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In the present study, the non-coaxiality between the axes of principal stress and strain rate tensors is investigated
from micromechanical point of view. Based on the so called stress–force–fabric (SFF) relationship, which
describes the macro–micro relation, an expression is derived for the principal direction of stress tensor in
terms of micromechanical parameters of the fabric. In general, the rotation of principal stress axis and according-
ly, the non-coaxiality angle, are influenced by both the anisotropy coefficients and directions of anisotropy of
the fabric characteristics. The derived macro–micro relationship was evaluated by performing DEM simulations
of 2D specimens of aggregates. It was shown that the principal directions of anisotropy parameters are almost
coincident for the assemblies containing circular particles or elongated angular particles with random distribu-
tion. In such case, the principal direction of stress tensor can be regarded as the average principal direction of
anisotropy. However, when the aggregate with elongated particles has inherently-anisotropic fabric, a correct
estimation of the stress angle rotation requires considering all the anisotropy parameters including both
anisotropy coefficients and directions.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In the practical and conventional soil elastic–plastic constitutive
models, it is generally assumed that the principal axis of stress coincides
with that of the strain rate, i.e., the principle of coaxiality [1]. However,
there are experimental and micromechanics-based observations to
indicate that these principal axes do not coincide. In the soil mechanics
literature, it is appeared that Roscoe et al. [2] was the first who reported
the results from simple shear tests on sands concerning non-coaxiality
of stress and strain rate tensors. Drescher & de Josselin de Jong [3] re-
ported non-coaxiality in the deformation of an assembly of photoelastic
disks in the simulation of two-dimensional granular media. High devia-
tions of the axes were also observed in directional shear cell [e.g., 4,5],
hollow cylindrical apparatus [e.g., 6–13] and plain strain (Schneebeli
cylinder) tests [14]. In all the experiments, it was found that the devia-
tion is significant at small shear strain, but gradually reduces with the
increase in the shear strain and they coincide at large deformations. In
addition, a change in loading direction may lead to an abrupt change
in the non-coaxiality angle [e.g., 5,9,11,15]. Many attempts have been
made to consider non-coaxiality effect in domain of constitutive soil
modeling too [e.g., 16–22]. The conceptual reason of non-coaxiality
can be explained by studying the micromechanical evolutions in the
fabric.
In granularmaterials, it is obvious that themacroscopically observed
behavior is in general a consequence ofmicrostructural response at par-
ticle scale. In fact, the mechanical behavior can be well interpreted as a
consequence of fabric evolution in the granular medium. The technical
term ‘fabric’ describes spatial arrangement of particles, voids, and asso-
ciated contacts. Based on experimental [e.g., 23–25] aswell as numerical
studies [e.g., 26–28], micromechanical investigations reveal that recip-
rocal mechanisms of generation and collapse of column-like micro-
structures among particles can explain the shear strength mobilization
and deformational behavior of the aggregate media during the loading
process. Hence, the deviation in the axes of stress and strain rate tensors
can be described by the fabric evolution.

Microstructural evolution in a granular assembly depends on fabric
anisotropy, which is distinguished by ‘inherent’ and ‘induced’ types.
Induced anisotropy occurs during the loading process and shear defor-
mation. However, inherent anisotropy is generally initiated during the
deposition of soil particles under gravity so that the long axis of particles
tends to align in a specific direction, which is termed as bedding plane.
Using the so-called directional shear cell apparatus, Wong & Arthur [5]
examined the effect of inherent anisotropy on the coaxiality behavior.
They observed coaxiality along the plane of isotropy (the plane normal
to the bedding angle), while non-coaxiality was clearly observed along
other directions.

Many attempts have been made in order to quantitatively describe
the fabric in a granular material. For instance, different forms of the
so-called ‘fabric tensor’, which describes either the distribution of con-
tacts among particles or the orientation of particles, were introduced
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Fig. 1. Schematics of contact vectors and their decomposed components with respect to
contact plane for two contacting particles A and B.
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[23,29–32]. Regarding the estimation of stress state in a granular assem-
bly, Hill [33] defined the average stress tensor in terms of applied forces
over a homogeneous granular system [see also 3,32,34,35]. Weber [36]
introduced a macroscopic stress tensor, which can be calculated from
assembly contact forces and the geometrical arrangement of contacting
particles. Based on theWeber's equation, Rothenburg [35] showed that
the average stress tensor for an assembly comprising circular particles
or spheres has the properties of the stress tensor as used in the
continuum mechanics, but is derived from consideration of discrete
contact forces, contact geometry and principles of static equilibrium.
He developed useful relationships for the assemblies with planar
particles (circular disks), which equate the micromechanical parame-
ters to the macroscale stress tensor of the system. By assuming that
the distributions of average contact force components and contact
normals have the same directions of anisotropy, the so-called stress–
force–fabric relationship (SFF) was introduced [37] and its applicability
was examined for the assemblies with circular [38], elliptical [39] as
well as rigid and breakable polygonal particles [40,41], whichwere ran-
domly distributed. Note that for the inherently-anisotropic assemblies
containing elongated particles, however, this relationship is not applica-
ble since the principal directions of contact force and contact normals
among particles are not coincident anymore [28]. Li and Yu [42]
explored the mechanism of non-coaxiality from the particle scale.
They used directional statistical theory to study the anisotropy in the
fabrics and characterized stress direction in terms of direction tensors.
More recently, Seyedi Hosseininia [43] has introduced a general form
of stress–force–fabric relationship for planar particles with arbitrary
angular shape and fabric anisotropy. He generalized the Rothenburg's
relationship by consideration of the normal and tangential components
of the contact vector lengths with respect to the contact plane of two
adjacent contacting particles. The proposed relationships were evaluat-
ed by performing numerical simulations of inherently anisotropic
assemblies with polygonal elongated particle using Discrete Element
Method (DEM).

