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Abstract Astronomical compact objects, like neutron stars,
are made of Fermi-Dirac distributed hadronic matter which
has a wide range of densities. In this work, non-relativistic
dynamics of high density hadronic plasmas with shear and
bulk viscosities are studied. The propagation of localized
waves in media with hadronic gas equation of state is inves-
tigated. Initially, localized lumps are propagated as breaking
and shock waves in inviscid media. It is shown that in the
viscous case, the localized waves can travel longer distances
before changing into shock or breaking profiles.

Keywords Fermi-Dirac distribution · Shock wave ·
Degenerate hadronic matter · Hadron gas · Neutron star ·
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1 Introduction

Astronomical phenomena include many examples where
matter is found under conditions entirely different from
those found in terrestrial environments. High density degen-
erate matter in “compact objects” is such an example. The
original size of a progenitor star contracts appreciably dur-
ing the collapse and the interior of the remnant compact star
reaches sufficiently high densities, so that instead of ther-
mal pressure the compact star is stabilized by the degener-
acy pressure of interacting Fermi gas. Compact objects are
indeed unique cosmic laboratories for studying the proper-
ties of matter at high densities.
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Investigation of the super-dense hadronic and quark mat-
ter is required for the understanding the physics of com-
pact stars. Dense matter physics is important in the contexts
of supernova explosions, merging of compact (neutron and
black-hole) stars, gamma-ray bursts, etc. (Basu et al. 2014;
Fraga et al. 2014; Ayvazyan et al. 2013). While the relevant
density range in each of these system is uncertain, the densi-
ties may vary from very low values characteristic to ordinary
stars up to densities several times the nuclear saturation den-
sity (Drago et al. 2014).

Neutron stars (NS) are the densest observable objects in
our universe. They act as a window into the physics of mat-
ter under extreme conditions of high pressures, high densi-
ties, and strong electromagnetic and gravitational fields. It is
clear that properties of the nuclear matter at high densities
play a crucial role in building reasonable models of neu-
tron stars. The behavior of hadronic matter in compact stars
is described using the equations of state (EOS) of matter.
The EOS depend substantially on the constituents of mat-
ter and may strongly interacting hadronic matter with dif-
ferent constituents, densities and temperatures are described
with very different EOS. Density, temperature, and ingredi-
ents of NS are widely different from crust to its core, so it
is very hard to model NS with a unique set of EOS. Never-
theless, one can present a model of EOS for every region of
NS using the available information (or theoretical estimates)
for that region (Nakazato et al. 2008; Miyatsu et al. 2014;
Miyatsu et al. 2013; Gandol et al. 2014). It may be noted that
the problem is harder than the above description because of
complicated phase transitions which may occur in hadronic
matter. Relations between EOS of a hadronic matter and NS’
properties are bidirectional: one can find some constraints
on the EOS of hadronic matter using observational informa-
tion from NS too (Thomas et al. 2013).
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Propagation of localized defects in spatial distribution of
plasma particle densities, or its energy densities due to per-
turbations have widely been investigated in different kinds
of plasmas. Evolution of solitary waves in Fermi-Dirac plas-
mas also have recently been investigated (Ata-ur Rahman
2014; Zeba et al. 2012; Mahmood et al. 2013). Such plasmas
are found in some astrophysical objects like white dwarfs.
It is interesting to study the small amplitude localized acous-
tic waves in objects with greater densities like NS. Moti-
vated by these arguments, we study the propagation and also
head on collision of these localized small amplitude waves
in such media.

In the next section we present a brief review of the
equations of one-dimensional non relativistic fluid dynam-
ics which is supposed to describe the evolution of hadronic
matter constituents. The equation of state will be introduced
as well. Small amplitude propagation of localized waves in
energy density is derived in Sect. 3 for a non-interacting
plasma of hadronic matter. Head on collision of localized
waves is derived in Sect. 3. Numerical simulation for the
evolution of localized waves and their properties are pre-
sented in Sect. 4. Finally, the results are summarized in
Sect. 5.

