 1

�
, 0 < x < 1, 0 < t � 1, 0 < ˛ � 1,

where

u.0, t/ D t2 u.1, t/ D 1C t2 u.x, 0/ D x2

It is easy to see that the exact solution to this problem is

u.x, t/ D x2 C t2.
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Set N D 2 and M D 2 with � D ˛ in applying the GSM. We obtain the following result for ˛ D 0.5:

u.�/M,N.x, t/ D 7.40572 � 10�11x C 4.58429 � 10�10tC x2 C 1.31176 � 10�10 � 1.76000 � 10�8x2t

C 1.56081 � 10�8xtC 1.56000 � 10�8x2t2 � 1.27421 � 10�8xt2 C t2.

We obtain the following result for ˛ D � D 1, M D 2, N D 2:

u.�/M,N.x, t/ D �5.45000 � 10�10x C 2.05794 � 0�10tC x2 C t2 � 3.88000 � 10�9x2t

� 3.92959 � 10�9xtC 1.09609 � 10�8xt2 C 1.15000 � 10�10 � 4.30000 � 10�10x2t2

In the aforementioned results, we get approximate solution of the problem that is very close to the exact solution. To make a compari-
son, in Table I, we bring results of applying biorthogonal flatlet multiwavelets scheme [41] for numerical solution of the problem with
˛ D 0.5 by taking different values of m and J in time t D 0.25.

Example 4.2
Let us consider the one-dimensional fractional heat-like equation

D˛t u.x, t/ D
1

2
x2 @

2u.x, t/

@x2
, 0 < x < 1, 0 < t � 1, 0 < ˛ � 1,

subject to the boundary conditions

u.0, t/ D 0, u.1, t/ D et ,

and the initial condition

u.x, 0/ D x2.

When ˛ D 1, the exact solution of the aforementioned problem is u.x, t/ D x2et . Taking ˛ D 0.75 in Table II, we compare our
method with � D ˛, M D 3 and different values of M together with the result obtained by using four-term of the VIM, ADM, and also
Sinc–Legendre method with n D 6 (time discretization) and m D 15 (spatial discretization) given in [50, 51], and [30], respectively. Also
in Table III, the absolute error function ju.x, t/ � u.�/M,N.x, t/j obtained by the present method with � D 0.9, M D 2 and N D 12 has been
compared with Sinc–Legendre method [30] and VIM [50]. The results show the accuracy of the GSM with small discretization of time

Table I. Absolute error for ˛ D 0.5 and different
values of m for Example 4.1.

BFM [41] method

x J D 1, m D 2 J D 1, m D 3 J D 2, m D 2

0.2 3.3 � 10�2 4.4 � 10�3 8.8 � 10�2

0.4 1.9 � 10�2 5.1 � 10�2 9.8 � 10�2

0.6 1.6 � 10�2 7.1 � 10�2 3.4 � 10�1

0.8 1.2 � 10�1 2.8 � 10�2 4.3 � 10�1

Table II. Comparison of u.x, t/ for ˛ D 0.75 for Example 4.2.

Sinc–Legendre method (n D 6) GSM (M D 3)

t x VIM ADM m D 15 N D 10 N D 14

0.25 0.3 1.293 e-01 1.346 e-01 1.312 e-01 0.1312579 0.1312847
0.6 5.175 e-01 5.385 e-01 4.957 e-01 0.4967283 0.4966314
0.9 1.164 e00 1.211 e00 1.055 e-01 1.0591932 1.0591091

0.5 0.3 1.695 e-01 1.795 e-01 1.685 e-01 0.1689450 0.1689744
0.6 6.780 e-01 7.183 e-01 6.303 e-01 0.6289597 0.6288702
0.9 1.525 e00 1.616 e00 1.352 e00 1.3532178 1.3531380

0.75 0.3 2.154 e-01 2.313 e-01 2.118 e-01 0.2132472 0.2132235
0.6 8.618 e-01 9.255 e-01 7.962 e-01 0.7968170 0.7961966
0.9 1.939 e00 2.082 e00 1.733 e00 1.7310568 1.7306016

1.00 0.3 2.687 e-01 2.909 e-01 2.645 e-01 0.2669056 0.2668259
0.6 1.075 e00 1.163 e00 9.745 e-01 0.9777382 0.9885615
0.9 2.419 e00 2.618 e00 2.014 e00 2.1916358 2.1997874
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Table III. Comparison of absolute error for ˛ D 1 for Example 4.2.

