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Propagation of part tolerances through the assembly process affects the quality and overall performance
of the products. Therefore, it is crucial to have a comprehensive model in order to analyse the relationship
between part tolerances and final assembly errors. Assembly processes are often complex and nonlinear
in nature. In sheet metal assemblies, the most important factor that makes the process nonlinear is con-
tact interaction between mating parts during the assembly process. Another important feature in sheet
metal variation analysis is the effect of geometric covariance. In sheet metal components, covariance
always occurs since the surface continuity conditions force the deformation of the neighbouring points to
be correlated. This paper aims to develop a new methodology for variation analysis of compliant sheet
metal assemblies focusing on nonlinear contact analysis and including the effect of geometric covariance.
The proposed methodology integrates a nonlinear finite element analysis with an improved sensitivity-
free probability analysis in order to predict the final assembly variation. The efficiency of the developed
approach is evaluated by an experimental case study as well as Monte Carlo simulation.

Keywords: nonlinear tolerance analysis; finite element analysis; geometric covariance; sensitivity-free
probability analysis; principal component analysis

1. Introduction

The propagation of dimensional and geometric tolerances through the assembly process affects
the quality and overall performance of the products. Errors arising from these tolerances may
lead to several drawbacks such as product failure, additional production costs, warranty costs
and end-user dissatisfaction. In this regard, it is crucial to have a comprehensive model in order
to analyse the relationship between part tolerances and final assembly errors. Hence, the tolerance
analysis procedures have been widely taken into consideration by designers.

One of the most common issues in the field of tolerance analysis is the variation analysis of
compliant assemblies which is extensively focused on sheet metal systems (Shiu, Ceglarek, and
Shi 1997). There are also a few other types of mechanical systems like kinematic linkages to
which the flexible tolerance analysis was applied (Imani and Pour 2009). Sheet metal systems
which are the main concept of this research are widely used in industry. Automotive bodies and
plane fuselage are the most common examples constructed from sheet metals. Traditional meth-
ods of tolerance analysis are based on the assumption of rigid body analysis (Mantripragada
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Journal of Engineering Design 347

and Whitney 1999; Ding, Ceglarek, and Shi 2000; Söderberg and Lindkvist 2002) and unable to
estimate the effect of part flexibility in the process. The newer methodologies have been gradu-
ally extended to the compliant assemblies (Liu and Hu 1997; Camelio, Hu, and Ceglarek 2003;
Camelio, Hu, and Ceglarek 2004; Camelio, Hu, and Marin 2004; Camelio and Yim 2006). Pio-
neers in the area of compliant tolerances analysis are Liu and Hu (1997) who introduced the
method of influence coefficient (MIC) in order to express a linear relationship between incoming
part deviation (input variables) and the final assembly deformation (key characteristics (KCs))
through a sensitivity matrix. The analysis is based on the linear force–displacement relation-
ship in assembly processes which are, however, nonlinear in reality due to contact interactions
between mating parts and tools. Various factors such as nonlinear material behaviour, large defor-
mations, and contact interaction can introduce nonlinearities in the assembly process. The recent
studies focus on nonlinear analysis considering the contact interaction between mating parts as
the most important factor that makes the assembly process nonlinear (Cai et al. 2006; Dahlstrom
and Lindkvist 2007; Liao and Wang 2007; Xie et al. 2007). The first research in this area was
conducted by Cai et al. (2006). Recently, Xie et al. (2007) developed a new methodology which
analyses the entire process as a set of sequential operations using nonlinear finite element method
(FEM).