2 Nonrelativistic viscous fluid dynamics

Consider a highly dense spatially unlimited hadronic plasma
with shear viscosity ν and bulk viscosity ζ . For non-ideal
fluids, the degrees of freedom are fluid’s velocity, pressure
and mass density: −→v ,p,ρ. The continuity and non rela-
tivistic Navier-Stokes equations in spherical coordinates are
(Currie 1993):

∂ρ

∂t
+ ∇.(ρ−→v ) = 0 (1)

and

ρ
Dvr

Dt
= −∂p

∂r
+

(
ζ + 4

3
ν

)[
∇2vr − 2vr

r2

]
+ fr (2)

where the material derivative Dvr

Dt
and Laplace operator

∇2vr of a scalar field vr are defined as

Dvr

Dt
= ∂vr

∂t
+ vr

∂vr

∂r
, (3)

∇2vr = 1

r2

∂

∂r

(
r2 ∂vr

∂r

)
(4)

and fr represents the radial component of body forces,−→
f (per unit volume) acting on the fluid. The vector field−→
f typically consists of gravity, however may include other
forces, such as electromagnetic force. The gravitational
force in the Newtonian limit can be written as

−→∇ φ , where
φ is the scalar gravitational potential. In this notation we
may include it in the pressure term as a body force. As we

suppose spatially unlimited fluid, the gravity (as well as any
other external force) is absent. On the other hand collisional
waves are travel in hadronic matter on scales of order of
few fm and on such scales gravitational energy is almost
constant. Therefore, the driving force has a hydrodynamical
characters.

Above equations can be solved if we have an equation of
state p = p(ρ). To a first approximation, Eqs. (1) and (2) in
spherical coordinates result in

∂ρB

∂t
+ vr

∂ρB

∂r
+ ρB

∂vr

∂r
+ 2ρBvr

r
= 0 (5)

∂vr

∂t
+ vr

∂vr

∂r
= − 1

ρ

∂p

∂r
+ 1

ρ

(
ζ + 4

3
ν

)
∂2vr

∂r2

+ 2

ρr

(
ζ + 4

3
ν

)
∂vr

∂r
− 2

ρ

(
ζ + 4

3
ν

)
vr

r2
,

(6)

The mass density and the baryon density are related to
each other through ρ = MρB where M is the nucleon mass.

For cold nuclear matter, the equation of state in a rela-
tivistic heavy-ion collision and dense neutron stars can be
derived from the Lagrangian density of non-linear Walecka
model (Menezes et al. 2007; Serot and Walecka 1986)

L = ψ
[
γμ

(
i∂μ − gvV

μ
) − (M − gsφ)

]
ψ

+ 1

2

(
∂μφ∂μφ − m2

s φ
2) − 1

4
FμνF

μν

+ 1

2
m2

vVμV μ − b

3
φ3 − c

4
φ4 (7)

In Eq. (7) Fμν = ∂μVν − ∂νVμ stands for the field
strength tensor. The baryon field ψ , the neutral scalar me-
son field φ and the neutral vector meson field Vμ with
the respective couplings and masses are the minimal de-
gree of freedom. The equation of state is obtained using
the mean-field approximation (Serot and Walecka 1986;
Furnstahl 2004; Serot 2004; Fukushima and Sasaki 2013).
The meson fields are considered as classical fields:

Vμ → 〈Vμ〉 ≡ δμ0 V0, φ → 〈φ〉 ≡ φ0 (8)

where V0 and φ0 are constant. We can use the classical
approximation, if the following conditions are met: 1) the
baryonic sources are intense, 2) their coupling to the meson
field are strong and 3) the infinite nuclear matter is static,
homogeneous and isotropic. Based on calculations done in
Serot and Walecka (1986), Furnstahl (2004), Serot (2004),
Fukushima and Sasaki (2013), the following equations of
motion are obtained:

m2
vV0 = gvψ

†ψ (9)

m2
s φ0 = gsψψ − bφ2

0 − cφ3
0 (10)[

i γμ∂μ − gvγ0V0 − (M − gsφ0)
]
ψ = 0 (11)
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The baryon density, ρB , is given by

