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The effect of the φ4 kink’s internal mode (IM) during the scattering from a PT -symmetric defect is inves-

tigated. It is demonstrated that if a φ4 kink hits the defect from the gain side, a noticeable IM is excited, while

for the kink coming from the opposite direction the mode excitation is much weaker. In the case when the

kink initially carries IM, the IM amplitude is affected by the defect if the kink moves from the gain side and

it is not affected when the kink moves in the opposite direction. A two degree of freedom collective variable

model is shown to be capable of reproducing principal findings of the present work.
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Introduction. Over the last fifteen years, Bender

and co-authors have explored broad classes of non-

Hermitian Hamiltonians possessing real spectra un-

der the parity-time (PT ) symmetry condition, where

parity-time means spatial reflection and time reversal

[1, 2]. This mathematical discovery has generated an

intense interest in the consideration of open physical

systems with balanced gain and loss and such setting

have been realized experimentally in optics [3–8], elec-

tronic circuits [9–11], and mechanical systems [12].

The Klein–Gordon field theory with a PT -

symmetric term, which describes a localized PT -

symmetric defect, has been recently introduced by one

of the authors [13]. A collective coordinate method for

nonconservative systems was developed in that work

to describe the kink interaction with the defect, see

also [14–16]. It was shown that standing kinks in such

models are stable (unstable) if they are centered at the

loss side (gain side) of the defect [15], while standing

breathers may exist only if centered exactly at the

interface between gain and loss regions [16].

The interaction of the moving kinks and breathers

with the spatially localized PT -symmetric perturba-

tion was recently investigated in the realm of the sine-

1)e-mail: saadatmand.d@gmail.com

Gordon (SG) equation [17]. Several new soliton-defect

interaction scenarios were observed such as the kink

passing/trapping depending on whether the kink comes

from the gain or loss side of the impurity, merger of

the kink-antikink pair into a breather, and splitting of

the breather into a kink-antikink pair. The kink phase

shift as a result of interaction with the impurity and the

threshold kink velocity to pass through the lossy side of

the defect were successfully calculated with the help of

the collective variable approach [13, 17].

It is well-known that in the integrable SG model,

the kink does not support vibrational internal modes

(IM), while the kinks in the non-integrable φ4 model do

support such a mode [18]. It is for that reason that the

kink-antikink interactions are far richer in the case of

the φ4 model [19–21]. When a kink hits an impurity in

a conservative model, a part of its energy is trapped to-

wards the excitation of the impurity mode [22, 23] and

another fraction leads to the emission of radiation bursts

[24]. It is of particular interest to investigate the role of

the kink’s IM in the case when the kink interacts with

the PT -symmetric impurity. This problem is addressed

here for the φ4 kinks.

The outline of the Letter is as follows. Firstly we in-

troduce the spatially localized PT -symmetric inhomo-

geneity into the φ4 field and present the well-known φ4
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kink solution and the kink’s IM profile. Then a collective

variable method is applied and analytically solved to re-

veal some features of the kink dynamics in this system.

Next, we report on the numerical results for scattering

of kinks on the PT -symmetric defect. Finally, our con-

clusions and some future directions are presented.

The model. In this paper we study the modified φ4

equation [13]

φtt − φxx − 2φ(1− φ2) = ǫγ(x)φt, (1)

where φ(x, t) is the unknown scalar field, lower indices

indicate partial derivatives with respect to the corre-

sponding indices, and γ(x) is introduced as

γ(x) = tanh(βx)sech(βx), (2)

which has the symmetry γ(−x) = −γ(x). The latter

identity means that the right hand side in (1) is a PT -

symmetric defect, i.e., it preserves its form under the

change x 7→ −x and t 7→ −t. We also note that the

same concerns the left hand side of equation (1). The

physical meaning of equation (1) is that it describes an

open system with gain and loss and the former balances

the latter. The parameter β characterizes the defect in-

verse width.

