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1. Introduction and result

The low energy effective field theory of D-branes in type II su-
perstring theories consists of the Dirac–Born–Infeld (DBI) [1] and 
the Chern–Simons (CS) actions [2]. The effective theory of O-plane 
is an orientifold projection of above actions. The curvature correc-
tions to the CS part have been found in [3–5] by requiring that 
the chiral anomaly on the world volume of intersecting D-branes 
(I-brane) cancels with the anomalous variation of the CS action. 
The curvature corrections to the DBI action, on the other hand, 
have been found in [6] by requiring consistency of the effective 
action with the O (α′ 2) terms of the corresponding disk-level scat-
tering amplitude [7,8]. For totally-geodesic embeddings of world-
volume in the ambient spacetime, the corrections in the string 
frame for zero B-field and for constant dilaton are1 [6]

S ⊃ π2α′ 2T p

48

∫
dp+1x e−φ

√
−G̃

[
Rabcd Rabcd − 2R̂ab R̂ab

− Rabi j Rabi j + 2R̂ i j R̂ i j
]

(1)

where R̂ab = Rc
acb , R̂ i j = Rc

icj and G̃ = det(G̃ab) where G̃ab is the 
pull-back of the bulk metric onto the word-volume, i.e.,

G̃ab = ∂ Xμ

∂σ a

∂ Xν

∂σ b
Gμν (2)

The orientifold projection projects out the Riemann curvature with 
odd number of transverse indices, so the above couplings are 
the curvature couplings on the world volume of both D-brane 
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1 Our index conversion is that the Greek letters (μ, ν, · · ·) are the indices of the 

space–time coordinates, the Latin letters (a, d, c, · · ·) are the world-volume indices 
and the letters (i, j, k, · · ·) are the normal bundle indices.
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and O-plane depending on the tension T p which is different for 
D-brane and O-plane.

In the presence of non-constant dilaton, the couplings (1) are 
not consistent with T-duality. For zero B-field, the compatibility 
with linear T-duality requires the following extension [9,10]:

S ⊃ π2α′ 2T p

48

∫
dp+1x e−φ

√
−G̃

[
Rabcd Rabcd − 2RabRab

− Rabi j Rabi j + 2Ri jRi j
]

(3)

where Rμν = R̂μν + ∇μ∇νφ. The orientifold projection projects 
out dilaton with odd number of transverse derivatives, so the 
above couplings are valid for both D-brane and O-plane actions.

In the presence of non-zero B-field, the couplings (3) are not 
consistent with the T-duality. Using the compatibility of these cou-
plings with linear T-duality as a guiding principle, the quadratic 
B-field couplings at order O (α′ 2) have been found in [9] to be

S ⊃ π2α′ 2T p

48

∫
dp+1xe−φ

√
−G̃

[
1

2
∇a Hbci∇a Hbci

− 1

6
∇a Hijk∇a Hijk − 1

3
∇i Habc∇ i Habc

]
(4)

The above couplings have been confirmed with the disk level S-
matrix calculations [9]. The orientifold projection projects out co-
variant derivatives of B-field with even number of transverse in-
dices, so again the above couplings are valid for both D-brane and 
O-plane.

The quadratic couplings (3) and (4) are not however consistent 
with the full nonlinear T-duality transformations. In this paper, we 
are going to use the compatibility of the couplings (1) with nonlin-
ear T-duality as a guiding principle to find the couplings of O-plane 
to all massless NS–NS fields at order α′ 2. We find the quadratic 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

http://dx.doi.org/10.1016/j.physletb.2015.05.049
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:garousi@um.ac.ir
http://dx.doi.org/10.1016/j.physletb.2015.05.049
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2015.05.049&domain=pdf


54 M.R. Garousi / Physics Letters B 747 (2015) 53–58
couplings (3) and (4) as well as the following higher order cou-
plings:

S ⊃ π2α′ 2T p

48

∫
dp+1xe−φ

√
−G̃

[
Habi Ha

c
iRbc − 3

2
Habi Hab

jRi j

+ 1

2
Hijk Hij

lRkl − Habi Hcd
i Rabcd + Habi Hi

jk Rabjk

− 1

4
Habi Hab

j Hi
kl H jkl + 1

4
Habi Hab

j Hcd
i Hcdj

+ 1

8
Habi Ha

cj Hb
d

j Hcdi − 1

6
Habi Ha

cj Hbc
k Hijk

+ 1

24
Hijk Hi

lm H jl
n Hkmn

]
(5)

The consistency of the effective actions with T-duality has been 
also used in [11–18] to find new couplings in the world volume 
and spacetime actions.