ψ†ψ ≡ ρB = γs

6π2
k3
F (12)

in which kF is the Fermi momentum. V0 = gvρB/mv can
be obtained from Eq. (9) for the vector meson. The Dirac
equation which is performed through Eq. (11) couples the
nucleons to the vector mesons. It gives the fermion contri-
bution to the energy density, which is given by

ε = g2
v

2m2
v

ρ2
B + m2

s

2g2
s (M − M∗)

+ b
(M − M∗)3

3g3
s

+ c
(M − M∗)4

4g4
s

+ γs

(2π)3

∫ kF

0
d3k

√
−→
k

2 + M∗2 (13)

where γs = 4 is the nucleon degeneracy factor. We can de-
fine the effective mass of the nucleon as M∗ = M − gsφ0.
The self-consistency relation obtained from the minimiza-
tion of ε(M∗) with respect to M∗ determines the nucleon
effective mass. According to Eq. (13) it is as following

M∗ = M − g2
s

m2
s

γs

(2π)3

∫ kF

0
d3k

√
−→
k

2 + M∗2

+ g2
s

m2
s

[
b

g3
s

(
M − M∗)2 + c

g4
s

(
M − M∗)3

]
(14)

The density of a NS varies typically from around the den-
sity of nuclear matter (ρ0) and up to about 2ρ0. Therefore the
density is taken as ρ0 ≤ ρB ≤ 2ρ0. Equations (12) and (14)
show that M∗ depends on ρB . M∗ is a function of ρ (M∗ =
M∗(ρB)) and can be found by solving Eq. (14) numeri-
cally. The energy density is obtained by inserting M∗ into
Eq. (13) as the following power series of the baryon den-
sity (Serot and Walecka 1986; Espindola and Menezes 2002;
Santos and Menezes 2004)

ε =
(

0.1
m2

s

g2
s

+ 0.04
b

g3
s

+ 0.01
c

g4
s

)

+
(

4 + 2
m2

s

g2
s

+ b

g3
s

+ 0.43
c

g4
s

)
ρB

+
(

−3.75 + g2
v

2m2
v

+ 8
m2

s

g2
s

+ 7.6
b

g3
s

+ 5.42
c

g4
s

)
ρ2

B

+
(

21.26
b

g3
s

+ 30.35
c

g4
s

)
ρ3

B +
(

63.73
c

g4
s

)
ρ4

B

− 1.22ρ
8
3
B + 2.61 ρ

5
3
B − 1.4ρ

2/3
B (15)

The masses and couplings have the following values M =
939 MeV,mv = 783 MeV,ms =550 MeV, b=13.47 fm−1,
gv = 9.197, gs = 8.81, and c = 43.127 and have been used
in numerical calculations (Serot and Walecka 1986; Furn-
stahl 2004; Serot 2004; Fukushima and Sasaki 2013; Espin-
dola and Menezes 2002; Santos and Menezes 2004). The
energy density of the system can be written as

ε = m2
s

g2
s

(
0.1 + 2ρB + 8ρ2

B

)
. (16)

3 Hadron gas

As mentioned earlier, we need a relation between the pres-
sure p and the density ρ (or energy ε) to solve Eqs. (1)
and (2) which are depend on the EOS of the problem un-
der investigation. The simplest form of EOS is the one
of non-interacting point particles called the hadron gas.
The first law of thermodynamic at zero temperature re-
sults in

dε = μBdρB (17)

Then it is

μB = dε

dρB

(18)

After substituting the above equations into the Gibbs rela-
tion at zero temperature, we have

dε + dp = ρBdμB + μBdρB (19)

This yields to

dp = ρBdμB (20)

and in conclusion

dp = ρBd

(
∂ε

∂ρB

)
(21)

∂p

∂r
= ρB

∂

∂r

(
∂ε

∂ρB

)
(22)