As γ(x) ≡ 0, Eq. (1) is the non-integrable φ4 equa-

tion with the following moving kink solution

φK(x, t) = ± tanh{δk(x − x0 − Vkt)}, (3)

where Vk is the kink velocity, x0 is the kink initial po-

sition and δk = 1/
√

1− V 2
k . Kink bearing IM can be

approximately described as [20]

ΦK(x, t) = φK(x, t) +Aξ(x, t) sin(ωt), (4)

ξ(x, t) =

√

3

2
tanh{δk(x− x0 − Vkt)} ×

× sech{δk(x− x0 − Vkt)}. (5)

The IM has amplitude A and frequency ω =
√
3. This

mode has been discussed by many authors due to its

critical role in the collision phenomenology of the φ4

model [19–21]. In this Letter we show that the kink’s

IM noticeably affects the kink dynamics during the in-

teraction with the PT -symmetric defect.

Collective variable method. In [13] a two-degree

of freedom collective variable model was offered and this

model takes into account not only the kink’s transla-

tional mode but also the kink’s IM. The φ4 kink is effec-

tively described by the two degree of freedom particle of

mass M = 4/3, which is the mass of the standing kink.

The kink coordinate X (t) (which in the unperturbed

case is given by x0 + Vkt as a function of time t) and

the kink’s internal shape mode A(t) are solutions to the

equations

M Ẍ = ǫ

∫

∞

−∞

(φ′

K +Aξ′)[(φ′

K +Aξ′)Ẋ − Ȧξ]γ(x)dx, (6)

Ä = −ω2A+ ǫ

∫ ∞

−∞

ξ[−(φ′

K +Aξ′)Ẋ + Ȧξ]γ(x)dx. (7)

The first equation describes the kink translational mode

and the latter characterizes the amplitude of the inter-

nal shape mode of the φ4 kink. These equations yield

the general form of the nonconservative forcing includ-

ing the coupling between the modes. Once A is small

enough, we can neglect the terms of order O(A) and it

simplifies the above equations:

M Ẍ = ǫẊ
∫

∞

−∞

[φ′

K(x−X )]2γ(x)dx, (8)

Ä = −ω2A+ ǫ

∫

∞

−∞

[ξ(x−X )]2γ(x)dx. (9)

Below we present the results of numerical solution

for the two degree of freedom model (6) and (7).

Numerical results. To solve numerically Eq. (1)

we introduce the mesh x = nh, where n = 0,±1,±2, ...

and h = 0.1 is the selected spacing. The accuracy of

the finite difference approximation used is O(h4). The

resulting set of the ordinary differential equations is in-

tegrated numerically using the time step τ = 0.005 in

the numerical scheme with the accuracy of O(τ4). In the

present study the simulations are carried out for fixed

β = 1 (the impurity width is approximately equal to the

kink width).

To solve numerically the collective variable equa-

tions of motion Eqs. (6), (7), the temporal variable is

discretized, t = jτ , where j = 0, 1, 2, .... The second-

order central differences are used to replace Ẍ ∼ (Xj−1−
−2Xj+Xj+1)/τ

2, Ẋ ∼ (Xj+1−Xj−1)/2τ , and similarly

for Ä and Ȧ. For the initial conditions to boost the kink

with the initial velocity Vk and the initial IM ampli-

tude A, we set X (j = 0) = X0, X (j = 1) = X0 + Vkτ ,

A(j = 0) = A(j = 1) = A.

Kinks bearing no initial IM. Firstly we discuss

the continuum model of Eq. (1). Fig. 1a and b) shows

the kink kinetic energy as a function of time for the case

when the kink, initially bearing no IM, interacts with

the PT -symmetric defect with amplitude ǫ = 0.15. In

panel a the kink approaches the defect from the gain

side and in panel b from the loss side. The kink initial
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Fig. 1. Numerical results for the continuum model Eq. (1) showing the interaction of the kink initially bearing no IM with

the PT -symmetric defect. In panels a and b shown is the kink kinetic energy as a function of time for the defect amplitude

ǫ = 0.15 and the kink initial velocity Vk = 0.4. The kink approaches the defect from the gain side (a) and from the loss side

(b) of the defect. The figures reveal that in panel a kink’s IM is excited after the interaction with the defect, while in panel b

it is practically not excited. (c) – Amplitude of the kink kinetic energy after the interaction with the defect as a function

of kink initial velocity for the case when kink hits the defect from the gain side (solid line) and loss side (dotted line) for

ǫ = 0.15 and 0.3

velocity is Vk = 0.4 in both cases. As a result of in-

teraction with the defect, the kink in panel a is firstly

accelerated and then decelerated, while in panel b it

is first decelerated and then accelerated. In both cases

the kink’s translational velocity after passing through

the defect is practically identical to the initial velocity.