Since DEM captures more detailed data about the inter-particle
features, it has been adopted as a complementary tool to the experi-
mental apparatus by which, the macro- and the micro-mechanical
behavior of granular assemblies can be studied. Regarding the examina-
tion of coaxiality by DEM, Alonso-Marroquin et al. [44] observed non-
coaxiality in a two-dimensional (2D) assembly of randomly distributed
convex polygons. Another series of 2D DEM simulations were carried
out by Thornton & Zhang [45] to study the shear banding and simple
shear non-coaxial flow rules. They have reported a non-coaxial behavior
similar to the experimental results of Roscoe et al. [2] and Roscoe [46].
Real tests on sands using a hollow cylinder apparatus [e.g., 9–13,15,
47] also showed that non-coaxiality is dependent on the anisotropy
as well as the loading history. By using DEM and considering two-
clumped circular disks as one rigid particle, Li and Yu [48] showed
that the coaxiality assumption between the internal structure and
the contact forces is not valid in the case of non-proportional loading
on granular assemblies. They also showed that the simple form of
Rothenburg's SSF does not work in such loading condition.

Apart from the particle scale viewpoint, non-coaxiality has been a
main issue in constitutive modeling of granular soils from continuum
viewpoint. The notion of non-coaxiality is the non-coincidence between
principle stress direction and principle plastic strain increment direc-
tion. The physical origin of non-coaxial behavior in anisotropic granular
media has been clearly identified to be the fabric anisotropy [49,50] and
attempts have been made to provide rigorous formulations in the yield
surface and flow rules in order to account for fabric effect [e.g., 49,
51–53].When the formulatedmodel is supplemented by an appropriate
micromechanically calibrated fabric evolution law, the non-coaxial
behavior in granular media can be convincingly explained and the
non-coaxial material response can be predicted.

All the DEM works mentioned above have attempted to relate the
existence of non-coaxiality to the anisotropic condition of the fabric
in which, the relationship was described qualitatively. The objective
of the present study is to investigate more accurately the effect of
micromechanical parameters on the deviation of the directions of stress
and strain rate axeswithin a granularmaterial. Based on the generalized
form of the micromechanics-based stress–force–fabric relationship
[43], a general mathematical expression defining the direction of
principal stress axis is derived. Hence, the relationship between fabric
parameters and non-coaxiality can be described and discussed quanti-
tatively rather than qualitatively. By using DEM simulations of a
granular assembly, the applicability of the expression is examined by
fixing the direction of strain rate axis and instead, the deviation of the
principal stress axis direction from that of strain rate axis is investigated.

2. Stress–force–fabric relationship

In a granular assembly, the general expression of the Cauchy stress
tensor related to microscopic average parameters can be written as
follows [43]:

σ i j ¼ mv

Z2π
0

f n θð Þln θð Þninj þ f n θð Þlt θð Þnit j þ f t θð Þln θð Þtin j þ f t θð Þlt θð Þtit j
n o

E θð Þdθ:

ð1Þ

The term mv is the density of contacts (the number of contacts per

unit area). n!¼ cosθ; sinθð Þ and t
!¼ − sinθ; cosθð Þ are the vectors

representing the normal and tangential directions with respect to the
contact plane between a pair of particles.

In the equation above, E(θ) indicates the portion of the total number
of contacts in the medium, which is oriented at angle θ. The orientation
of a contact is defined as the angle between the normal direction to the
contact plane and the horizontal direction (see Fig. 1). According to
Rothenburg [35], the distribution of contact normal orientation can be
approximated by a second-order Fourier series expression:

E θð Þ ¼ 1
2π

1þ ac cos2 θ−θcð Þ½ � ð2Þ

where ac describes the anisotropy in contact orientations and θc is the
major principal direction of anisotropy. The parameter ac represents
the proportional difference in the number of contacts oriented along
the major direction of anisotropy, i.e., θ= θc and that in the perpendic-
ular direction (θ = θc ± 90 °). In other words, if the distribution of
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normal contacts is sketched in a polar coordinate system named as
histogram, ac is proportional to the difference in the length of the axis
along the major principal direction (θ = θc) and the length along the
perpendicular direction. If the polar histogram has the form of a circle,
the ac is zero, which corresponds to an isotropic distribution. However,
the value of ac increases and closes to one if the histogram deforms as a
peanut, which indicates a high degree of anisotropy condition. The
procedure to obtain the anisotropy parameters ac and θc based on the
histogram data is explained by Seyedi Hosseininia [28].

The average contact force acting at contacts with an orientation θ is
decomposed into the average normal force component f n θð Þ and the
average tangential force component f n θð Þ. By averaging the contact
forces within the group of similar orientation and following the same
logic as for contact normals, mathematical expressions for normal and
tangential contact forces can be defined as follows [35]:

f n θð Þ ¼ f 0 1þ an cos2 θ−θnð Þ½ � ð3bÞ

f t θð Þ ¼ f 0 aw−at sin2 θ−θtð Þ½ � ð3cÞ

f 0 is a constant representing the average normal force over all contacts
in the assembly. Similar to θc, the terms θn and θt represent preferred
directions of contact force distributions for normal and tangential com-
ponents, respectively. The terms an, at and aw are non-dimensional coef-
ficients of contact force anisotropy. Themagnitude of an and at indicates
the differences in average contact forces acting on contacts oriented
along themajor (θ= θn, θt) andminor (θ= θn, θt±90 °) principal stress
directions, i.e., perpendicular direction. In contrast to ac and an, the term
aw is not independent and can be defined in terms of ac and at from
moment equilibrium of all contacts [43]. Generally, the value of aw
is small and close to zero. Physically, a non-zero value corresponds to
a situation where a non-symmetrical distribution of shear contact
forces is required to compensate for the lack of contact normals in
the direction of loading axis. Values of these parameters can be deter-
mined based on regression of histograms data as explained by Seyedi
Hosseininia [28].

