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Abstract We have presented a new active steganalysis method in order to break the block-
discrete cosine transform (DCT) coefficients steganography. Our method is based on a
combination of the Blind Source Separation (BSS) technique and Maximum A posteriori
(MAP) estimator. We have additionally introduced a new geometrical BSS method based on
the minimum range of mixed sources which reduces the computational cost of the proposed
steganalysis. The high efficiency of this new combined method has been confirmed by enough
experiments. These experiments show that, compared to the previous active steganalysis
methods our active steganalysis method not only reduces the error rate but also causes a low
computational cost.

Keywords Blind Source Separation (BSS) . Active steganalysis .MAP estimator . Independent
Component Analysis (ICA) . Block-DCTsteganography

1 Introduction

After the seminal works by Johnson and Jajodia [13, 14], steganalysis has attracted many
interests [6, 9, 18, 20, 28]. A numerous different types of steganalysis techniques (STs), mostly
passive, have been proposed [9, 18, 20, 28]. While Steganography deals with hiding informa-
tion by embedding a message within another object (cover) such as image, steganalysis
focuses on revealing those hidden messages from the cover. Steganalysis has gained promi-
nence in the international security since the detection of hidden messages can lead to the
prevention of disastrous events, such as terrorist attacks.

Current STs focus on detecting the presence of a hidden message in the cover (passive
manner). A good survey of passive STs is provided by Nissar et al. [18]. They attempted to
classify various approaches. They have categorized STs into signature and statistical tech-
niques. Their categorization is either based on the signature of the applied technique or the
image statistics which is used to detect the presence of hidden messages. Furthermore, in their
classification, each category is sub-divided into specific and universal approaches.
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Specific steganalysis targets a particular steganographic technique [9, 10, 28]. These
methods analyze the embedding operation and concentrate on some image features or statis-
tics. Consequently, it may fail if any other steganography method is used or a very simple
change occurs in the steganography algorithm. As a result, universal steganalysis [3, 16, 27]
which mitigates the deficiency of specific STs were introduced. These methods could detect
messages embedded using any type of steganographic technique and, moreover, without the
prior knowledge of embedding technique. Most of them train a classifier with cover and stego
images in the detection procedure.

After the detection procedure, in some cases, it is necessary to extract and determine the
content of the hidden message (active steganalysis). In fact by revealing the hidden messages
active steganalysis provides a complementary task to the passive one. Most of the STs focus on
a passive manner; however, there has been a little attempt in developing active methods as
well. In this scope, some researchers focus on a steganalysis method based on the blind sources
separation (BSS) [2, 6, 8, 25, 26]. In the next section all these methods as well as their
advantageous and disadvantageous are discussed. Here, we shortly state that most of the
present active STs are neither fast nor enough efficient. Nevertheless, in this paper we propose
an active steganalysis method which has a lower computational cost and error rate than those
conventional techniques. Our method is based on the Maximum A posteriori (MAP) estimator
and BSS which can extract hidden messages using only one stego image. Since the compu-
tational cost of the MAP estimator is lower than the BSS methods we extract most of the
message using this estimator in the first step. Then we use the Independence Component
Analysis (ICA) technique as a BSS to separate the rest of message from its cover image.
Finally, we introduce a new geometrical BSS (GBSS) method based on minimizing the range
of mixed signals probability density function (PDF) and we use it rather than ICA to reduce the
computational cost even more than before.

To this end, we have organized the paper as follows: in Section 2 we present a brief
overview of the current active STs and discuss both their advantageous and disadvantageous.
We explain the BSS problem briefly in Section 3 and then we introduce our GBSS method in
Section 4. In the next section the details of our active steganalysis method is presented. We
finalize the paper by a discussion on the experimental evaluation in Section 6 while conclu-
sions are drawn in Section 7.

2 A brief history of active STs

The first active ST was performed by Chandramouli [6]. He presented an active method with
an effort on a linear steganography. His proposed method was based on the BSS model with a
hypothesis that the cover image and hidden message were independent. However, his proposed
method needed at least two stego images with the same message, cover and key but different
embedding strength factor. However, these conditions are not practical since steganalyst can
usually access one stego image only.

Fan et al. [8] tried to apply a method to realize active steganalysis when there was only one
stego image copy. Their method was based on ICA and Hidden Morkov Tree (HMT) model
[7]. ICA is a popular BSS technique and HMT model is mainly applied to denoise an image in
the transform domain. They adopted HMT model to get the second copy of stego image and
then the optimized ICA was applied to accomplish the active steganalysis.