In a tolerance analysis procedure, a variation limit is defined for each input variable. The limit
is equal to the variable’s tolerance zone so that the variable obtains a random value within this
range. In mass production, a series of random values are available for each variable which are
scattered within its corresponding tolerance zone. Random nature of the variables suggests that
the statistics should be employed to explain a relationship between input tolerances and variation
of the assembly’s KCs. The simplest method for this purpose is using Monte Carlo simulation
(MCS) which is often too expensive to achieve reliable results. For example, for a sigma level
of 3 and reliability of 90% MCS needs around 100,000 samples (Law 1996). Therefore, MCS
in many cases is replaced by other methods such as root sum squares (RSS). By defining a
sensitivity matrix, the RSS method determines the mean value and variance of the assembly’s
KC in terms of the part tolerances through a sensitivity probability analysis (SPA) (Chase and
Parkinson 1991). However, in nonlinear analysis, there is no linear relationship between input
variables and the assembly’s KC. Therefore, no sensitivity matrix can be defined to apply sensi-
tivity analysis. In this regard, the sensitivity-free probability analysis (SFPA) (Rahman and Xu
2004; Youn, Xi, and Wang 2008) must be employed to calculate the specifications of KC’s dis-
tribution by means of statistical moments. On the other hand, this analysis entails computing
multi-dimensional integrals and the problem remains unsolved since no analytical solution does
generally exist for such integrals. Furthermore, due to the fact that the dimension of the integrals
is equal to the number of input variables, direct numerical integration is not economically reason-
able. To resolve the problem, Rahman and Xu (2004) proposed the dimension reduction (DR)
method which simplifies a multi-dimensional integral into multiple one-dimensional integrals
using an additive decomposition. Later on, Youn, Xi, and Wang (2008) developed an enhance-
ment of the DR method which is referred to as the enhanced dimension reduction (EDR).
Their approach incorporates three main modules of one-dimensional response approximation,
eigenvector sampling and stabilised Pearson system.

One of the important points in any statistical analysis is the correlation between variables.
Assuming independence of the input variables, especially when they are highly correlated, leads
to large errors in the analysis. In a sheet metal part, surface continuity condition maintains a level
of correlation between deformations of the neighbouring points. This correlation, which is also
referred to as the geometric covariance, was first investigated in sheet metal variation analysis by
Merkley (1998). Camelio, Hu, and Marin (2004), by means of the principal component analysis
(PCA) (Johnson and Wichern 2007), theoretically identified the dominant variation patterns or
deformation mode shapes of an individual sheet metal part from the geometric covariance matrix.
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348 A. Hashemian and B.M. Imani

Table 1. Comparison of previous publications and the proposed methods in the area of sheet metal variation analysis.

Published by Sources of variation Finite element analysis Statistical analysis

Liu and Hu (1997) Independent • MIC • SPA
• Non-contact model • Covariance effect is not included
• Linear FE analysis

Camelio, Hu, and Marin
(2004)

Correlated • MIC • SPA
• Non-contact model • Covariance effect is included
• Linear FE analysis • PCA is implemented to reduce

computational efforts

Liao and Wang (2007) Independent • Contact model • Statistical analysis is not applied
• Nonlinear FE analysis

Xie, Wells, Camelio,
and Youn (2007)

Independent • Contact model • SFPA is applied by means of EDR
method

• Nonlinear FE analysis • Covariance effect is not included

Proposed methodology
of this paper

Correlated • Contact model • Improved SFPA which incorporates
PCA into EDR method

• Nonlinear FE analysis • Covariance effect is included
• PCA is implemented to reduce

computational efforts of EDR
method

Given these dominant patterns and by disregarding the other patterns that have minor contribu-
tions to the part variation, the computational effort can be significantly reduced. However, this
method has been only applied to linear analysis and a new methodology has yet to develop in
order to account for geometric covariance in nonlinear analysis.

The objective of the current research is to present a comprehensive methodology for variation
analysis of compliant sheet metal assemblies which not only accounts for nonlinearities arising
from contact interactions but also includes the effect of surface continuity or geometric covari-
ance in components. In comparison with the previous research, the main contribution of this
work is focusing on correlated variables which have not been earlier dealt with in nonlinear vari-
ation analysis of sheet metal assemblies. Table 1 shows the previous publications in this area and
compares how the sources of variation were selected and finite element and statistical analyses
were applied. The last row of the table also presents the proposed methodology of this article.
In the developed approach, a nonlinear finite element analysis is integrated with an improved
version of SFPA, which incorporates PCA into EDR method, in order to assess the final assem-
bly variation. The new approach reduces the computational effort of the analysis, so that time
efficiency of the procedure promisingly increases.

Henceforth, the content of this paper is organised as follows. Section 2 describes the nonlin-
ear finite element modelling of the assembly process followed by Section 3 which presents the
improved SFPA in order to include the effect of geometric covariance in variation analysis of
sheet metal assemblies. In Section 4, the accuracy and efficiency of the developed methodology
is investigated by an experimental case study and Section 5 concludes the article.