ln θð Þ and lt θð Þ represent the average length of normal and tangential
contact components of the contact vectors acting on the contacts with
orientation θ. According to Fig. 1, a pair of particles (A and B) has con-

tacts with corresponding contact vectors l
!� �

, which are defined as

the vectors connecting from the centroid of the particle to the contact

point. l
!

is decomposed into normal l
!

n

� �
and tangential l

!
t

� �
compo-

nents. The polar distribution of ln θð Þ and lt θð Þ are in the form of Fourier
series expressions [43]:

ln θð Þ ¼ l0 1þ aln cos2 θ−θlnð Þ½ � ð4aÞ

lt θð Þ ¼ −l0alt sin2 θ−θltð Þ: ð4bÞ

The term l0 in the above equations stands for the average length of
normal component of contact vectors from all particles in the assembly.
The terms aln and alt are non-dimensional coefficients of contact anisot-
ropy, which explain the anisotropic distribution of the normal and
tangential components of the contact vectors within the assembly. In
an assembly with similar circular particles, we have aln = alt = 0,

which results in ln θð Þ ¼ l0; lt θð Þ ¼ 0. In such case, the stress–force fabric
relationship (Eq. (1)) gets a simpler form as already described by L.
Rothenburg & Selvadurai [37]. A non-zero value for the coefficient alt
represents the deviation of the direction of the contact vector from the
contact normal. In an assembly of elongated particles, we might even
have alt ≈ 0, which means that the elongated particles are isotropically
distributed within the assembly. The terms θln and θlt represent certain
preferred directions of particle contacts. For a general case, where the
assembly contains a broad range of sizes of irregular-shaped particles
with a random distributions, θln ≠ θlt, but in the assemblies containing
similar particles, these directions are nearly coincident. For instance,
the value of these terms for inherently-anisotropic assemblies with
the same particle shape is nearly equal to the bedding angle of the
particles.

In the derivation of stress tensor governing granularmedia (Eq. (1)),
there is a controversy about its asymmetry. Some researchers claimed
that stress tensor is not symmetric in granular media, while others
affirm that the stress asymmetry is negligible for practical purposes or
its consideration is not necessary in order to avoid complicated descrip-
tions of the mechanical behavior of granular media. Such difference in
these two viewpoints originates from the procedure the stress tensor
is derived. Bardet and Vardoulakis [54] showed that there is asymmetry
in the stress tensor when it is defined from virtual work, but symmetry
exists in the tensor when the stress is defined from statics [e.g., 33,35,
36]. They found that the asymmetry originates from external moments,
and that the amplitude of stress asymmetry decreases with the size of
the granular volume. The stress asymmetry is, therefore, more detect-
able in elongated samples such as interfaces that are subjected to exter-
nal moments on their boundary. Bulky samples subjected to small
external moments are likely to display negligible stress asymmetry.
The stress asymmetry can rightfully be neglected in large masses of
granular media far away from the boundaries with external moments.
It is also noted here that Eq. (1) is basically derived from statics and
thus, the corresponding stress tensor is expected to be symmetric. In
Section 4, the symmetry of the stress tensor is investigated by tracing
the stress component values.

3. Non-coaxiality angle frommacro- and micro-viewpoints

The non-coaxiality angle (ω) is defined as the difference between
the principal direction of stress tensor (θσ) and that of corresponding
incremental strain tensor (θε� ), which means that:

ω ¼ θσ−θε� : ð5Þ

According to loading conditions of a soil element, θσ and θε� can be
fixed or variable. In the current study, the loading condition is defined
in such a way that the principal direction of the incremental strain is
kept constant, while the principal direction of stress is measured during
the loading process (as shown and explained later in Fig. 3). Thus, the
macro- andmicroscopic expressions of θσ is introduced in the following
subsections.

3.1. Macroscopic expression of θσ

According to Fig. 2a, consider a granular assembly whose boundary
is applied by stress tensor components σ11, σ22, and σ12(=σ21). The in-
dices correspond to the names of the axes of the coordinate system,
where the 1–1 and 2–2 axes are defined in the horizontal and vertical
directions, respectively. Hence, σ11 and σ22 are the horizontal and verti-
cal stress components and σ12 and σ21 are the tangential (or shear)
components applied over the medium boundary.

Based on the continuummechanics, the principal direction of stress
tensor can be obtained by the concept of Mohr's stress circle. As shown
in Fig. 2b, the orientation of principal directions of major and minor
principal stresses can be determined by measuring the angles AÔB and
CÔD, receptively in the Mohr's circle and taking half of these angles.
Thus, the angle between the lines OA and OB (and similarly between
OC andOD) is twice the angle θσ known as the principal stress direction.
Alternatively, the angle θσ can be assessed directly by using trigonomet-
ric relationships as follows:

θmacro
σ ¼ 1

2
tan−1 2σ12

σ22−σ11

� �
: ð6Þ
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Fig. 2.Macroscopic definition of direction of principal stress axis in (a) granular medium; (b) Mohr's stress circle with respect to applied stress components.
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Fig. 3. Definition of boundary conditions in biaxial compression test simulated by DEM
and the presentation of non-coaxiality angle (ω) in terms of principal directions of stress
(θσ) and incremental strain (θε� ).
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The angle symbol defined above is denoted by the superscript
‘macro’ since the above relationship is obtained from the macroscopic
stress components (θσ = θσmacro).