Another research with the view of active steganalysis as BSS problemwas presented in [26]. It
solely used a single copy of stego image. The MAP estimator was adopted to obtain an estimate
of the cover image. Two active steganalysis schemes was introduced in this method; the first
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scheme was similar to [8] which considered the estimated version as another stego image. In the
second scheme, in addition to the original stego image, two more stego images were generated
from the estimated image. All the three images were used as input to the ICA algorithm. These
schemes were applied to extract messages from the least significant bit (LSB) steganography in
spatial, discrete cosine transform (DCT), and discrete wavelet transform (DWT) domains. Their
experiments have proven that the second scheme has a better performance than the first one. The
method proposed in [25] was similar to that of [26]. However, HMT model was applied in [25]
while the MAP estimator was used in [26] to obtain an estimate of the cover image.

All these active steganalysis methods use ICA technique to separate message from image.
This technique is an inherently high computational cost technique. Ambalavanan and
Chandramouli, on the other hand, introduced another active steganalysis based on a different
BSS technique [24] in order to reduce the computational cost and to improve the performance
of message extraction [2]. However, their efforts were not successful. They embedded a known
random signal to the stego image (first observed signal) in order to form the second observed
signal. This made the columns of mixing matrix, linearly dependent and therefore a deficiency
happened in the rank of this matrix. Since the mixing matrix must be a full rank matrix in an
underdetermined BSS [24], one cannot use it effectively in steganalysis [2].

3 Preliminary: blind source separation

A brief overview on the blind source separation problem and so far solutions [15] are given in
the current section. The goal of source separation is to retrieve unknown source signals, S(n) =
(s1(n), . . ., sm(n))

T, from observed signals, X(n) = (x1(n), . . ., xp(n))
T. The observed signals are

an unknown function of the source signals so that:

X nð Þ ¼ F S nð Þð Þ; ð1Þ
Where F(.) is a function from ℝm to ℝp and denotes the unknown mixture function. Indeed,

the main idea for separating the sources is to estimate G(.) which is the inverse of the mixture
function F(.). Clearly, we need to make some assumption in order to solve this problem.
Basically, it is necessary to have a prior knowledge about:

1) The nature of the mixture function, e.g. we need to know if it is linear, nonlinear, or
convolutive. The problem has been solved for linear, instantaneous and convolutive
mixtures so far and recently a few researchers have concentrated on nonlinear mixtures.

2) The source properties, e.g. its independency, sparsity, being bounded/unbounded and etc.
Those methods which are based on the property of source independency are called
independent component analysis (ICA). On the other hand, the sparse component anal-
yses (SCAs) are based on the property of the source sparsity. When the sources are
bounded, we can use simple geometrical interpretations and some methods can also be
used to separate the source signals [5, 22].

4 Proposed geometrical BSS method

As mentioned in the previous section when the sources are bounded, simple geometrical
methods can be applied. In this section a geometrical method based on the range of mixed
signals is proposed. The main idea of the presented method is that the marginal distribution
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range of two-variate independent random variable (random vector) increase as it rotates around
the center of coordinate system. This idea is mathematically proven using three presented
propositions.

We rotate the already whitened data around the coordinate system to minimize the marginal
range of mixed signals and then extract the independent components. Notice that mixed
signals are rotated with both the fixed and variable step size.

The main steps of our proposed method are comprehensively illustrated in the following
subsections.

4.1 Whitening

In the first step, the observed signals X should be whitened. A zero mean random vector
Z=(z1,…,zm)

T is defined as white if its elements zi are uncorrelated and have unit variances:

E ziz j
� � ¼ δij ð2Þ

Obviously, this definition can be stated in terms of the covariance matrix, E{ZZT}=I, where
I is a unit matrix. Whitening operation is linearly possible since it is a decorrelation process
followed by a scaling one. Therefore, the problem of whitening reduces to finding a linear
transformation V for a given random vector X such that Z = VX would be white.

One of the popular methods for whitening is the eigenvalue decomposition (EVD) of the
covariance matrix:

Cx ¼ E XXT
� � ¼ EDET ð3Þ

Where E is the orthogonal matrix of eigenvectors of E{XXT} andD is the diagonal matrix of
its eigenvalues, D = diag(d1,…,dm). Therefore, whitening matrix V may be defined as:

V ¼ D−1=2ET ð4Þ
While D is a diagonal matrix, D−1/2 is computed by a simple component wise operation as

D−1/2=diag(d1
−1/2,…,dm

−1/2).
Matrix V always exists when di is positive; this condition is respected since Cx is positive

semidefinite and in practice positive definite for almost any natural signals.
Since E is an orthogonal matrix which satisfies ETE = EET = I, Cz may be denoted by:

E ZZT
� � ¼ VE XXT

� �
VT ¼ D−1=2ETEDETED−1=2 ¼ I ð5Þ

The covariance of Z is unity, so Z is white. The linear operator V in (4) is not unique. It is
clear that any matrix U × V, where U is an orthogonal matrix, is also a whitening matrix.
Whitening does not give independent components (ICs) solely. This is because ICs of the
mixture are unique while the whitening matrix is not [12].