Note that the kink without the IM excited has a con-

stant in time kinetic energy, while the kinetic energy of

the kink with the excited IM oscillates near the con-

stant value with frequency 2
√
3, which is double the IM

frequency. The intensity of the IM will be character-

ized by the amplitude of the kink kinetic energy oscil-

lation caused by the IM, ∆Ek = (Ek,max − Ek,min)/2,

where Ek,max and Ek,min are the maximum and min-

imum of the kink kinetic energy. In Fig. 1a the kink

hits the defect from the gain side and a noticeable

IM is excited as a result of the kink-defect interac-

tion, while for the kink coming from the opposite di-

rection (see Fig. 1b), the IM is much weaker and, in

fact, cannot be seen in the scale of the figure. The ef-

fect of the kink’s IM excitation as a result of the in-

teraction with the defect becomes stronger for larger

initial kink velocity Vk and larger defect amplitude ǫ,

as can be seen from Fig. 1c, where the kink kinetic en-

ergy oscillation amplitude ∆Ek is shown as the func-

tion of Vk for ǫ = 0.15 and ǫ = 0.3. Solid (dotted)

lines show the results for the kink moving from the

gain (loss) side. The log-log plot of the data shown

in Fig. 1c reveals that for ǫ = 0.3, ∆Ek ∼ V 6
k . Since

∆Ek ∼ A2, where A is the kink’s IM amplitude, one

has A ∼ V 3
k . For Vk < 0.1 the excitation of the kink’s

IM is very weak even for the kink moving from the gain

side and even for the relatively large value of ǫ such as

ǫ = 0.3.

The results obtained for the continuum system

Eq. (1) and presented in Fig. 1 will be now compared

to the results of the numerical solution of Eqs. (6), (7)

for the two degree of freedom collective variable model,

see Fig. 2. In panels a and b we plot the amplitude of

the shape mode as a function of time. Here, the kink
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Fig. 2. Collective variable results for the model Eqs. (6), (7). (a, b) – The dynamics of the shape mode whose amplitude A(t)

is shown for the case when the kink comes from gain side (a) and loss side (b). The perturbation amplitude is ǫ = 0.15 and

the initial velocity of the kink is Vk = ±0.4. (c) – Amplitude of the shape mode after the interaction with the defect as a

function of kink initial velocity for the case when the kink hits the defect from the gain side (solid line) and loss side (dotted

line) for ǫ = 0.15 and 0.3

with initial velocity Vk = ±0.4 hits the defect of am-

plitude ǫ = 0.15 from the gain side (Fig. 2a) and loss

side (Fig. 2b). It can be seen that for the kink coming

from the gain side a noticeable IM is exited after the

interaction with the defect, whereas for the kink mov-

ing in the opposite direction the excited IM is much

weaker and cannot be seen in the scale of the figure.

This is in very good qualitative agreement with the re-

sults for continuum model. In Fig. 2c it is demonstrated

that the kink’s IM amplitude after the interaction with

the defect increases with increase in Vk and ǫ. The use of

the log-log coordinates for Fig. 2c shows that Af ∼ V 3
k .

Solid (dotted) lines show the results for the kink moving

from the gain (loss) side. We could not provide a quan-

titative comparison of the models because it is possible

only for Vk < 0.1, when the kink’s IM amplitude in the

continuum model does not depend on Vk. But, as it was

mentioned above, the kink IM amplitude is extremely

weak for Vk < 0.1.