An outline of the paper is as follows. In the next section, we 
present an algorithm for calculating the world volume theory of 
D-brane/O-plane by imposing the action to be consistent with the 
T-duality transformations. In Section 3, we find the couplings of 
gravity and dilaton for O-plane which are invariant under a sim-
plified T-duality transformations in which there is no B-field and 
the metric is diagonal. We find six multiplets which are invariant 
under the simplified T-duality transformations. These multiplets, 
however, are not invariant under the full T-duality transformations. 
Using the consistency of the multiplets with S-matrix elements, 
we argue that only two of these multiplets survive under the full 
T-duality transformations. In Section 4, we find the appropriate 
B-field couplings which make the two multiplets to be invariant 
under the full T-duality transformations.

2. T-duality constraint

The full set of nonlinear T-duality transformations for massless 
fields have been found in [19–23]. When the T-duality transfor-
mation acts along the Killing coordinate y, the transformations of 
NS–NS fields are

e2φ → e2φ

G yy
, G yy → 1

G yy
,

Gαy → Bαy

G yy
, Gαβ → Gαβ − Gαy Gβ y − Bαy Bβ y

G yy
,

Bαy → Gαy

G yy
, Bαβ → Bαβ − Bαy Gβ y − Gαy Bβ y

G yy
, (6)

where α, β �= y. In above transformation the metric is given in the 
string frame. If y is identified on a circle of radius ρ , i.e., y ∼
y + 2πρ , then after T-duality the radius becomes ρ̃ = α′/ρ . The 
string coupling is also transformed as g̃ = g

√
α′/ρ . It is known 

that the above transformations do not receive α′ correction in the 
type II superstring theories in which we are interested.

If one defines the new field ϕ as G yy = e−ϕ and uses the 
dimensional reduction to write the 10-dimensional metric and 
B-field as

Gμν =
(

gαβ + eϕ gα gβ eϕ gα

eϕ gβ eϕ

)
,

Bμν =
(

bαβ + 1
2 bα gβ − 1

2 bβ gα bα

−bβ 0

)
(7)

where gαβ , bαβ are the metric and the B-field, and gα , bα are 
two vectors in the 9-dimensional base space, then the T-duality 
transformations (6) simplify to
φ → φ − 1

2
ϕ , ϕ → −ϕ , gα → bα , bα → gα (8)

The 9-dimensional base space fields gαβ and bαβ remain invariant 
under the T-duality.

A method for finding the world volume couplings which are 
invariant under linear T-duality is given in [9]. This method may be 
used to show that the S-matrix elements satisfy the Ward identity 
corresponding to the T-duality (see e.g., [24]). In this section, we 
are going to extend this method to find the world volume action at 
order α′ 2 which is invariant under nonlinear T-duality. To this end, 
we first write all covariant couplings at order α′ 2 with unknown 
coefficients. These couplings can be constructed by contracting the 
appropriate bulk tensors with the inverse of bulk metric Gμν or 
with the world volume first fundamental form G̃μν . This tensors is 
defined as

G̃μν = ∂ Xμ

∂σ a

∂ Xν

∂σ b
G̃ab (9)

where G̃ab is inverse of the pull-back metric G̃ab . We call the 
action corresponding to these couplings S . Then we reduce the ac-
tion to the 9-dimensional space which depends on whether the 
Killing coordinate y is a world volume or transverse direction. 
When y is a world volume direction we call the reduced ac-
tion S w , and when y is a transverse direction we call it St . The 
T-duality of S w which we call it S wT must be equal to St up to 
some total derivative terms, i.e.,

S wT − St = 0 (10)

The above constraint can be used to find the unknown coefficients 
in the original action S .

Using the reductions (7) and the reduction of Gμν which is the 
inverse of Gμν in (7), i.e.,

Gμν =
(

gαβ −gα

−gβ e−ϕ + gχ gχ

)
(11)

where gαβ is inverse of gαβ , it is straightforward to reduce the 
bulk tensors which contract only with Gμν . One should first sep-
arate the 10-dimensional indices to the 9-dimensional indices and 
the y index. Then one should reduce the 10-dimensional field in 
them to the 9-dimensional fields according to (7) and (11).