Besides, whitening is useful as a preprocessing step in ICA. Let Z be the new mixture
vector instead of X, So A’ would be the new mixing matrix so that: Z=V×X=V×A×S=A '×S. It
is obvious from E{ZZT}=A 'E{SST}A 'T=A 'A 'T=I that A’ is orthogonal.

This fact reduces our search space of mixing matrix with m2 degrees of freedom to
orthogonal matrices with m (m - 1)/2 degrees of freedom. For example, in two dimensional
case, an orthogonal transformation is determined by a single parameter.

Since there are usually two independent sources in steganalysis problem, the 2×2 orthog-
onal matrix A’ which is a rotation matrix with parameter θ must be estimated as:
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A0 ¼ cosθ −sinθ
sinθ cosθ

� �
ð6Þ

In two-dimensional space we can say that whitened signals are rotations of independent
signals and matrix A’-1 rotate them back into the independent signals. So in the second step, in
order obtain ICs, the inverse of orthogonal matrix A’ must be estimated.

4.2 Obtaining independent component

Some criteria such as nonlinear correlations, kurtosis and etc., are used in BSS methods to
obtain ICs [12]. Some other BSS methods exploit geometrical feature of PDF to estimate
matrix A’ [5, 22]. For example, the parallelepiped edges of PDF is estimated in [22]. As
mentioned previously in the beginning of the current section, we use the marginal distribution
range criterion in our proposed method to obtain ICs. At this point, we present some
prepositions and corollaries to prove this idea mathematically. One may refer to the appendix
for the proof.

Proposition 1 Let s1 and s2 be considered as two zero mean finite independent random

variables and vector Z be defined as rotation of vector
s1
s2

� �
:

z1
z2

� �
¼ cos θð Þ −sin θð Þ

sin θð Þ cos θð Þ
� �

s1
s2

� �
¼ rotate θð Þ s1

s2

� �
ð7Þ

Then:

min maxz1;maxz2ð Þ ¼ min maxs1;maxs2ð Þ for θ ¼ 0; π=2;π;
3π
�
2

min maxz1;maxz2ð Þ > min maxs1;maxs2ð Þ otherwise

�
ð8Þ

Corollary1 suppose that the range of random variables si is symmetric then we can write:

Range sið Þ ¼ maxsi−min si ¼ max si− −max sið Þ ¼ 2�max si ð9Þ
Now According to proposition 1 we obtain:

min Range z1;Range z2ð Þ ¼ min Range s1;Range s2ð Þ for θ ¼ 0; π=2;π;
3π
�
2

min Range z1;Range z2ð Þ > min Range s1;Range s2ð Þ otherwise

�
ð10Þ

Proposition 2 suppose that s1 and s2 are two zero mean asymmetric range random variables

and vector Z is rotation of vector
s1
s2

� �
then:

min Range z1;Range z2ð Þ ¼ min Range s1;Range s2ð Þ for θ ¼ 0; π=2;π;
3π
�
2

min Range z1;Range z2ð Þ > min Range s1;Range s2ð Þ otherwise

�
ð11Þ

As it can be seen from preposition 2 and corollary 1, if an independent random vector with
symmetric or asymmetric marginal range is rotated around the center of coordinate system the
range of marginal distribution will be increased. The minimum range occurs in
θ ¼ 0; π=2;π;

3π
�
2 where its marginal random variables are independent. Since in the BSS

problem the initial sources are independent, the independency of rotated random vector is
equivalent to the source separation.
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Contrary to proposition 1, 2 and corollary 1 which was about the feature of a rotated
random vector, proposition 3 helps us to develop a BSS method.

Proposition 3 Suppose s1 and s2 are two zero mean finite independent random variables and
we define Zθ as below:

zθ1
zθ2

� �
¼ cos θð Þ −sin θð Þ

sin θð Þ cos θð Þ
� �

s1
s2

� �
¼ Rotate θð Þ s1

s2

� �
ð12Þ

we also define Zθi as a rotation of Zθ; i.e.,;

zθi1
zθi2

� �
¼ Rotate θið ÞZθ ð13Þ

Now

if ∀θi ∃θ0 ∍min max zθ0
1
;max zθ02

� 	
≤min max zθi

1
;max zθi2

� 	
then

zθ0
1
¼ �s1

zθ0
2
¼ �s2

or

(
zθ0
1
¼ �s1

zθ0
2
¼ �s2

( ð14Þ

Proposition 3 may be proved based on proposition 1. Proposition 3 has been achieved for
the maximum of marginal variable. Accordingly a similar proposition may be found for the
range of marginal variable and can be proved based on proposition 2.