2. Nonlinear finite element analysis of assembly process

Generally, the assembly process of sheet metal parts can be divided into four main steps:
(1) locating the parts in desirable assembly position using fixtures; (2) moving the welding guns
towards each other to close the gap; (3) joining the parts together by resistance spot-welding pro-
cess; and (4) releasing the guns so that the assembly springs back. The process is schematically
demonstrated in Figure 1.
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Journal of Engineering Design 349

Figure 1. Assembly process of compliant sheet metal parts.

As stated earlier, the main factor that makes the assembly process nonlinear is the contact inter-
action. During the assembly process, flexible components deform linearly under the Hooke’s law
(F = K�). This equation governs the parts’ deformation under clamping or spring-back as long
as they are not in contact. Once the mating parts come in contact, the linear force–displacement
equation would not be valid anymore and it is required to apply the contact analysis in order to
have a more accurate estimation of the assembly variation. Contact analysis, intrinsically, is a
nonlinear analysis based on solving the energy equation (Hills 1992; Mijar and Arora 2000; Yue
et al. 2007). Figure 2 shows a simple example in which the gap between two parts should be
closed by welding guns. The difference between the non-contact and contact models is demon-
strated graphically in Figure 3. As shown in the figure, the main limitation of non-contact model
(linear assembly modelling) is penetration of the mating parts which is physically impossible
while the contact model yields more realistic estimation. It is worth mentioning that normally all
deflections and deformations remain in the elastic zone of the components’ stress–strain diagram
so that there is no nonlinearity due to plastic deformation.

The nonlinear FEM, which is implemented in this paper to express the relationship between
incoming part deviation and final assembly variation, focuses on two general objectives: first,
to model the assembly process as close to the real process as possible; and second, to consider
the contact interactions of mating parts and also the contact between parts and welding guns.
In the current research, the ANSYS environment is integrated with LS-DYNA solver in order
to simulate the assembly process. LS-DYNA provides fast explicit solutions for any nonlin-
ear problems concerning large deformation, quasi-static analysis, and complex contact/impact
interaction. Therefore, it will be of interest to incorporate this solver into ANSYS environment
in order to perform sequential explicit–implicit analysis which is one of the best ways of sim-
ulating the assembly process of sheet metal components. The idea of performing this type of
analysis is taken from metal forming processes. In implicit solutions, ANSYS solves the equa-
tions using the Newmark approximation which requires inversion of equivalent stiffness matrix.
It is unconditionally stable for linear problems, but convergence is not guaranteed for nonlinear
problems. For the explicit method, a central difference time integration method is used. No inver-
sion of the stiffness matrix is required and the equations become uncoupled so that they can be
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350 A. Hashemian and B.M. Imani

Figure 2. Hood bracket assembly model (Xie et al. 2007).

Figure 3. Left: non-contact model, physically impossible; right: contact model, close to reality (Xie et al. 2007).

solved directly (explicitly). Additionally, no convergence checks are needed since the equations
are uncoupled (ANSYS 2009a). In this research, the step of moving welding guns and deform-
ing the parts in order to close the gap is solved explicitly using LS-DYNA while the release of
elastic energy and assembly spring-back is modelled implicitly by ANSYS modules. The steps
of simulating sheet metal assembly process in ANSYS LS-DYNA environment through which
input part deviations are related to final assembly’s KC are listed below and also presented in the
flow chart of Figure 4.

(1) Importing the CAD model or creating the model internally using ANSYS Pre-processor.
(2) Defining material properties (E, ν) and real constants (e.g. thickness for plates).
(3) Generating explicit elements (SHELL163 for plates and SOLID164 for welding guns).

Although welding guns are assumed to be rigid bodies, they should be meshed as well
since they will be moving during the analysis.

(4) Defining fixtures.
(5) Defining contact interactions between mating surfaces (e.g. plates and guns) by means of

EDCGEN function. The automatic surface-to-surface contact, which is the most general
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Journal of Engineering Design 351

type of contact and commonly used for parts with arbitrary shapes and relatively large
contact areas, is suggested. There are no additional parameters for this type of contact.

(6) Moving the welding guns by means of EDLOAD function (motions should be defined in
terms of time arrays).

(7) Solving the model using LS-DYNA solver (explicit solution).
(8) Converting explicit elements into implicit ones using ETCHG function (explicit shell

and solid elements will automatically convert into implicit SHELL181 and SOLID185,
respectively).

(9) Updating geometry and importing residual stress from the explicit solution (UPGEOM
function will create a new geometry for implicit analysis in accordance with deflections
calculated in Step vii while RIMPORT function will transfer the residual stress to the new
geometry).