Substituting Eqs. (21) and (22) into (6) results in

ρB

∂vr

∂t
+ vr

∂vr

∂r

= − 1

M
ρB

∂

∂r

(
∂ε

∂ρB

)
+ 1

M

(
ζ + 4

3
ν

)
∂2vr

∂r2

+ 2

Mr

(
ζ + 4

3
ν

)
∂vr

∂r
− 2

M

(
ζ + 4

3
ν

)
vr

r2
, (23)

The EOS which is encompassed by ∂ε
∂ρB

can be calculated
from Eq. (16). The result is:

∂ε

∂ρB

= 2
m2

s

g2
s

(1 + 8ρB) (24)

Replacing Eq. (24) into Eq. (23) we have

ρB

∂vr

∂t
+ vr

∂vr

∂r

= −16

M

(
m2

s

g2
s

)
ρB

∂ρB

∂r
+ 1

M

(
ζ + 4

3
ν

)
∂2vr

∂r2

+ 2

Mr

(
ζ + 4

3
ν

)
∂vr

∂r
− 2

M

(
ζ + 4

3
ν

)
vr

r2
, (25)

This is the Navier-Stokes equation for the hadron phase (Fo-
gaca et al. 2013).

Now we can find the small amplitude localized solution
for the above non-linear equation. The Reductive Perturba-
tion Method (RPM) is a technique which is usually used
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for non-linear wave equations. In this method, the effects
of non-linear, dissipative and dispersive terms are preserved
in the wave equations. We are going to investigate a head on
collision between two localized solutions of the equation.
Conventionally, in RPM the stretched coordinates are intro-
duced as (Davidson 1972; Eslami et al. 2012)⎧⎨
⎩

ξ = σ(r − c1t) + σ 2P0(η, τ ) + σ 3P1(η, ξ, τ ) + · · ·
η = σ(r + c2t) + σ 2Q0(ξ, τ ) + σ 3Q1(η, ξ, τ ) + · · ·
τ = σ 3t

(26)

where ξ and η denote the trajectories of two waves travel-
ing in the right and left directions, respectively and σ is a
small expansion parameter. The variables c1 and c2 are un-
known phase velocities which will be calculated. Initially
the dimensionless variables for the baryon density, the fluid
velocity and the pressure are defined as:

ρ = ρB

ρ0
, vr = vr

cs

, p = p

p0
(27)

where ρ0, cs and p0 are, respectively, the background
baryon density, the speed of sound and the background pres-
sure in the medium where perturbation propagates. Accord-
ing to the equation set (27), Eqs. (5) and (25) can be rewrit-
ten as

∂ρ

∂t
+ csvr

∂ρ

∂r
+ csρ

∂vr

∂r
+ 2cs

r
ρvr = 0 (28)

ρ

(
∂vr

∂t
+csvr

∂vr

∂r

)

= ρ0

Mcs

(
−16

m2
s

g2
s

)
ρ

∂ρ

∂r
+ 1

Mρ0

(
ζ + 4

3
ν

)
∂2vr

∂r2

+ 2

Mρ0r

(
ζ + 4

3
ν

)
∂vr

∂r

− 2

Mρ0

(
ζ + 4

3
ν

)
vr

r2
(29)

The dimensionless baryon density and the fluid velocity are
expanded around their equilibrium values as:

ρ = 1 + σ 2ρ1 + σ 3ρ2 + σ 4ρ3 + · · · (30)

v = σ 2v1 + σ 3v2 + σ 4v4 + · · · (31)

Substituting Eqs. (30) and (31) into Eqs. (28) and (29) and
neglecting the terms proportional to σ≥3, the first non-zero
order of Eqs. (28) and (29) leads to

cs

∂v1

∂ξ
+ cs

∂v1

∂η
− c1

∂ρ1

∂ξ
+ c2

∂ρ1

∂η
= 0 (32)

−c1
∂v1

∂ξ
+ c2

∂v1

∂η
+ 16

m2
s

g2
s

ρ0

Mcs

(
∂ρ1

∂ξ
+ ∂ρ1

∂η

)
= 0 (33)