This preposition is used to develop the proposed geometrical BSS method. Proposition 3
states that the rotated random vector Zθ0 which is obtained by θ0 is independent. In order to
estimate θ0, one should rotate whitened signals for different value of θi and then calculate the
range of marginal PDF. Eventually, the ith θi which corresponds to the minimum range is
selected as θ0. Different algorithms can be applied to generate θi. In the beginning, we use a
simple algorithm to generate θi . We present θi+1 = θi + Δθ where Δθ is a fix value and the
initial value θ1 is chosen to be zero. The accuracy of method increases asΔθ decreases. In the
proposed method it is enough to select θi in the range 0<θi <90 rather than 0 <θi <360. This is
because the minimum is repeated in each 90° interval. It can be seen from proposition 3 that
these minima provide similar independent sources with different orders and signs.

We also implement our method with variable step sizes, i.e.; Δθi=Sgn×k×Δθ, where
k∈{1,2,3,…}and Sgn determines the sign of k . Thismethod is similar to adaptive deltamodulation
[1] method which is used in digital communications. The algorithm starts with the initial value
k=+1 and arbitrary value θi. If the minimum range of rotated signals decreases then k increases by
one otherwise Sgn is changed and k is returned to its initial value i.e. k=1. In fixed step size
algorithm signals must be rotated N ¼ 90

�
Δθ times and this algorithm helps us to decrease the N

without loss of the accuracy. The experimental results also show that N decreases nearly to ¼.
The mixing matrix cannot be exactly estimated so there is some indeterminacy in the

estimation of sources. The amplitude of source cannot be determined due to the whitening
process. Proposition 3 causes ambiguities in the sign and order of sources as well. However,
these ambiguities are fortunately insignificant in steganalysis.

5 Proposed steganalysis method

Common steganography techniques can be modeled as an additive embedding – the sum of
image features and message - and their steganalysis can be formulated as a BSS problem. From
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a BSS viewpoint, the image features and message are sources which are mixed to form the
stego image as an observation. In this case the number of observations is less than the number
of sources, hence the problem is underdetermined, and therefore there is an infinite number of
solutions. As a result, in order to select one solution among all available solutions it is
necessary to impose certain additional constraints based on previous knowledge. Since most
of the sources in steganography are sparse, the sparsity of sources may be used as a constraint
to solve the problem.

Here, we introduce our active steganalysis method which can be used for breaking the
block-DCT coefficients steganography techniques. In order to solve an underdetermined BSS
problem (steganalysis) we exclusively take the advantage of the sparsity feature of sources and
do not add a random message to the stego image for generating the second observation [2].

Initially, a MAP estimator is designed based on the sparsity of DCT coefficients and
message PDF to select samples (DCT coefficient of the stego image) which corresponds to
the message event. Then ICA technique is used for the rest of samples in order to extract
message bits which remain. Finally, with the goal of reducing computational cost, the proposed
GBSS method is alternatively used (instead of the common ICA method). At this point, we are
ready to illustrate the detail of our proposed method.

Let us consider a sparsity model for the PDF of the sources as follows,

ps j s j

 � ¼ pjδ s j


 �þ 1−pj

� 	
f S j

s j

 � ð15Þ

where pj is sparsity factor of the source and fSj denotes the distribution of si when the
corresponding source is active. The probabilistic model of (15) can be used for DCT
coefficients and low rate message embedding since both of them are sparse enough.

In order to formulate the MAP estimator, we define the events based on the sources that are
active at a particular sample as follows:

& Case 1: when the image source is only active
& Case 2: when the message source is only active
& Case 3: when message and image sources are both active
& Case 4: when the sources are all inactive.

In order to calculate a posterior probability of events occurring given the observations, we
should find the priori probability of events and the conditional probability of the observations
given events occurring. The priori probability of each event can be obtained by:

P aci; j

 � ¼ ∏

k¼i; j
1−pkð Þ ∏

k≠i; j
pk ð16Þ

where aci,j represents the event when si and sj are active. In general, linear mixing of sources is
defined as y = a1s1 + a2s2. This equation can be written as: y = c + αw in the additive DCT
steganography:

Y ¼ a1 a2½ � � s1
s2

� �
¼ 1 α½ � � c

w

� �
ð17Þ

where y denotes the DCT coefficient of stego image as observation, α is the embedding
coefficient and w and c are respectively the message source and DCT coefficient of image as
the second source. Now, the conditional probability of events can be computed as follows:

When none of the sources are active then the conditional probability is P(y|c0) = δ(y). If
only one source si is active then the conditional probability is given by,
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P y
���aci� 	

¼ 1

aij j f si
y

ai

 �
ð18Þ

In general, if two random variables are added together then the PDF of their summation will
be the convolution of the initial random variable PDFs [19]. Therefore, when two sources are
active, the conditional probability can be written as:

P y
���aci; j� 	

¼ 1

a1j j f si
y

a1

 �
⊗

1

a2j j f s j
y

a2

 �
ð19Þ

As soon as the prior and conditional probabilities for the different events are obtained, the
probability of the events occurring given the observation can be defined using Bayesian rule:

P aci
���y� 	

∝P y
���aci� 	

P acið Þ ð20Þ

Once the a posterior probability of all the events are known then the MAP estimator can be
used to choose the specific event which maximizes P(aci|y). Based on the chosen event we
obtain the estimation of the sources.

When the chosen event is Case 1, the observed sample is an estimation of the
message. In Case 2, the observed sample is an estimation of the image source and it is
not useful in steganalysis. In Case 3 when two sources are active the ICA technique will
be used to separate the message from image. Based on the assumption of ICA we need
two different observations of the sources while in practice we have only one. Therefore,
another observation from the stego image must be generated. Since embedding causes
changes in cover, these changes can be considered as noises and a denoising method can
be applied to reduce the noise rate:

bc ¼ cþ βw ð21Þ
Where β is constant (β < α) and bc represents the denoised version of stego image that will

be used as the new observation. The experimental results show it is feasible and the results are
acceptable.

There are many types of denoising algorithms which remove noise from the image. Each
algorithm is suitable for a special kind of noise [4]. In this paper, one denoising algorithm is
employed to obtain an acceptable performance for many different types of noise. “Bayesian
Least Squares-Gaussian Scale Mixture” (BG) is one of the most effective denoising algorithms
for removing homogeneous additive noise from natural images [21] which we use it here.

Now we have two observations: the original stego image y and a denoised image bc .
Therefore, we can complete (17) as:

ybc
� �
|ffl{zffl}

O

¼ 1 α
1 β

� �
|fflfflfflfflffl{zfflfflfflfflffl}

A2�2

c
w

� �
|ffl{zffl}

S

ð22Þ

Since β≠α, A is a full rank matrix and we can use the ICA method to solve (22). As
mentioned above, we only use samples of the Case 3 as the input to ICA and we do
not need all samples in our method. This effectively reduces the computational cost of
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our proposed steganalysis method. There are many ICA methods which can be
applied into our steganalysis. Here, FastICA [11] is adopted due to its fast conver-
gence speed and high reliability among the other available methods. After applying
FastICA on the observations we have:

bS; bA� 	
¼ FastICA Oð Þ ð23Þ

where bS and bA represent estimation of sources and mixing matrix A, respectively.
Since we have two observations in our steganalysis method, the GBSS method can be
applied instead of FastICA. We present some experimental results to compare the
performance of these two methods. Experimental results show that the computational
cost of GBSS method is obviously less than FastICA.

It is important to mention here that the overall computational cost of our proposed
steganalysis compared to the common active methods using ICA is reduced in two stages:
Firstly, by using GBSS method which has lower computational cost. Secondly, by reducing the
number of samples that GBSS method uses as its input.

a

s2

b

s2

s 1s 1

Fig. 1 The joint distribution of independent components s1 and s2with uniform distributions (a), s1with uniform
and s2 with Gaussian distribution (b)

a

x2

b

x2

x 1 x 1

Fig. 2 The joint distribution of the observed signals x1 and x2
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6 Experimental results

The simulation results of the proposed GBSS and steganalysis method are presented in this
section in order to evaluate their performance. All simulations are done using MATLAB [17].

6.1 Geometrical BSS experimental results

Initially, GBSS method is simulated using 1000 i.i.d. random vectors (two dimensional) with
two different distributions as independent sources. Figure 1 illustrates the distribution of
sources. In case (a) the distribution of two sources is uniform but in case (b) one of the
sources has Gaussian distribution with the zero mean and unit variance. The mixture of two

sources with mixing matrix A ¼ 1 2
1:5 1

� �
is shown in Fig. 2. As mentioned in Section 2, the

first step of GBSS is whitening. The result of this step is shown in Fig. 3. In the next step
whitened signals is rotated for θi∈(0,90) with the fixed Δθ=1 . The range of marginal PDF is
calculated and shown in Fig. 4. As it can be seen from Fig. 4, the ith θi which corresponds to

a

z2

b

z2

z 1 z 1

Fig. 3 The joint distribution of the whitened signals z1 and z2

θi
θi

m
in

im
um

 m
ar

gi
n

a

m
in

im
um

 m
ar

gi
n

b

Fig. 4 Minimum marginal distribution range of the whitened signals which are rotated byθi∈(0,90) with a fixed
step size
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the minimum range of marginal PDF (θ0) is 53° in Fig. 4a and 75° in Fig. 4b. In order to obtain
independent sources we rotate the whitened signals by θ0 (Fig. 5). As it can be seen from
Figs. 1 and 5 it is clear that the scale and order of separated independent sources have been
changed compared to the initial sources.