3.2. Microscopic expression of θσ

Following the introduction of the Cauchy stress tensor from
micromechanical viewpoint (Eq. (1)), a microscopic expression of the
principal stress direction can be obtained. In order to find an expression
of θσ in terms of micromechanical parameters, it is sufficient to derive
the micromechanical expressions of stress components (σij, i, j = 1, 2)
and then substitute them in Eq. (6). After a big amount of integration
calculations and mathematical manipulations (see also Appendix A),
the following expression can be reached:

θmicro
σ ¼ 1

2
tan−1 ac sin2θc þ an sin2θn þ at sin2θt þ aln sin2θln þ alt sin2θlt

ac cos2θc þ an cos2θn þ at cos2θt þ aln cos2θln þ alt cos2θlt

� �
:

ð7Þ

In the derivation of Eq. (7), the product of anisotropy coefficients for
the third and higher orders has been ignored since it is small and insig-
nificant. By this equation, one can thoroughly understand the influenc-
ingmicromechanical parameters on the rotation of principal stress axis.
According to Eq. (7), it is evident that not only the anisotropy directions
of contact normals (θc), components of force (θn, θt) and length vectors
(θln, θlt) play role, but also the corresponding coefficients of anisotropy
(ai) can have a great portion of influence on the deviation of principal
stress axes. Examination of the above equation can be only possible by
using numerical DEM simulations since it requires a detailed trace of
micromechanical parameters.

4. Numerical simulations

Numerical simulations are carried out by using Discrete Element
Method (DEM). In DEM, a granularmedium is considered as a collection
of individual rigid particles which can move and rotate due to applied
external forces and moments from adjacent particles. DEM is based on
dynamics formulations and equations of motion are solved for each
particle using implicit time integration method [34]. Time steps are
small enough that moderate variation does not significantly influence
simulation results. It is noted that in the simulation procedure
mentioned in this study, a monotonic loading (in one direction) is
only considered; however, the modeling procedure can be upgraded
for situations in which, loading direction can be changed. For instance,
the samples are loaded reversely along with some cycles or direction
of principal stress axes are rotated such that the applied shear stress
remains constant during the simulation.
The simulations in the present study concerns 2D biaxial compres-
sion tests on aggregates. The samples to be loaded have a form of circle
in which the particles are laid down. In the defined monotonic loading,
the shearing loading process of the sample is defined by applying con-
trolled displacement condition on the boundaries through the 1–1 and
2–2 axes, as shown in Fig. 3. The sample is assumed to be loaded by
boundary particles. In other words, the periphery of the sample is
constituted of boundary particles by which, the boundary controlled
displacements are applied. In this procedure, the sample, which is
already isotropically compressed to a predefined pressure, is loaded
by constant incremental displacement in the vertical direction as if
two platens in the upper and lower sides of the sample move close to
each other. Instead, the lateral sides of the sample move freely in the
horizontal direction provided that the pre-defined stress in the horizon-
tal direction (1-axis) remains constant. Over the sample, no incremental
shear displacement v

� ¼ 0
� �

is implemented and hence, we have ε
�

i j ¼ 0
where i ≠ j. As a consequence, the direction of principal strain rate
axes is fixed and coincides with the global 1–1 and 2–2 axes. In other
words, we have: θε� ¼ 90°. In contrary, since there is no control on the
stress components, both normal and shear stress components can be
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generated during the loading process. This loading procedure facilitates
to investigate the rotation of principal axes of stress in the granular
assembly. It is again noted that the principal stress direction is not
monotonically rotated, which is quite different from the common
term of rotational shear tests in the laboratory. The non-coaxiality
angle (ω) can be accordingly obtained for the biaxial samples as
follows:

ω ¼ θσ−θε� ¼ θσ−90°: ð8Þ

To micromechanically investigate the fabric evolution of aggregates,
two modified versions of DEM-based codes including DISC [55] and
POLY [41] have been used for simulations by which, particles can be
considered, respectively, as circle and free convex-polygon in shape. A
brief review of the numerical procedure used in the simulations can
be found in the references Sitharam et al.[56] and Seyedi Hosseininia
[27] for circular and polygonal particles, respectively. In what follows,
lar particles 

with random distribution 

ently-anisotropic fabric distribution 

(b)

icles: (a) isotropically-compacted; (b) biaxially-sheared at axial strain of ε22 = 20%.
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a brief review of the modeling features of the 2D samples is explained
here.

Asmentioned before, two types of particle geometry including circu-
lar and angular particles are considered in this study. Fig. 4 shows the
geometry and sizes of the particles used in the simulations. The circular
particle has a radius of 2 mm. The angular particles are elongated and
circumscribed by an ellipse with an aspect ratio (length to width axes)
of 1.5. For each angular particle, three sizes, represented by the major
axis length (L), are considered including L = 4.5, 5.0, and 7.0 mm. It is
noted that the geometry of angular particles can be arbitrarily defined
in the simulations except that the shape should be convex.

In total, six assemblies of aggregates were simulated including
one assembly with mono-sized circular particles and five assemblies
including a mixture of elongated angular particles. The numerical
specimens have a circular form with a diameter of 160 mm in which,
about 2000–2500 particles were stacked. Since the diameter of the
specimen is large enough with respect to the average particle diameter
Dsample=Dparticle ¼ 30–40
� �

, the effect of particle size on test results can
be ignored. All the specimens are generated according to the predefined
particle size distribution in such a way that the particles are placed in
the specimen randomly in condition that they should not be overlapped
(see [27] for more information). The assemblies with elongated parti-
cles have the same particle frequency distribution, which is character-
ized by the uniformity coefficient (D60/D10) of 1.35 and the curvature
coefficient (D30

2 /D10D60) of 1.2. Dx indicates the long axis length (diam-
eter of an equivalent circumscribed circle) of the particles for which
x% of the particles are finer. Among these assemblies, one assembly
contains randomly-oriented distributed particles such that the initial
fabric has an isotropic-like condition, while the other four assemblies
have been fabricated in such a way that the long axis of all particles be
oriented along a pre-defined direction i.e., bedding plane (α). By such
arrangements of the particles, these samples have initial anisotropic
fabrics. The four initially-anisotropic samples have bedding planes of
α = 0, 30, 60, and 90° with respect to the horizontal direction.