For the couplings in which the bulk tensors contract with Gμν

and G̃μν , we also need the reduction of G̃μν . The reduction of the 
first fundamental form depends on weather the brane is along or 
orthogonal to the circle. In the former case, the reduction of G̃ab is

G̃ab =
(

∂ Xα

∂σ ã
∂ Xβ

∂σ b̃
gαβ + eϕ ∂ Xα

∂σ ã
∂ Xβ

∂σ b̃
gα gβ eϕ ∂ Xα

∂σ ã gα

eϕ ∂ Xβ

∂σ b̃
gβ eϕ

)
(12)

where the world volume indices ã , ̃b �= y. Inverse of this matrix is

G̃ab =
(

g̃ãb̃ −g̃ã

−g̃b̃ e−ϕ + g̃ã g̃ã

)
(13)

where g̃ãb̃ is inverse of the pull-back of the 9-dimensional bulk 
metric onto the word-volume, i.e.,

g̃ãb̃ = ∂ Xα

∂σ ã

∂ Xβ

∂σ b̃
gαβ (14)

and g̃ã = g̃ãb̃ ∂ Xα

∂σ b̃
gα . Therefore, the reduction of G̃μν becomes

G̃μν =
(

∂ Xα

∂σ ã
∂ Xβ

∂σ b̃
g̃ãb̃ − ∂ Xα

∂σ ã g̃ã

− ∂ Xβ

g̃b̃ e−ϕ + g̃ g̃ã

)
(15)
∂σ b̃ ã
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In the latter case where y is not a world volume index, the 
reduction of G̃ab is

G̃ab =
(

∂ Xα

∂σ ã
∂ Xβ

∂σ b̃
gαβ 0

0 0

)
(16)

and its inverse is

G̃ab =
(

g̃ãb̃ 0
0 0

)
(17)

Therefore, the reduction of G̃μν in this case becomes

G̃μν =
(

∂ Xα

∂σ ã
∂ Xβ

∂σ b̃
g̃ãb̃ 0

0 0

)
(18)

To proceed further, we need to fix the world volume reparam-
etrization invariance of the action. We fix it by choosing the static 
gauge where Xa = σ a and Xi = 2πα′�i . For O-plane at Xi = 0 and 
D-brane at fixed position Xi = 0, one finds ∂ Xα

∂σ ã = δα
ã . As a result, 

the pull-back metric becomes g̃ãb̃ = gãb̃ and the above reductions 
become

G̃μν =
(

gãb̃ −gã

−gb̃ e−ϕ + gã gã

)
(19)

when brane is along the y direction, and

G̃μν =
(

gãb̃ 0
0 0

)
(20)

when brane is orthogonal to the y direction. Using the reductions 
(7) and (11), and the reductions (19), (20), it is then straightfor-
ward to reduce the bulk tensors which contract with Gμν and with 
the first fundamental form G̃μν .

The T-duality requires the world volume action to have the fol-
lowing structure:

S =
∫

dp+1xe−φ
√

−G̃L (21)

Only the covariant derivatives of dilaton appears in L. The re-
duction of e−φ

√
−G̃ along a world volume direction can be read 

from (12) to be e−φ+ϕ/2
√−g̃ where g̃ = det(̃gãb̃). It transforms to 

e−φ
√−g̃ under the T-duality (8). On the other hand, the reduction 

of e−φ
√

−G̃ along a transverse direction can be read from (16) to 
be e−φ

√−g̃ . So the constraint (10) can be written as∫
dpe−φ

√−g̃

[
LwT −Lt

]
= 0 (22)

where LwT is the T-duality of reduction of Lagrangian L when 
brane is along the y-direction, and Lt is the reduction of L when 
brane is orthogonal to the y-direction.