The simulations of our proposed method with variable step size have also been performed
with an initial step size of Δθ=1. Figure 6 shows the minimum range and θi of our method
while i=1,…, N. As can be seen from Fig. 6 the convergence speed of variable step size
algorithm is high. The signal rotation is only performed N=21 times which is significantly less
than fixed step size algorithm (N=90 for Δθ=1).

To evaluate the computational cost of our GBSS method we compare it with the FastICA
algorithm. We have run these methods on a 2.00 GHz Pentium 4 workstation and obtain their
computational time for random inputs. We did this experiment 500 times (Table 1). The mixed
sources which described above are used as the input of these methods.

As it can be seen from Table 1 the proposed method significantly reduces the computational
cost of the source separation in comparison with the FastICA method. The very low obtained
variance indicates that all the resulting times are close to the mean value so that our results
supposed to be (reduction of the computational time) correct for about all inputs.

z 2
θ0

a

0
1z

z 2
θ0

b

0
1z
θθ

Fig. 5 Joint distribution of the whitened signals which are rotated by θ0 (extracted independent components)

a

rotation repeat

b

rotation repeat

m
in

im
um

 m
ar

gi
n

m
in

im
um

 m
ar

gi
n

Fig. 6 Minimum marginal distribution range of the rotated whitened signals (a) and θi (b) in each step of
variable step size algorithm

Multimed Tools Appl



6.2 Experimental results of the proposed steganalysis

At this point, we show the simulation results of our active steganalysis method. For evaluating
of our steganalysis method we use Berkeley Segmentation Data Set and Benchmarks 500
(BSDS500) [23] which is a dataset consists of 500 natural color images. These color images
span a range of indoor and outdoor scenes and they are JPEG compressed with the quality of
75 %. We convert these images into the uncompressed grayscale images and use only the
central 256×256 region of each image.

Quality factor 75 is selected because the default quality setting on most digital cameras and
image editors is 75, which gives a good tradeoff between the file size and perceived quality.

The sparsity factor of DCT Coefficient (pS1) for our dataset is about 0.8 and pS2which is the
sparsity factor of embedded message is selected to be 0.5 (i.e. message is embedded in 50 % of
DCT coefficient) in the first simulation (Table 2) and different embedding rate would be
selected in the next (Table 3). Binary message bits (±1) is randomly embedded in the DCT
coefficients with α=4. For an example, an original, a denoised and a stego image with 50 %
embedded data rate have been shown in Fig. 7.

The results of extracting message from 500 stego image with the proposed steganalysis
method and ICA based steganalysis method (old active steganalysis methods which are based
on the ICA [8, 25, 26]) are shown in Table 2.

Threshold is applied on the extracted independent signal to detect the message. The
threshold is selected so that the length of detected message becomes almost equal to the
length of embedded one. In Table 2, two types of error have been presented: Not detected
message bits are those embedded message bits that their location have not been detected
correctly whereas the false detected message bits are embedded message bits that their location
have been detected correctly but the sign of detected sample is not equal to those embedded.
Error rate is defined as:

Error ¼ Not detectedbitsþ Falsedetectedbits

Number of embedded message
ð24Þ

Table 1 The computational time
of GBSS and FastICA algorithm for
random inputs (mean and variance
have been obtained from 500 times
of running the algorithm)

Method Computational time (second)

Mean Variance

FastICA 0.0055 7.1024×10−4

our GBSS (fixed step size = 2.5°) 0.0036 7.4155×10−6

our GBSS (variable step size) 0.0019 1.3747×10−6

Table 2 Comparison between our proposed steganalysis and the ICA based steganalysis method for the message
extraction from 500 stego images

Active steganalysis
method

Mean of not
detected message
bits

Mean of false
detected message
bits

Mean of true
detected message
bits

Mean of error
bits

mean of
error rate
(%)

ICA based steganalysis
(previous methods)

7079 1990 23830 9068 27.56

proposed steganalysis
method

6055 807 25878 6922 21.10
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As can be seen from Table 2 our proposed method has a lower error and higher
true detected bits compared to the ICA based steganalysis methods. Table 3 shows
the comparative error rate of steganalysis methods for different message embedding
rate as well. The results confirm that our method has almost similar performance for
all embedding rates but the error rate in ICA based steganalysis increases for a
higher embedding rate .It was expected because when the embedding rate increases
the quality of image decreases and denoising algorithm cannot provide a good
estimated version of the cover image. Our proposed method, in contrast, extracts
most of the data in MAP estimation phase which is independent of the denoising
algorithm.