The loading of each sample is carried out by two stages including a
primary compression followed by biaxial shear loading. According to
Fig. 5a, all specimens are firstly compressed isotropically under a
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Fig. 6. Evolution of σ12–σ21 in the aniso
confining pressure of 300 kPa. The compression process is controlled
by radial movement of the boundary particles so that the mean princi-
pal stress, i.e., p = (σ11 + σ22)/2 reaches the defined value (300 kPa).
By reaching p = 300 kPa, the isotropic loading does not come to end,
but it continues until the specimenhas novolume change. As the second
stage of loading, the specimen is loaded biaxially in such a way that the
stress in the lateral direction (1-axis) remains constant and equals
σ11 = 300 kPa, while the top and bottom of the specimen are loaded
vertically along the 2–2 axis by moving boundary particles with a con-
stant displacement rate proportional to the distance from the center of
the specimen. Accordingly, the specimen deforms under such biaxial
loading condition and the circular form turns into an elliptical one,
which is elongated horizontally (Fig. 5b).

Before starting the main consolidation stage as the first loading
stage, an initial compaction of the samples is performed in such a way
that the particles get close to each other as much as possible and that
no inter-force exists between particles. Indeed, this initial compaction
is performed in order to speed and facilitate the process of consolidation
stage. This initial stage, which is not included as a part of the consolida-
tion stage, is run by considering zero value for the inter-particle friction-
al coefficient (μs). Afterwards, the main consolidation stage is initiated.

The values of DEM parameters used in the simulations are the
same as those mentioned in the reference by Seyedi Hosseininia
[27]. The only difference relates to the value of the inter-particle fric-
tional coefficient (μs), which is assumed to be constant during both
loading stages (consolidation and biaxial shearing) and always
equals μs = 0.5, while in the previous simulations, μs was set to
zero for the consolidation stage in order to have the samples with
higher compaction. All the samples at the end of the consolidation
stage have a dense state (which can be recognized from dilative be-
havior during shearing) with the void ratio in the range of 0.26–0.28.
The void ratios of the anisotropic samples withα=0, 30, 60, and 90°
are 0.264, 0.268, 0.272, and 0.263 respectively. The void ratios of the
samples with isotropic arrangement of angular particles and circular
particles are 0.267 and 0.282, respectively. It is noted that these
small values of void ratio only corresponds to 2D samples and the
measured void ratios for real sand samples are higher. The
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simulations of biaxial loading stage have been performed until the
axial strain of ε22 = 20 %.

5. Results and discussion

In this section, micromechanical behavior of assemblies is studied,
which regards the fabric evolution in terms of variation of micro-
mechanical parameters versus the axial strain during the biaxial loading
process. A study on the macroscopic behavior such as shear strength
and deformation as well as macro–micro relationships of the macro-
scopic behavior is out of scope of the present paper. A detailed discus-
sion on these subjects can be found in Seyedi Hosseininia [27,43].

Since the macro- and microscopic formulations of this study are
based on the symmetry of the stress tensor, in this part, the symmetry
of the Cauchy stress tensor in anisotropic assemblies is investigated.
Fig. 6 presents the variation of the difference between diagonal compo-
nents of stress tensor, σ12–σ21, whose values are calculated directly
from Eq. (1). It can be seen that the difference value is very small close
to zero that indicates the equality of these stress components and thus
the symmetry of the stress tensor.

It is reminded that the general idea of how the microstructure in
granular assemblies evolves during the shearing process can be usefully
studied by following the change in the number of contacts, the magni-
tude of average normal and average tangential forces, and the arrange-
ment of particles relative to each other. In this section, the variation
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Fig. 7.Variation of (a) anisotropy coefficients and (b) anisotropyprincipal directions in the
assembly with circular particles.
of all micromechanical parameters is initially investigated in three
categories including the assemblies with circular particles, those with
randomly-distributed elongated particles, and inherently-anisotropic
assemblies. Then, themagnitudes of the non-coaxiality angle calculated
from macro- and micro-relationships are compared with each other.

5.1. Evolution of anisotropy parameters in the fabric

5.1.1. Assembly of mono-sized circular particles
Fig. 7 presents the variation of anisotropy coefficients in the assem-

blies with circular particles including ac (contact normals), an and at
(normal and tangential contact forces) and aln and alt (arrangement of
particles) as well as their corresponding principal direction of anisotro-
py along with the axial strain. According to Fig. 7a, the values of ac, an,
and at parameters increase rapidly from the onset of loading and then,
the rate of variations decreases. The parameter ac, which describes the
anisotropy condition in the number of contacts, increases to a peak
value along the loading process until the axial strain of about 7% and
thereafter, it falls slowly to the end of the test. an has the largest value
among the parameters accompanying some fluctuations, which can be
interpreted as the generation/collapse of force columns in the aggregate
[28]. The same description is true for the at parameter, but the magni-
tude is much smaller since the shear stress mobilization is restricted
because of slippage phenomenon between particles. The magnitudes
of aln and alt are absolutely zero for the whole of the test because of
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the existence of circular particles in the assembly. Referring back to

Fig. 1, the contact vector l
!� �

coincides with the normal contact vector

( l
!

n) and hence, there is no tangential component ( l
!

t) of contacts. In
Fig. 7b, the variation of the corresponding principal directions of anisot-
ropy is shown along with the axial strain. With the exception of aln and
alt that are zero, the direction of contact normals and normal and
tangential contact forces are almost coincident during the test. The
initial value starts from about 120° and then it decreases gradually to
90°, which corresponds to the principal direction of strain rate axis.