To satisfy the constraint (22) there are two possibilities. One 
is to consider all couplings with arbitrary covariant derivatives in 
L which are at order α′ 2, e.g., ∇2 R , and then to impose the con-
straint that the Lagrangian is T-duality invariant, i.e., LwT −Lt = 0. 
Another possibility is to consider only couplings in which each 
term has at most two derivatives, e.g., R2. In this case, one may not 
have the strong constraint LwT − Lt = 0, however, using integra-
tion by part on the left-hand side of (22), one can fix the unknown 
coefficients to satisfy the constraint. In this paper we use this lat-
ter possibility.
3. Couplings without B-field

In this section we are going to apply the above T-duality con-
straint to find the world volume couplings of dilaton and graviton 
at order α′ 2. Since the off-diagonal components of metric trans-
forms to B-field under the T-duality transformations, we assume 
then the metric is diagonal and B-field is zero. Using the Mathe-
matica package “xAct” [25], one can easily write all couplings with 
structures R2, R(∇φ)2, R∇∇φ, (∇∇φ)2, ∇∇φ(∇φ)3 and (∇φ)4

where R stands for scalar, Ricci and Reimann curvatures. In gen-
eral, one should consider also the couplings involving the second 
fundamental form. However, such couplings are zero for O-plane. 
In writing the above couplings explicitly, one should use both Gμν

and G̃μν for contracting the indices. There are too many of such 
couplings to be able to write them here.

To find the unknown coefficients of these couplings, we first 
consider the case that brane is along the y-direction. We then 
reduce it to the 9-dimensional space and use the T-duality trans-
formation

φ → φ − 1

2
ϕ , ϕ → −ϕ , (23)

The resulting couplings must be the reduction of the couplings 
when brane is orthogonal to the y-direction, i.e., (22). This con-
straint produces many equations for the unknown coefficients. 
Since we are interested in finding an action which is invariant un-
der the T-duality transformations, we use integration by part to 
reduce the constraints to independent ones. To do this last step, 
we write the curvatures and the covariant derivatives in terms of 
the 9-dimensional metric and then use the integration by part to 
find the independent structures. For example, the following terms 
are a total derivative:∫

dpe−φ
√−g̃

[
1

2
gãb̃ gc̃d̃ gẽ f̃ ∂ãϕ∂b̃ϕ∂c̃ϕ∂d̃ gẽ f̃

− gãb̃ gc̃d̃∂ãφ∂b̃ϕ∂c̃ϕ∂d̃ϕ + 2gãb̃ gc̃d̃∂ãϕ∂c̃ϕ∂d̃∂b̃ϕ

+ gãb̃ gc̃d̃∂ãϕ∂b̃ϕ∂d̃∂c̃ϕ − gãb̃ gc̃d̃ gẽ f̃ ∂ãϕ∂c̃ϕ∂ẽϕ∂ f̃ gb̃d̃

− gãb̃ gc̃d̃ gẽ f̃ ∂ãϕ∂b̃ϕ∂c̃ϕ∂ f̃ gd̃ẽ

]
So one can use it to write gãb̃ gc̃d̃∂ãϕ∂c̃ϕ∂d̃∂b̃ϕ in terms of other 
terms above. In this way the constraint imposed by the coefficient 
of gãb̃ gc̃d̃∂ãϕ∂c̃ϕ∂d̃∂b̃ϕ can be written in terms of constraints im-
posed by other terms. One has to use such total derivative terms to 
reduce the constraints to independent ones. Then the coefficients 
of all independent structures must be zero.

Another set of constraints on the coefficients of the couplings 
for O-plane is that in the static gauge the curvatures and the co-
variant derivatives of dilaton with odd number of transverse in-
dices must be zero. In the 9-dimensional space, the orientifold 
projection is ∂iϕ = ∂i∂ãϕ = ∂iφ = ∂i∂ãφ = 0 and ∂i∂ã gb̃c̃ = ∂i∂ã g jk =
∂i gãb̃ = ∂i g jk = 0.

Using the above constraints, all of the coefficients can be writ-
ten in terms of a few constants. They produce three type of terms 
which are invariant under the T-duality transformation (23). One 
type is the couplings which are zero using the cyclic symmetry of 
the Riemann curvature, i.e.,

L ⊃ C1

[
Racbd Rabcd − 1

2
Rabcd Rabcd

]
+ C2

[
Rajbi Raibj + 1

Rabi j Rabi j − Raibj Raibj
]

+ · · · (24)

2
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where we have written the spacetime indices in terms of world-
volume and transverse indices. Since the above terms are identi-
ties, it is safe to set their coefficients to zero. One may use the 
above identities to simplify the final result.