The variables ρ1 and v1 can be grouped into two different
terms, one depending on ξ and τ , and the other depending
on η and τ as ρ1 = ρ1

1(ξ, τ ) + ρ2
1(η, τ ) and v1 = v1

1(ξ, τ ) +

v2
1(η, τ ). If we apply these assumptions to Eqs. (32) and (33)

then the following equations are obtained

cs

∂v1
1

∂ξ
+ cs

∂v2
1

∂η
− c1

∂ρ1
1

∂ξ
+ c2

∂ρ2
1

∂η
= 0 (34)

−c1
∂v1

1

∂ξ
+ c2

∂v2
1

∂η
+ 16

m2
s

g2
s

ρ0

Mcs

(
∂ρ1

1

∂ξ
+ ∂ρ2

1

∂η

)
= 0 (35)

and the result is

v1 = 1

cs

(
c1ρ

1
1(ξ, τ ) − c2ρ

2
1(η, τ )

)
(36)

The phase velocities are obtained as

c2
1 = c2

2 = 16m2
s ρ0

Mg2
s

(37)

The second order equations (28) and (29) lead to the same
result when the index “1” is replaced by “2”. By inserting
Eqs. (36) and (37) into Eqs. (28) and (29), and collecting the
terms of the order σ 3 and considering small viscosities i.e.
ζ = σ ζ̃ and ν = σ ν̃ we have

∂ρ1
1

∂τ
+ ∂ρ2

1

∂τ
− c1

∂ρ3

∂ξ
+ c2

∂ρ3

∂η
− 2c2Q0ξ

∂ρ2
1

∂η

+ 2c1P0η

∂ρ1
1

∂ξ
+ cs

∂v3

∂ξ
+ cs

∂v3

∂η
+ 2c1ρ

1
1
∂ρ1

1

∂ξ

− 2c1ρ
2
1
∂ρ2

1

∂η
+ 2

τ
ρ1

1 − 2

τ
ρ2

1 = 0 (38)

and

−c1
∂v3

∂ξ
+ c2

∂v3

∂η
+ 2c2

1

cs

P0η

∂ρ1
1

∂ξ
+ 2c2

2

cs

Q0ξ

∂ρ2
1

∂η
+ c1

cs

∂ρ1
1

∂τ

− c2

cs

∂ρ2
1

∂τ
− 1

Mρ0

(
ζ̃ + 4

3
ν̃

)[
c1

cs

∂2ρ1
1

∂ξ2
− c2

cs

∂2ρ2
1

∂η2

]

+ c2
1

cs

∂ρ3

∂ξ
+ c2

2

cs

∂ρ3

∂η
+ c2

1

cs

(
ρ1

1
∂ρ1

1

∂ξ
+ ρ2

1
∂ρ2

1

∂η

)

− c2
1

cs

(
ρ1

1
∂ρ2

1

∂η
+ ρ2

1
∂ρ1

1

∂ξ

)
= 0 (39)

By differentiating (38) and (39) with respect to ξ and η, we
will find four different equations. Combining these four new
equations, using Eq. (37) we obtain

∂

∂ξ

(
2
∂ρ1

1

∂τ
+ 3c1ρ

1
1
∂ρ1

1

∂ξ
− 1

Mρ0

(
ζ̃ + 4

3
ν̃

)
∂2ρ1

1

∂ξ2
+ 2

τ
ρ1

1

)

− ∂

∂η

(
2
∂ρ2

1

∂τ
− 3c1ρ

2
1
∂ρ2

1

∂η
− 1

Mρ0

(
ζ̃ + 4

3
ν̃

)
∂2ρ2

1

∂η2

− 2

τ
ρ1

1 + 2c1ρ
2
1
∂ρ1

1

∂ξ

)
+ c1

∂

∂ξ

((
4P0η − ρ2

1

)∂ρ1
1

∂ξ

)

+ c1
∂

∂η

((
4Q0ξ − ρ1

1

)∂ρ2
1

∂η

)
+ 4c1

∂2ρ3

∂ξ∂η
= 0 (40)
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Finally by considering the dependence of ρ1
1 and ρ2