It is here noted that the obtained results from this 2D simulation are
comparable with those of 3D simulations performed by [57]. In their
work, a cubic packing of polydisperse spherical particles with radii in
the range of 0.2–0.6 mm was considered. In their work, the signature
of shear-induced anisotropy in granular media was investigated by
tracing the evolutions of different anisotropy components for different
initial states under drained/undrained monotonic triaxial compression.
By quantitatively comparing the results of these two simulations, it
can be seen that similar trends exist for the variation of anisotropic
parameters.

5.1.2. Assembly of randomly-distributed angular particles
A trace of the values of micromechanical parameters is shown in

Fig. 8 for an assembly containing elongated angular particles. The parti-
cles are randomly distributed in such a way that the fabric has an
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Fig. 9. Variation of contact normal anisotropy parameters versus the axial strain for differ-
ent bedding angles (a) coefficient of anisotropy; (b) principal direction of anisotropy.
isotropic condition. This can be justified according to Fig. 8a where the
initial value of ai parameters is close to zero. However, by starting the
shear loading process, anisotropy induces in the fabric and the ai param-
eters begin to grow. The parameter an increases rapidly at the initial
level of axial strain (until about 5%) followed by a slow grow in magni-
tude at larger deformation levels. The same initial increase in the mobi-
lization of at exists, but after reaching a peak value, it declines gradually
as the shear strain continues. This is again related to the shear stressmo-
bilization between particles. The parameter ac has a continuous growth
in value from the beginning to the end of the test, which indicates that
the rate of contact generation in the principal direction is higher than
that in the perpendicular direction. In comparison with the assembly
with circular particles, it can be seen that the magnitude of anisotropic
parameters of the assembly with angular particles is bigger than those
of the assembly with circular particles. This is owed to the effect of
particle geometry. It is known from experimental researches [e.g., 58,
59] as well as numerical studies using DEM [e.g., 41,60–62] that
assemblies with sharp edged particles show greater shear strength
and dilatancy, due to interlocking effect among particles.

In contrary to the assembly with circular particles, the parameters
aln and alt are not zero. The value of these parameters is zero at the be-
ginning, but they grow very slowly to the end of the test by keeping
alt N aln. However, the values are still much smaller than other parame-
ters and are close to zero. This is justified by keeping in mind that these
parameters represent the average anisotropy condition concerning the
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Fig. 10. Variation of normal contact force anisotropy parameters versus the axial strain for
different bedding angles (a) coefficient of anisotropy; (b) principal direction of anisotropy.
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deviation of contact vectors from the contact normals. When elongated
particles are distributed in the medium isotropically, the average
normal and tangential contact lengths are isotropically distributed too.
It is noted that such isotropic condition in the fabric deviates to an in-
duced anisotropic condition at large shear deformation as aln and alt pa-
rameters are not zero at ε22 = 20% anymore.

The variation of the principal directions of anisotropy of contact
normal (θc), normal and tangential contact forces (θn, θt), and normal
and tangential contact vector (θln, θlt) is depicted in Fig. 8b. It is seen
that the directions of contact normals and force components (θc, θn, θt)
rapidly rotate to about 90°, i.e., coaxial with the principal direction of
strain rate axis. The direction of contact vector components (θln, θlt)
keeps almost constant to some shear deformation and then, they
abruptly rotate to about 180°. However, since their corresponding an-
isotropy coefficients (aln, alt) are close to zero, the rotation of anisotropy
direction is not significant and meaningful.

5.1.3. Inherently-anisotropic assemblies
Since the inherently-anisotropic samples considered in this study in-

clude four different bedding angles, the investigation of the anisotropy
coefficients and directions are compared with each other. Fig. 9 shows
the variation of the normal contact anisotropy coefficient (ac) and the
corresponding principal direction of anisotropy (θc) versus the axial
strain. According to Fig. 9a, the initial value of the parameter ac, which
corresponds to the end of compaction process, is the same for all
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Fig. 11. Variation of tangential contact force anisotropy parameters versus the axial strain
for different bedding angles (a) coefficient of anisotropy; (b) principal direction of
anisotropy.
inherently-anisotropic samples. The non-zero and equal value for all
the assemblies corresponds to the inherent anisotropy, which shows
identical state of anisotropic condition for all assemblies regardless of
the bedding angle. However, the variation of the contact anisotropy of
each sample during the loading has a different trend depending on the
bedding angle of particles. The assemblies with α = 0° and 30° show
a growth in ac with a higher value in α = 0o. In the assembly with
α = 90°, ac starts to decrease from the onset of loading and it reaches
close to zero at large axial strains (ε22 = 20 %). This falling trend
indicates that the contacts tend to be distributed isotropically as the
loading continues. For the assembly with α=60°, ac initially decreases
slightly followed by keeping a constant to the end with some fluctua-
tions around ac = 0.45. It is reminded that the growth in ac indicates
the generation of new contacts among particles along the principal
direction of anisotropy and simultaneously, the contacts are lost along
the perpendicular direction. The reverse phenomenon causes a reduc-
tion in ac. The variation of major principal direction of contact anisotro-
py (ac) is depicted in Fig. 9b as a function of axial strain. As a global
trend, one can observe that thedirection of anisotropy coincides initially
with the perpendicular direction of the bedding angle, i.e., θc≈ 90 °+α.
However, θc gradually tends to rotate towards the principal strain rate
axis (θc = 90 °).