Another type of terms is the couplings which are total deriva-
tives, i.e.,

L ⊃ C3

[
∇aφ∇aφ∇b∇bφ − ∇aφ∇aφ∇bφ∇bφ

+ 2∇aφ∇b∇aφ∇bφ

]
+ C4

[
∇a∇aφ∇b∇bφ − ∇aφ∇aφ∇b∇bφ + ∇aφ∇b∇aφ∇bφ

− ∇b∇aφ∇b∇aφ − Rab
a

c∇bφ∇cφ

]
+ · · · (25)

In the action, they can be ignored, so it is safe to set these con-
stants to zero too. One may also use these total derivative terms to 
simplify the final result.

The remaining T-duality invariant multiplets are the following:

L ⊃ C5

[
Rab Rab + Rij Ri j + 4Rab∇b∇a� + 4∇a∇a�∇b∇b�

− 4∇a�∇a�∇b∇b� + 4∇a�∇b∇a�∇b�

− 4Rab
a

c∇b�∇c� + 4Rij∇ j∇i� + 4∇ j∇i�∇ j∇ i�

]
+ C6

[
Ra

a Rb
b + 6Ra

a∇b∇b� + 9∇a∇a�∇b∇b�

− 8∇a�∇a�∇b∇b� − 4Ra
a∇b�∇b�

+ 8∇a�∇b∇a�∇b� + 2Ra
a∇i∇ i� + 6∇a∇a�∇i∇ i�

− 4∇a�∇a�∇i∇ i� + ∇i∇ i�∇ j∇ j�

]
+ C7

[
Ra

a R + 3R∇a∇aφ − 2R∇aφ∇aφ + 4Ra
a∇b∇bφ

+ 12∇a∇aφ∇b∇bφ − 12∇aφ∇aφ∇b∇bφ − 4Ra
a∇bφ∇bφ

+ 16∇aφ∇b∇aφ∇bφ + 4Ra
a∇i∇ iφ + R∇i∇ iφ

+ 16∇a∇aφ∇i∇ iφ − 12∇aφ∇aφ∇i∇ iφ

+ 4∇i∇ iφ∇ j∇ jφ

]
C8

[
R2 + 8R∇a∇aφ − 8R∇aφ∇aφ + 16∇a∇aφ∇b∇bφ

− 16∇aφ∇aφ∇b∇bφ + 32∇aφ∇b∇aφ∇bφ + 8R∇i∇ iφ

+ 32∇a∇aφ∇i∇ iφ − 32∇aφ∇aφ∇i∇ iφ + 16∇i∇ iφ∇ j∇ jφ

]
+ C9 Rabi j Rabi j + C10

[
Rabcd Rabcd − 2Rab

a
c Rbdcd

+ 2Rai
a

j Rb
ibj − 2∇b∇aφ∇b∇aφ − 4Rab

a
c∇c∇bφ

+ 4Rai
a

j∇ j∇iφ + 2∇ j∇iφ∇ j∇ iφ

]
The above multiplets are invariant under the simplified T-duality 
transformations (23). The coefficients C5, · · · , C10 should satisfy 
further constraint if one includes the B-field and demands that 
the couplings to be invariant under the full T-duality transforma-
tions (8). The dilaton couplings in the multiplet with coefficient 
C10 is exactly the couplings in (3) which are reproduced by the 
corresponding S-matrix element [9]. As a result, we expect the in-
variance under the full T-duality (8) constraints the coefficients of 
other multiplets which include the dilaton, to be zero, i.e.,

C5 = C6 = C7 = C8 = 0 (26)

In the next section, we use the above constraint and include the 
B-field couplings to the multiplets C9 and C10.