Sinc–Legendre method (n D 6) GSM (� D 0.9)

t x VIM m D 10 m D 15 m D 25 M D 2 N D 12

0.25 0.3 1.54e-05 5.65e-06 1.09e-06 9.92e-08 1.04e-09
0.6 6.16e-05 1.28e-04 2.96e-05 2.70e-06 1.17e-10
0.9 1.38e-04 4.29e-04 9.94e-05 1.02e-05 2.57e-09

0.5 0.3 2.60e-04 2.66e-05 6.45e-06 5.56e-07 2.58e-10
0.6 1.03e-03 2.23e-04 5.24e-05 4.87e-06 2.67e-10
0.9 2.34e-03 6.37e-04 1.47e-04 1.30e-05 1.60e-10

0.75 0.3 1.39e-03 5.12e-05 1.40e-05 1.14e-06 1.66e-10
0.6 5.56e-03 3.16e-04 7.67e-05 6.90e-06 1.01e-09
0.9 1..25e-02 8.80e-04 2.01e-04 1.59e-05 3.60e-09

1.00 0.3 4.64e-03 2.34e-04 1.83e-05 9.83e-07 1.31e-08
0.6 1.85e-02 8.23e-04 9.40e-05 6.40e-06 2.20e-08
0.9 4.18e-02 2.16e-04 4.26e-04 2.58e-05 1.58e-07

Figure 1. Plot of the absolute error obtained by GSM with N D 2, M D 12,� D 0.9 for Example 4.2 when ˛ D 1.

and space compared with the mentioned methods. Figure 1 shows the absolute error of our method that indicates low values of the
absolute error.

Example 4.3
Consider the initial boundary values problem of fractional partial differential equation of order ˛, 0 < ˛ < 1

D˛t u.x, t/C x
@u.x, t/

@x
C
@2u.x, t/

@x2
D 2t˛ C 2x2 C 2, 0 < x < 1, 0 < t < 1,

subject to the boundary conditions

u.0, t/ D 2
�.˛ C 1/

�.2˛ C 1/
t2˛ , u.1, t/ D 1C 2

�.˛ C 1/

�.2˛ C 1/
t2˛ ,

and the initial condition u.x, 0/ D x2.

The exact solution of this problem is [52, 53]

u.x, t/ D x2 C 2
�.˛ C 1/

�.2˛ C 1/
t2˛ .

Figure 2 shows the approximate solution of this problem for ˛ D 0.4 obtained by the GSM with M D 2, N D 4,� D 0.8 together with
the exact solution of this problem. To make a comparison, in Table IV, we bring results of absolute error of the Sinc–Legendre method
[30] with n D 7 and m D 15, 25 together with the result obtained by using wavelet method given in [52], for ˛ D 0.5. We take great
pleasure in telling that GSM yields the exact solution of the problem for very small discretization, that is, M D 2, N D 1.
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Figure 2. Plot of the approximate solution by GSM with N D 4, M D 2,� D 0.8 (left), and exact solution (right) for Example 4.3 when ˛ D 0.4.

Table IV. Comparison of absolute error for ˛ D 0.5, t D 0.5,
and � D ˛ for Example 4.3.

Wavelet method Sinc–Legendre method(n D 7)

x m D 64 m D 15 m D 25

0.1 1.210 e-03 6.994 e-05 6.462 e-06
0.2 1.259 e-03 1.721 e-04 1.578 e-05
0.3 1.865 e-03 2.472 e-04 2.272 e-05
0.4 7.412 e-03 2.912 e-04 2.674 e-05
0.5 1.000 e-06 3.004 e-04 2.759 e-05
0.6 7.460 e-03 2.760 e-04 2.534 e-05
0.7 1.724 e-03 2.213 e-04 2.035 e-05
0.8 4.990 e-03 1.440 e-04 1.320 e-05
0.9 1.678 e-02 5.026 e-05 4.653 e-06

Figure 3. Plot of the absolute error of GSM approximate solution with N D 2,˛ D 0.1 and M D 5 (left), M D 7 (right) for Example 4.4.

Example 4.4
Consider the following time-fractional diffusion equation:

D˛t u.x, t/ �
@2u.x, t/

@x2
D f .x, t/, 0 < x < 1, 0 < t � 1, 0 < ˛ � 1, (4.1)

where

f .x, t/ D
2

�.3 � ˛/
t2�˛ sin.2�x/C 4�2t2 sin.2�x/,

with the initial condition u.0, x/ D 0 and the boundary conditions u.0, t/ D u.1, t/ D 0.
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Figure 4. Plot of the absolute error of GSM approximate solution with N D 2,˛ D 0.1 and M D 9 (left), M D 11 (right) for Example 4.4.

The exact solution to this problem is [16]

f .x, t/ D t2 sin.2�x/.

We solved the problem by applying the GSM when ˛ D 0.1. To examine the dependence of errors on the discretization parameters
M and N, in Figures 3 and 4, we plotted the absolute error function ju.x, t/ � u.�/M,N.x, t/j obtained by the present method with N D 2,
� D ˛ and for different values of M. One can see from Figures 3 and 4, accurate results even by using N D 2 and no longer for M. On
comparison, authors of [30] have applied the Sinc–Legendre collocation method for solving (4.1) with n D 8 and m D 10, 15, 20 and
m D 25. For n D 8 and m D 25, they obtained 10�5 accuracy as the maximum value of absolute error of the numerical solution. Note
that our method has been reached to 10�7 accuracy with N D 2 and M D 11.

5. Conclusion

In the aforementioned discussion, we applied the Gegenbauer collocation spectral method to solve the time-fractional convection–
diffusion equation with variable coefficients. This method utilizes a stable procedure to implement and yields the desired accuracy.
The basis functions have three different properties: easy computation, rapid convergence, and completeness, which means that any
solution can be presented to arbitrarily high accuracy by taking the truncation N to be sufficiently large. Finally, accuracy and rapidity
of the proposed method are illustrated by some examples.
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