The variation of normal contact force anisotropy coefficient (an) as a
function of axial strain is plotted in Fig. 10a for all assemblies. From the
onset of loading, the anisotropy in the normal contact force starts
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Fig. 12. Variation of normal contact vector anisotropy parameters versus the axial strain
for different bedding angles (a) coefficient of anisotropy; (b) principal direction of
anisotropy.
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Fig. 13.Variation of tangential contact vector anisotropyparameters versus the axial strain
for different bedding angles (a) coefficient of anisotropy; (b) principal direction of
anisotropy.
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rapidly. The mobilized value of an increases with the decrease of bed-
ding angle. Fig. 10b depicts the principal direction of normal contact
force anisotropy. Before the loading starts, the anisotropy direction is in-
clined approximately perpendicular to the bedding angle, but it rotates
rapidly towards the loading axis (θn ≈ 90). Such rotation of anisotropy
axis originates from the generation of new force chains along the load-
ing axis irrespective of the arrangement of particles and in turn, the
magnitude of the force chains along the horizontal direction is
disintegrated [28].

According to Fig. 11a, the coefficient of tangential contact force an-
isotropy, at, shows a rapid rise to a maximum value that is followed by
a very slow reduction in magnitude at large axial strain. This trend in
at is almost the same for all the assemblies. As explained before, the
mobilization of at corresponds to the inter-particle shear forces, which
is restricted by the particles slippage. The variation in the principal
orientation of the tangential contact forces, θt, is depicted in Fig. 11b.
Analogous to what happens with the normal contact force, θt rotates
abruptly at the initial stage of loading towards the loading axis.

Figs. 12 and 13 present the variation of anisotropyparameters versus
the shear deformation for the normal (aln, θln) and tangential (aln, θln)
components of contact vectors, respectively. It can be seen that contact
length anisotropy exists in the assemblies from the beginning and after
a small rise inmagnitude, they both tend to decrease slowly as the shear
deformation continues. Similar to the isotropic assembly, we always
have: alt N aln. However, the magnitude of anisotropy coefficients of
the contact length component is not zero. This indicates that coaxiality
between the contact vector and the contact normal, which can exist
among circular or isotropically-distributed particles, does not exist at
all. The variation trend in aln and alt is almost the same for all anisotropic
samples. Such reduction indicates that the particles tend to rotate and
that the particle inclination is in such a way that they carry applied
loads. A detailed comparison of the degree of particle rotation among
anisotropic assemblies is given by Seyedi Hosseininia [27]. According
to Figs. 12b and 13b, the principal direction of contact vector anisotropy
of both normal and tangential components remains almost constant in
each sample and is equal to the bedding angle (α). This is due to the
elongation of particles which is oriented towards their bedding angle.
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5.2. Comparison of macro- and micro-expressions of principal stress axis
rotation

The stress tensor components, i.e.,σ11,σ22, andσ12 of the assemblies
were measured during the loading process and thus, the non-coaxiality
angle (from macro parameters) can be measured directly from
Eqs. (5) and (7). The variation of non-coaxiality angle (ω) with the
mobilized friction angle (ϕmob) is depicted in Fig. 14 for all anisotropic
assembles. ϕmob can be calculated from the so called Mohr–Coulomb
failure criterion defined as follows:

ϕmob ¼ sin−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11−σ22ð Þ2 þ 4σ2

12

q
σ11 þ σ22

0
@

1
A: ð9Þ
(a)

(c)

(e)

Fig. 15. Variation of non-coaxiality angles versu
There is the same trend in the variation of ω in terms of ϕmob for all
anisotropic assemblies. As shown, the variation of ϕmob occurs at two
stages including the mobilization of ϕmob to the maximum value
(peak shear strength) followed by a reduction to the end of the test.
The non-coaxiality angle (ω) ever decreases during the test regardless
of the variation in ϕmob. ω continues to diminish towards small value
close to zero even after the sample shows softening behavior.

Now, macro- and micro-expressions of principal stress axis rotation
are investigated. The variation of the principal direction of stress
rotation during the tests can be assessed directly by using Eq. (6).
On the other hand, by having the simultaneous magnitudes of all
micromechanical parameters, stress axis rotation can be calculated
from a micromechanical point of view by using Eq. (7). The results
from these equations are shown in Fig. 15 in terms of non-coaxiality
(b)

(d)

(f)

s the axial strain for different assemblies.
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angle (ω) versus the axial strain for the assemblies of circular and
angular particles with isotropic and inherently-anisotropic (α = 0, 30,
60, and 90°) fabrics. As can be observed, the predicted values form
the micromechanical expression which coincides well with direct
measured data.

Themicromechanics-based equation of the principal stress direction
(Eq. (7)) can be expressed in a simpler form in the case of the granular
materials with circular or randomly-distributed elongated particles. For
circular particles, since the micromechanical parameters of contact
vector lengths (aln, alt, θln, θlt) are zero, the corresponding terms in the
fraction of Eq. (7) are omitted. For the sample with elongated particles,
the directions θln, θlt are not zero; however, the anisotropy coefficients
(aln, alt) have very small values close to zero and hence, the correspond-
ing terms can be ignored. By paying attention to the variation
of principal direction of anisotropy (Figs. 7b and 8b), we have
θc ≈ θn ≈ θt for both the assemblies of circular and elongated particles.
Accordingly, by referring back to Eq. (7) and simplifying the fraction by
putting an average value of these principal anisotropy directions, θ ¼
θc þ θn þ θtð Þ=3, one can re-express Eq. (7) as follows:

θmicro
σ ¼ 1

2
tan−1 ac þ an þ atð Þ

ac þ an þ atð Þ tan 2θ
� �� �

¼ θ ð10Þ

whichmeans that the principal direction of stress axis is coincidentwith
the average direction of anisotropy parameters of the fabric. In such
case, the intensity of the fabric anisotropy (anisotropy coefficients)
does not influence the rotation of stress axis at all. The predictions
from Eq. (10) are depicted alongside the measured data in Fig. 15a
and b. It can be seen that the simplified relationship can well estimate
the observed trend in the tests.