We have also plotted the comparative figure for different embedding rate (Fig. 8).
When the cover image is an uncompressed image most of the DCT coefficients are

non-zero and therefore the sparsity factor of DCT coefficient is low and the image
source is active in most of the samples. As a result, in our proposed method the MAP
estimator cannot detect message and the BSS method must be used to extract them. In
this case, the result of our steganalysis method would be similar to of ICA based
steganalysis methods.

Finally, we compare the computational time of ICA based steganalysis methods with our
proposed steganalysis method when using FastICA and GBSS. The computational time of
applying steganalysis methods on stego image with different random message have been
shown in Table 4.

Table 3 Mean of the error rate for message extraction from 100 stego images. Message embedding rate varies
from 10 % to 90 %

Message
embedding rate

10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 %

Error rate mean
of proposed
steganalysis
method

22.89 % 21.98 % 21.82 % 21.58 % 21.13 % 21.39 % 21.32 % 21.27 % 21.33 %

Error rate mean
of ICA based
steganalysis

24.68 % 25.64 % 26.11 % 26.93 % 27.51 % 28.39 % 29.11 % 30.00 % 30.80 %

Fig. 7 Original Lena image (a) stego image (b) denoised image (c)
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In order to make a better comparison the time of common parts such as denoising algorithm
and DCT calculations are removed in this table.

As we had expected, the computational time of our proposed steganalysis method is lower
than ICA based steganalysis methods. When GBSS is alternatively used instead of FastICA in
steganalysis method the computational time is reduced again.

7 Conclusions

In this paper a new active steganalysis method based on the combination of MAP and BSS
algorithms has been proposed. It is proved here that this method has a good performance on
cover which had previously been stored in the JPEG format. A comparison between our
proposed method with the previous active steganalysis schemes shows that applying MAP and
BSS improve the steganalysis performance. Experiments show that nearly 78 % of the
message bits can be estimated.

A new geometrical BSS method has been introduced based on a minimum marginal PDF.
This method is analyzed theoretically. Experimental results show that its computational cost is

M
ea

n 
of

 e
rr

or
 r

at
e

data embedding rate

Fig. 8 Mean of the error rate for message extraction from 100 stego images

Table 4 The computational time
of extracting message from 500
stego images by our steganalysis
and ICA based steganalysis

Method Computational time (second)

Mean Variance

FastICA (old method) 0.2183 0.0052

MAP and FastICA (our method 1) 0.1684 0.1774

MAP and GBSS (our method 2) 0.1223 0.0035
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lower compared to the FastICA. Finally, the new GBSS method is used in order to reduce the
computational cost of our proposed steganalysis method.

Appendix

Proof of Propositions which was stated in paper.

Proof of Proposition 1:

We have by (7):

θ ¼ 0; π⇒
z1 ¼ �s1
z2 ¼ �s2

�
; θ ¼ π=2;

3π
�
2⇒

z1 ¼ �s2
z2 ¼ �s1

�
ð25Þ

So it is clear that:

min max z1;max z2ð Þ ¼ min max s1;max s2ð Þ ð26Þ
Now let us proof (8) for other θ. Without loss of generality assume:

max s1 ¼ Kmax s2 ð27Þ
Then according to (1–1), we have:

max z1 ¼ max s2 � cosθj jK þ sinθj jð Þ
max z2 ¼ max s2 � sinθj jK þ cosθj jð Þ ð28Þ
max z1 ¼ max s1 � sinθj j=K þ cosθj j

� 	
max z2 ¼ max s1 � cosθj j=K þ sinθj j

� 	 ð29Þ

Using (28) gives us:

K ≥1⇒min max s1;max s2ð Þ ¼ max s2
;max z1≥max s2 � sinθj j þ cosθj jð Þ
;max z2≥max s2 � sinθj j þ cosθj jð Þ

⇒max z1;max z2≥min max s1;max s2ð Þ � sinθj j þ cosθj jð Þ 1−6ð Þ
ð30Þ

And for other value of K we use (29):

K < 1⇒min max s1;max s2ð Þ ¼ max s1
;max z1≥max s1 � sinθj j þ cosθj jð Þ
;max z2≥max s1 � sinθj j þ cosθj jð Þ