1 on
variables τ , η and ξ , we find

∂ρ1
1

∂τ
+ 3c1

2
ρ1

1
∂ρ1

1

∂ξ
− 1

2Mρ0

(
ζ̃ + 4

3
ν̃

)
∂2ρ1

1

∂ξ2
+ 1

τ
ρ1

1 = 0

(41)

∂ρ2
1

∂τ
− 3c1

2
ρ2

1
∂ρ2

1

∂η
− 1

2Mρ0

(
ζ̃ + 4

3
ν̃

)
∂2ρ2

1

∂η2
− 1

τ
ρ1

1

+ c1ρ
2
1
∂ρ1

1

∂ξ
= 0 (42)

P0η = 1

4
ρ2

1 (43)

Q0ξ = 1

4
ρ1

1 (44)

Equations (41) and (42) are the viscous spherical Burgers
equations in (ξ, τ ) and (η, τ ) spaces respectively. P0η and
Q0ξ are the phase shifts of the localized waves after their
head on collision. Using Eq. (26) the Burgers equations in
(x, t) space for two shock waves will result, which move
toward each other:

∂ρ̂1
1

∂t
+ c1

∂ρ̂1
1

∂r
+ 3c1

2
ρ̂1

1
∂ρ̂1

1

∂r
− 1

2Mρ0

(
ζ + 4

3
ν

)
∂2ρ̂1

1

∂r2

+ ρ̂1
1

t
+ 1

4
ρ̂2

1

[
∂ρ̂1

1

∂t
− c1

∂ρ̂1
1

∂r
+ 1

2Mρ0

(
ζ + 4

3
ν

)
∂2ρ̂1

1

∂r2

+ ρ̂1
1

t

]
= 0 (45)

This is the spherical Burgers equation for ρ̂1
1 ≡ ε2ρ1

1 , which
is a small perturbation in the baryon density, moving to the
right with spherical symmetry.

Equation (45) reduces to the following form, called
breaking wave equation, in a medium in which ζ = ν = 0.

∂ρ̂1
1

∂t
+ c1

∂ρ̂1
1

∂r
+ 3c1

2
ρ̂1

1
∂ρ̂1

1

∂r
+ ρ̂1

1

t

+ 1

4
ρ̂2

1

[
∂ρ̂1

1

∂t
− c1

∂ρ̂1
1

∂r
+ ρ̂1

1

t

]
= 0 (46)

Similar equation are derived for ρ̂2
1 ≡ ε2ρ2

1 , which is a small
perturbation in the baryon density moving to the left

∂ρ̂2
1

∂t
− c1

∂ρ̂2
1

∂r
− 3c1

2
ρ̂2

1
∂ρ̂2

1

∂r
− 1

2Mρ0

(
ζ + 4

3
ν

)
∂2ρ̂2

1

∂r2
− ρ̂2

1

t

+ 1

4
ρ̂1

1

[
∂ρ̂2

1

∂t
+ c1

∂ρ̂2
1

∂r
+ 1

2Mρ0

(
ζ + 4

3
ν

)
∂2ρ̂2

1

∂r2
− ρ̂2

1

t

]

+ c1ρ̂
2
1
∂ρ̂1

1

∂r
+ c1

4

[
ρ̂1

1 − ρ̂2
1

]
ρ̂2

1
∂ρ̂1

1

∂r
= 0 (47)

and in the case of ζ = ν = 0, it reduces to the following
equation:

∂ρ̂2
1

∂t
− c1

∂ρ̂2
1

∂r
− 3c1

2
ρ̂2

1
∂ρ̂2

1

∂r
− ρ̂2

1

t
+ 1

4
ρ̂1

1

[
∂ρ̂2

1

∂t

+ c1
∂ρ̂2

1

∂r
− ρ̂2

1

t

]
+ c1ρ̂

2
1
∂ρ̂1

1

∂r
+ c1

4

[
ρ̂1

1 − ρ̂2
1

]
ρ̂2

1
∂ρ̂1

1

∂r
= 0

(48)