4. Couplings with B-field

In this section we are going to find the connection between the 
constants C9, C10 and find the unknown coefficients of B-field cou-
plings by constraining the whole couplings to be invariant under 
the T-duality transformation (8). The multiplets with coefficient C9
and C10 in terms of 10-dimensional indices are the following:

L ⊃ C9

[
2Rαβγ δ Rαβγ δ − 4Rαγ βδ Rαβγ δ − 4Rα

γ δε Rβγ δε G̃αβ

+ 8Rα
γ δε Rβδγ ε G̃αβ + 2Rα

ε
γ

ε Rβεδε G̃αβ G̃γ δ

− 2Rα
ε
γ

ε Rβεδε G̃αβ G̃γ δ − 4Rαγ ε
ζ Rβεδζ G̃αβ G̃γ δ G̃εε

+ 2Rαγ εζ Rβεδη G̃αβ G̃γ δ G̃εε G̃ζη

]
+ C10

[
9Rαβγ δ Rαβγ δ − 18Rαγ βδ Rαβγ δ

− 16Rα
γ δε Rβγ δε G̃αβ + 32Rα

γ δε Rβδγ ε G̃αβ

− 8Rαγ
εε Rβεδε G̃αβ G̃γ δ + 8Rα

ε
γ

ε Rβεδε G̃αβ G̃γ δ

− 8Rα
ε
γ

ε Rβεδε G̃αβ G̃γ δ + 2Rα
ε
β
ε Rγ εδε G̃αβ G̃γ δ

+ 4Rαγ β
ζ Rδεεζ G̃αβ G̃γ δ G̃εε + 2Rαγ εζ Rβεδη G̃αβ G̃γ δ G̃εε G̃ζη

+ 2∇β∇αφ∇β∇αφ − 4G̃αβ∇γ ∇βφ∇γ ∇αφ

+ 4Rα
γ

β
δ G̃αβ∇δ∇γ φ − 8Rαγ β

ε G̃αβ G̃γ δ∇ε∇δφ

]
We have to add to the above couplings, the B-field couplings in 
which the tensors with structures H4, R H2, ∇φ∇φH2 and ∇∇φH2

contract with Gμν or G̃μν . Again there are too many of such cou-
plings to be able to write them here. To find their coefficients we 
impose the T-duality constraint (22).

To simplify the calculation, we assume that the base fields 
gαβ = ηαβ and bαβ = 0. With this assumption, there are still too 
many terms to handle even with computer. Since the overall factor 
of all terms is 

∫
dp x e−φ

√−det(gãã) which is independent of gã , 
bã , we can consider the cases that the number of gã , bã to be 0, 
2, 4 and 6 separately. In each case one can use integration by part 
to find independent structures whose coefficients must be zero. In 
the case that the number of gã , bã is 0, one finds no constraint 
because it is a simplified version of the previous section in which 
gαβ = ηαβ . In the case that the number of gã , bã is odd or is larger 
than 6, there is no constraint, i.e., the left-hand side of (22) is zero. 
Moreover, for the case that the number of gã , bã is 6, there is no 
term which has derivative of dilaton or ϕ , i.e., all four derivatives 
are on gã or bã . In this case, the strong condition LwT − Lt = 0
produces only independent constraints because the total deriva-
tive terms contains, among other things, the derivatives of dilaton 
which are not in the list of constraints produced by LwT −Lt = 0.

For O-plane action, the covariant derivatives of B-field with 
even number of transverse indices are projected out. So the co-
efficient of such term constraint to be zero. In the 9-dimensional 
space, the orientifold projection is ∂iϕ = ∂i∂ãϕ = ∂iφ = ∂i∂ãφ = 0, 
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∂ãbi = ∂ibã = ∂i∂ jbk = ∂i∂ãbb̃ = 0 and ∂ã gb̃ = ∂i g j = ∂i∂ã g j =
∂i∂ j gã = 0.

Using the above constraints, all of the coefficients can be writ-
ten in terms of a few constants. In particular, the T-duality fixes 
C9 = −C10 which makes the above Lagrangian to be proportional 
to the Lagrangian in (3). The non-zero coefficients of the B-field 
produce two type of terms which are invariant under the T-duality 
transformation (8). One type is the couplings which are zero us-
ing the cyclic symmetry of the Riemann curvature or the Bianchi 
identity of B-field, i.e.,

L ⊃ a1

[
− 12Hi

lm Hijk H jl
n Hkmn + 9Hij

l Hijk Hk
mn Hlmn

− Hijk Hijk Hlmn Hlmn
]

+ a2

[
− ∇b Haci∇c Habi + 1

2
∇c Habi∇c Habi

− 1

6
∇i Habc∇ i Habc

]
+ a3

[
1

2
Habi Hcd

i Rabcd − Habi Hcd
i Racbd

]
+ a4

[
1

3
∇a Hijk∇a Hijk − ∇a Hijk∇k Haij

]
+ · · · (27)