Kinks with initially excited IM. Here, the scat-

tering of a kink bearing an initial IM on a PT -

symmetric defect is considered. Again we start from the

continuum model Eq. (1). We consider a kink with IM

excited with the help of Eq. (4) using the IM amplitude

A = 0.05 and the kink initial velocity Vk = 0.3. The

amplitude of the initial kink kinetic energy oscillation,

∆Ei
k, is equal to 0.0033. This initial value is plotted in

Fig. 3a with horizontal dotted lines. Now we calculate

the value of ∆Ef
k after the kink passes through the de-

fect with the amplitude ǫ = 0.15 as a function of the

kink initial position and present the results by solid line

in Fig. 3a for the kink moving from the gain (thick line)

and the loss (thin line) side of the defect. It is clear that

the kink’s IM is affected by the defect when it moves

from the gain side because ∆Ef
k differs from ∆Ei

k, while

in the opposite case the IM amplitude is practically not

changed by the defect. The oscillation of ∆Ef
k as a func-

tion of the kink initial position x0 has a period close to
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Fig. 3. (a) – Numerical results for the continuum model. Amplitude of the kink kinetic energy oscillation before (∆Ei
k, dotted

line) and after (∆E
f

k , solid lines) the interaction with the PT -symmetric defect as a function of kink initial position. Thick

(thin) line shows the case when the kink moves from the gain (loss) side of the defect. (b) – Collective variable results for

the model Eqs. (6), (7). The IM amplitude before (Ai
k, dotted line) and after (Af

k, solid lines) the interaction with the defect

as a function of the kink initial position. Thick line shows the case when the kink comes from the gain side and thin line

(overlaps with the dotted line) shows the case when the kink comes from the loss side. Parameters used in panels a and b:

the defect amplitude ǫ = 0.15 and the kink initial velocity Vk = 0.3

Vk(2π/ω), which is the distance the kink travels in one

period of IM oscillation.

Similar results obtained in frame of the two degree of

freedom collective variable model Eqs. (6), (7) are pre-

sented in Fig. 3b. The initial (Ai
k) and final (Af

k) ampli-

tudes of the kink’s shape mode are shown as functions

of the kink initial position by the dotted and solid lines,

respectively. Thick (thin) solid lines show the results

for the kink moving toward the defect with amplitude

ǫ = 0.15 from the gain (loss) side. The kink initially

has an IM of amplitude A = 0.05 and the initial ve-

locity of the kink is Vk = 0.3. In very good qualita-

tive agreement with the results for continuum model,

the collective variable model shows that the kink’s IM

is affected by the defect when it moves from the gain

side and it does not when it moves in the opposite

direction (the thin solid line overlaps with the dotted

line).

Conclusions. The interaction of the φ4 kinks with

and without IM excitation with the PT -symmetric de-

fect was investigated numerically. It has been shown

that the kink’s IM plays an important role during the

scattering process. From our numerical results presented

in Fig. 1 it follows that a noticeable IM is excited on

the φ4 kink after passing the defect from the gain side

and the excitation of IM is much weaker for the kink

moving in the opposite direction. The excitation of the

kink’s IM increases with increasing kink initial velocity

Vk and the defect strength ǫ, see Fig. 1c. These effects

are well reproduced qualitatively by the two degree of

freedom collective variable model Eqs. (6), (7), as shown

in Fig. 2.

For the kink with an initially excited IM, the IM

is affected by the defect when the kink hits the defect

from the gain side, and the effect is stronger for faster

kinks and larger defect strength (see Fig. 3a, thick solid

line). In contrast, for the kink moving in the opposite

direction, the initially excited IM is not affected by the

defect (see Fig. 3a, thin solid line). Analogous results ob-

tained with the use of the collective variable model are

shown in Fig. 3b, and they are in very good qualitative

agreement with the results for the continuum φ4 model.
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Quantitative comparison of the continuum and col-

lective variable models is complicated because the kink’s

IM excitation is noticeable only for kink initial velocity

Vk > 0.1, while the kink kinetic energy amplitude ∆Ek

can be related to the kink internal mode amplitude A

only for Vk < 0.1, otherwise ∆Ek depends not only on

A, but also on Vk.

We conclude that the PT -symmetric defects give

new opportunities in the manipulation of the soliton

dynamics and the presence of the internal modes can in-

duce noticeable asymmetries of the solitary wave-defect

interaction in terms of their excitation and overall time

evolution.
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