For aggregates with inherently-anisotropic fabrics, consideration of
anisotropic parameters of contact vector components in the stress–
force–fabric (SFF) relationship (Eq. (1)) is essential in order to accurate-
ly predict themacroscopic behavior frommicromechanical equations. If
the relating contact vector anisotropic parameters are ignored, a simpler
equation is obtained for the principal direction of stress axis:

θmicro
σ ¼ 1

2
tan−1 ac sin2θc þ an sin2θn þ at sin2θt

ac cos2θc þ an cos2θn þ at cos2θt

� �
: ð11Þ

The non-coaxiality angle using the above equation is calculated for
inherently-anisotropic samples and the variation is compared with the
measured values in Fig. 15c trough f. As shown, the truncated equation
(Eq. (11)) is not capable of predicting the rotation of stress axis at all. In
other words, the participation of the terms aln and alt is not negligible.
Hence, it can be concluded that in addition to contact normals and
contact force components, contact vectors in a decomposed form should
be also considered in the micromechanical formulations.

6. Conclusions

In this study, the rotation of principal direction of stress axis was
studied from the micromechanical point of view. It is evident that the
fabric evolution in a granular material is responsible for the observed
behavior of themedium. Based on the general form of stress–force–fab-
ric relationship for a granular material, a mathematical expression
was derived for the direction of principal stress axis as a function of
micromechanical parameters of the fabric. The fabric parameters
include anisotropy coefficients aswell as corresponding principal direc-
tions of normal contacts, force contact components, and contact vector
components. In order to verify the macro–micro relationship, DEM
was used to simulate biaxial compression tests. In these tests, circular
and elongated angular particles were considered. In the simulations,
the stress rotation is measured during continuous shearing at fixed
strain direction. It was shown that the principal directions of anisotropy
parameters including contacts and contact forces are coaxial for the
assemblies containing either circular particles or elongated particles
which are randomly-distributed in the medium. On the other hand,
owing to the fabric condition and the particle arrangement, the contact
vector distribution has an isotropic condition. As a consequence, the
contact vector does not have influence on the direction of stress axis.
In such case, the direction of stress axis can be regarded as the average
of anisotropy directions. For the assemblies with inherently-anisotropic
fabrics, however, this is not true because the contact vectors generated
between contacting particles tend generally to incline towards the
bedding angle and hence, an anisotropic condition arises in the fabric.
Accordingly, the principal direction of stress axis is diverted from the
average direction of anisotropy. In such case, it is inevitable to consider
the anisotropy parameters of contact vectors in the formulation in order
to accurately predict the rotation of principal stress axis.

The findings from the present study also match with the results of
numerical modeling of granular media behavior in the domain of
continuum. With shear loading applied on the granular medium, the
fabric is persuaded to evolve and become more co-axial with the
loading/stress direction and the fabric terms will gradually become
coaxial with the principal stress direction, which leads to a final coaxial
material response [e.g., 49]. The present work may serve a further
micromechanical confirmation of these studies under rotational shear
loading condition.

It is also reminded that the loading condition used in this studywas a
special case in such a way that the principal strain direction was fixed
and the principal direction of stress was rotated and hence, the non-
coaxiality could be measured. Although the formulations derived
from micromechanical investigations are state-independent as well as
loading-independent, extra simulations are needed in order to general-
ize and verify these findings for undrained condition as well as different
stress paths.
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Appendix A. Derivation of the mathematical form of stress
tensor components

According to Eq. (1), the extended mathematical form of stress nor-
mal components can be expressed as follows:

σ11 ¼ mv

Z2π
0

	
f n θð Þln θð Þ cos2θ− f n θð Þlt θð Þ þ f t θð Þln θð Þ

h i
sinθ cosθ

þ f t θð Þlt θð Þ sin2θ


E θð Þdθ

σ22 ¼ mv

Z2π
0

	
f n θð Þln θð Þ sin2θþ f n θð Þlt θð Þ þ f t θð Þln θð Þ

h i
sinθ cosθ

þ f t θð Þlt θð Þ cos2θ


E θð Þdθ:

ð1AÞ

Hence, we have:

σ11−σ22 ¼ mv

Z2π
0

	
f n θð Þln θð Þ− f t θð Þlt θð Þ

h i
cos2θ

− f n θð Þlt θð Þ þ f t θð Þln θð Þ
h i

sin2θ


E θð Þdθ:

ð2AÞ
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By ignoring the product of anisotropy coefficients for the third and
higher orders, the integration of the above expression gives:

σ11−σ22 ¼ mv ac 2 cos2θc−1
� �þ an 2 cos2θn−1

� �þ at 2 cos2θt−1
� ��

þaln 2 cos2θln−1
� �þ alt 2 cos2θlt−1

� ��
¼ mv

�
ac cos2θc þ an cos2θn þ at cos2θt þ aln cos2θln þ alt cos2θltg:

ð3AÞ
Similarly, on the other hand, for the shear component of the stress

tensor, we have:

σ12 ¼ mv

Z2π
0

f n θð Þln θð Þ cosθ sinθþ f n θð Þlt θð Þ cos2θ− f t θð Þln θð Þ sin2θ
− f t θð Þlt θð Þ sinθ cosθ

( )
E θð Þdθ

¼ mv

2
ac sin2θc þ an sin2θn þ at sin2θt þ aln sin2θln þ alt sin2θltf g:
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