These coefficients can be set to zero. The remaining terms have 
only one overall unknown coefficient, i.e.,

L ⊃ C10

[
1

8
Ha

cj Habi Hb
d

j Hcdi + 1

4
Hab

j Habi Hcdj Hcd
i

− 1

6
Ha

cj Habi Hbc
k Hijk − 1

4
Hab

j Habi Hi
kl H jkl

+ 1

32
Hij

l Hijk Hk
mn Hlmn − 1

288
Hijk Hijk Hlmn Hlmn

− 3

4
Habi Hcd

i Rabcd + 1

2
Habi Hi

jk Rabjk − 3

2
Habi Hcd

i Racbd

+ Habi Hi
jk Rajbk + Rabcd Rabcd − Rabi j Rabi j + 1

2
Hij

l Hijk Ra
kal

− 2Ha
cj Habi Rbci j + 2Ha

c
i Habi Rb

d
cd − 2Rab

a
c Rb

d
cd

+ Ha
cj Habi Rbic j − Ha

cj Habi Rbjci + 2Rai
a

j Rb
ibj

− 3

2
Hab

j Habi Rc
ic j + 1

4
Hi

lm Hijk R jklm − 1

2
Hi

lm Hijk R jlkm

− 1

6
∇a Hijk∇a Hijk − 2∇b∇aφ∇b∇aφ + ∇a Habi∇c Hb

c
i

− Habi∇aφ∇c Hb
c

i + Ha
c

i Habi∇c∇bφ − 4Rab
a

c∇c∇bφ

+ 3∇b Haci∇c Habi − 1

2
∇c Habi∇c Habi − Habi∇b Haci∇cφ

− 3

2
Hab

j Habi∇ j∇iφ + 4Rai
a

j∇ j∇iφ

+ 2∇ j∇iφ∇ j∇ iφ + 1

2
Hij

l Hijk∇l∇kφ

]
(28)

The overall constant C10 can be fixed by comparing R2 terms 
above with the corresponding terms in the action (1). The above 
result can be further simplified using the Bianchi identities in (27).

Since we have used the assumption gαβ = ηαβ , the calculation 
in this section could not find the couplings that are total deriva-
tives. However, using the identity
Hα
di Rbacα − Hα

ci Rbadα + Hα
cd Rbaiα + ∇a∇b Hcdi

− ∇b∇a Hcdi = 0 (29)

One can verify that the following is a total derivative term:∫
dp+1xe−φ

√
−G̃

[
− ∇a Habi∇c Hb

c
i + Ha

cj Habi Rbci j

+ Habi He
ci Rb

c
ae − Ha

c
i Habi Rb

d
cd − Habi∇bφ∇c Ha

c
i

− ∇b Haci∇c Habi + Habi∇b Haci∇cφ

]
(30)

Using the above total derivative term and the Bianchi identities 
in (27), we have found that the T-dual couplings in (28) can be 
simplified to the couplings in (3), (4) and (5).

Our calculation indicates that the derivatives of dilaton in the 
world volume theory, i.e., equations (3), (4) and (5), appear only 
through the replacement R̂μν → Rμν . Such replacement appears 
also in the Chern–Simons part at the quadratic order fields [10]. In 
fact Rμν is invariant under linear T-duality. We expect, apart from 
the overall dilaton factor e−φ , dilaton appears in the world volume 
theory only through this replacement.

We have seen that the couplings in (3), (4) and (5) are invariant 
under the full T-duality transformation (8). However, these cou-
plings are not invariant under S-duality for O3-plane. The S-duality 
requires adding appropriate R-R couplings. We expect all R-R cou-
plings can be found by requiring the world volume action to be 
invariant under both T-duality and S-duality. The consistency of 
the couplings under S-duality and linear T-duality has been con-
sidered in [10] to find quadratic world-volume couplings. It would 
be interesting to extend the calculation in [10] to full nonlinear 
T-duality to find all NS-NS and R-R couplings on the world vol-
ume of O-plane. It would be also interesting to confirm the cubic 
couplings in (5) by the corresponding S-matrix element of three 
closed string states at projective plane level. Two-point function 
on projective plane has been calculated in [26].

5. Note added in proof

During the completion of this work, the preprint [27] appeared 
which has some overlaps with the results in this paper.
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