4 Discussion of numerical results

The Burgers equations (45) and (47) can be rewritten in the
general form

∂ρ̂

∂t
+ c

∂ρ̂

∂r
+ αρ̂

∂ρ̂

∂r
= μ

∂2ρ̂

∂r2
(49)

where α and μ are the respective non-linear and dissipa-
tive coefficient. The non-linear coefficient for two moving
waves are α = ± 3c1

2 . The dissipative coefficient μ is related
to the viscosity. The derived Eqs. (47) and (48) for moving
waves contain additional terms in comparison with the stan-
dard Burgers equation (49) which comes from non-planar
geometry of spherical symmetry. The more important term

is
ρ̂1

1
t

(
ρ̂2

1
t
). This term is singular at t = 0 and therefore nu-

merical calculations should be started from negative times
(Javidan 2013). For |t | 
 1 this term is sufficiently small so
that Eqs. (47) and (48) are reduced to (49). For |t | → 0, the

term
ρ̂1

1
t

becomes very large. At sufficiently large values of
time, we can take localized solutions of the Burgers equa-
tion as initial value for numerical simulation of Eqs. (47)
and (48). Unfortunately, the Burgers equation does not have
well-known exact solution. We have used localized initial
condition ρ(r, t = 0) = A sech( r

Δ
) where A is the initial am-

plitude and Δ is its width (Javidan 2013). It is the solution
of the Korteweg-de Vries equation, (KdV), which is very
similar to the Burgers equation. Two solitary wave profiles
were propagated with the speed c1 = c2 in opposite direc-
tions from different initial positions as initial condition for
solving Eqs. (47) and (48) numerically.

The phase shifts in the waves, after the head on collision
are negative which one can find from Eqs. (43) and (44).
Also wave with smaller amplitudes finds greater absolute
value of the phase shift.

Figure 1 shows the evolution of the propagating wave in
an inviscid hadronic matter (ζ = ν = 0). The initial positions
of solitary waves are r01 = 10 and r02 = 20. The amplitude
of the left (right) profile is A = 0.2 (A = 0.4). The shapes of
the waves are distorted in time by oscillations until a shock
profile is formed. At the final steps of simulation with |t | ≈ 0

the wave amplitudes become very large as the term
ρ̂1

1
t

is
dominant.

Figure 2 demonstrates head on collision in-between two
localized waves in a viscous medium. This figure shows that
the viscosity is able to control the creation of shock waves.
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Fig. 1 Wave profiles before and after collision in non viscous medium

Fig. 2 Wave profiles before and after collision in viscous media

Indeed the term with second order of derivatives in Eqs. (41)
and (42) reduces the non-linearity effects in a way that the
shock profiles are created very late. But the amplitude of the
wave is damped due to viscosity effects.

5 Conclusions and remarks

Astrophysical compact objects like neutron stars contain
hadronic matter. We have studied the propagation of small
amplitude localized waves in a viscous hadronic matter
present in compact objects. The non-relativistic evolution
equations of breaking waves during the head on collision in
this medium are derived using the continuity and non rela-
tivistic Navier-Stokes equations. The hadronic matter under
investigation is described by the simplest equation of state
as hadronic gas. It is shown that the propagated waves in
non-viscous medium can be described by inviscid Burgers

equation which describes the creation of breaking waves.
Viscosity plays an important role in the propagation of lo-
calized waves. It is shown that a propagated wave in viscous
media can travel longer distances without getting shock pro-
files. However it will lose its amplitude.

There are many questions and problems which have to
be investigated. As mentioned before, the equation of state
of hadronic matter changes with its density and tempera-
ture. Understanding the effects of changing theses parame-
ters needs serious studies. We have assumed a Fermi-Dirac
distribution function for the matter under investigation. It is
acceptable only for zero temperature condition. The effects
of different distribution functions for the matter also need
more attention. The most difficult problem is the modeling
of different phase transitions which can occur in such com-
plicated media.
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