⇒max z1;max z2≥min max s1;max s2ð Þ � sinθj j þ cosθj jð Þ
ð31Þ

As it can be seen (30) and (31) are equal so it can be written:

max z1;max z2≥min max s1;max s2ð Þ � cosθj j þ sinθj jð Þ ð32Þ
Since θ≠0; π=2;π; 3π

�
2 and triangle inequality theorem:

cosθj j þ sinθj j > 1⇒maxz1;maxz2 > min maxs1;maxs2ð Þ
⇒min maxz1;maxz2ð Þ > min maxs1;maxs2ð Þ ð33Þ
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Proof of Proposition 2:

According to (7), we have:

max z1 ¼ cosθj jmax s1 þ sinθj jmax s2
max z2 ¼ sinθj jmax s1 þ cosθj jmax s2

min z1ð Þ ¼ cosθj jmin s1ð Þ þ sinθj jmin s2ð Þ
min Z2ð Þ ¼ sinθj jmin S1ð Þ þ cosθj jmin S2ð Þ

ð34Þ

Without loss of generality assume:

Range s1ð Þ ¼ K � Range s2ð Þ ð35Þ
Using (34) gives us:

Range z1ð Þ ¼ max z1−min z1 ¼ cos θj jmax s1 þ sin θj jmax s2ð Þ− cos θj jmin s1 þ sinθj jmin s2ð Þ
¼ cos θj j maxs1−min s1ð Þ þ sin θj j max s2−min s2ð Þ ¼ cos θj jRange s1ð Þ þ sin θj jRange s2ð Þ
¼ cos θj jK � Range s2ð Þ þ sin θj jRange s2ð Þ ¼ Rang s2ð Þ � cos θj jK þ sin θj jð Þ

ð36Þ

Range z1ð Þ ¼ cos θj jRange s1ð Þ þ sin θj j=KRange s1ð Þ ¼ Range s1ð Þ � cos θj j þ sin θj j=K
� 	

ð37Þ
In a similar way, we write above equations for Range(z2):

Range z2ð Þ ¼ sin θj jK � Range s2ð Þ þ cos θj jRange s2ð Þ ¼ Range s2ð Þ � sin θj jK þ cos θj jð Þ
ð38Þ

Range z2ð Þ ¼ sin θj jRange s1ð Þ þ cos θj j=KRange s1ð Þ ¼ Range s1ð Þ sin θj j þ cos θj j=K
� 	

ð39Þ

By using (35),(36) and (38) we obtain:

K ≥1 ⇒Range s1ð Þ > Range s2ð Þ⇒min Range s1ð Þ;Range s2ð Þð Þ ¼ Range s2ð Þ
Range z1ð Þ > Range s2ð Þ
Range z2ð Þ > Range s2ð Þ
Range z2ð Þ;Range z1ð Þ > Range s2ð Þ ¼ min Range s1ð Þ;Range s2ð Þð Þ

ð40Þ

Also (35), (37) and (39) give us:

K < 1 ⇒Range s1ð Þ < Range s2ð Þ⇒min Range s1ð Þ;Range s2ð Þð Þ ¼ Range s1ð Þ
Range z1ð Þ > Range s1ð Þ
Range z2ð Þ > Range s1ð Þ
Range z1ð Þ;Range z2ð Þ > Range s1ð Þ ¼ min Range s1ð Þ;Range s2ð Þð Þ

ð41Þ
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So we can write for every K:

Range z1ð Þ;Range z2ð Þ > min Range s1ð Þ;Range s2ð Þð Þ
min Range z1ð Þ;Range z2ð Þð Þ > min Range s1ð Þ;Range s2ð Þð Þ ð42Þ

Proof of Proposition 3:

According to (12) and (13) for θi=−θ we have:

z−θ1
z−θ2

� �
¼ rotate −θð Þrotate θð Þ s1

s2

� �
¼ s1

s2

� �
ð43Þ

The Eq. (14) is true for every θi so we can substitute it for −θ:

min zθ0
1
; zθ02

� 	
≤ min z−θ1 ; z−θ2


 � ¼ min s1; s2ð Þ ð44Þ

Also preposition 1 gives us:

min zθ0
1
; zθ02

� 	
≥ min s1; s2ð Þ ð45Þ

From (44) and (45) and sandwich theorem we obtain:

min zθ0
1
; zθ02

� 	
¼ min s1; s2ð Þ ð46Þ

Finally according to preposition 1 and (46) we can conclude that θ0 ¼ 0; π=2;π;
3π
�
2 or:

zθ0
1
¼ �s1

zθ0
2
¼ �s2

or

(
zθ0
1
¼ �s2

zθ0
2
¼ �s1

(
ð47Þ
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