(10) Defining spot-weld elements at the welding points using SWGEN function.
(11) Removing the welding guns and solving for assembly spring-back using ANSYS implicit

solver.

Commonly, a pure implicit approach to contact analysis procedure has some crucial phases
such as properly defining the contact elements (Target and Contactor) and their respective nor-
mal vectors, setting key options and real constants, and so on. (Liao and Wang 2007; ANSYS
2009b). Inappropriate definition of these parameters may cause limitation or even lack of con-
vergence in the solution. However, applying an explicit–implicit analysis in ANSYS LS-DYNA
environment resolves many of these restrictions and not only avoids convergence problems but
also achieves reliable results. This type of analysis would be much easier than the conven-
tional implicit contact analyses because the user can easily define contact interactions by only
choosing the mating parts and no additional effort or knowledge is needed. Therefore, practi-
tioners may benefit more when they try to apply the presented methodology to their real-world
problems.

3. Statistical variation analysis of sheet metal assemblies

The objective of the current research is to develop a methodology to include the effect of geo-
metric covariance of components in the nonlinear variation assessment of flexible sheet metal
assemblies. It is interesting to note that the effect of geometric covariance has been earlier
included only in linear variation analysis of sheet metal components (Camelio, Hu, and Marin
2004). In the developed methodology of this article, the SFPA is improved by means of PCA in
order to account for geometric covariance in estimation of final assembly variation in a nonlinear
analysis. Before describing the proposed approach, it may be helpful to have a short review of
the existing probability analyses.

3.1. Probability analysis review

3.1.1. Conventional sensitivity analysis

In the conventional linear tolerance analysis of sheet metal assemblies, the sensitivity matrix S
relates the assembly’s response u and the input variables V = [v1,v2, . . . , vN]t using the direct
expression of u = SV (Liu and Hu 1997). Therefore, the mean and variance of the assembly’s
KC can be determined as follows where μi and σ i are the mean and standard deviation of the ith
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352 A. Hashemian and B.M. Imani

Figure 4. Four-step modelling of the assembly process in ANSYS LS-DYNA environment.

input variable, respectively (Chase and Parkinson 1991):

μu =
N∑

i=1

Siμi, (1)

σ 2
u =

N∑
i=1

Si
2σi

2. (2)

It is also clear that as a result of a linear relationship, if input variables have normal
distributions, the KC’s distribution will be normal as well.
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3.1.2. Sensitivity-free probability analysis

As opposed to the above-mentioned sensitivity analysis, we can hardly find a direct relationship
between input and output variables in nonlinear systems. In other words, there is no sensitivity
matrix to calculate μu and σ u by means of Equations (1) and (2). Moreover, due to system’s
nonlinearity, it is not guaranteed that the output distribution will be normal even if all input
variables have normal distributions. Generally, if u = u(v1, v2, . . . , vN) is an arbitrary response
function of input variables, its statistical distribution or the so-called probability density function
(PDF) will be determined by statistical moments. In multivariate statistics, the rth moment of u
is calculated as (Zhou and Nowak 1988):

mr = E[ur(v1, v2, . . . , vN )]

=
∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞︸ ︷︷ ︸
N

ur(v1, v2, . . . , vN ) fV(v1, v2, . . . , vN )dv1 dv2 . . . dvN, (3)

where E is the expectation operator and f V(v1, v2, . . . , vN) is the joint PDF of the input vari-
ables. Once moments are calculated, the statistical specifications of the response function will be
obtained from the first four moments as follows (Papoulis and Pillai 2002):

mean = μ = m1, (4)

variance = σ 2 = m2 − μ2, (5)

skewness = γ1 = m3 − μ3 − 3μσ 2

σ 3
, (6)

kurtosis = β2 = m4 − μ4 − 6μ2σ 2 − 4μσ 3γ1

σ 4
. (7)

Finally, the Pearson system can be used to construct the PDF of the response function from
these four specifications (Johnson, Kotz, and Balakrishnan 1995).

The above procedure entails computing multi-dimensional integral of Equation (3) which gen-
erally has no analytical solution. The direct numerical integration is also unreasonable when the
number of input variables increases. In order to overcome this difficulty, Rahman and Xu (2004)
proposed the DR method which converts a multi-dimensional integral into a summation of mul-
tiple one-dimensional integrals. Using an additive decomposition and according to definition of
the expectation operator, DR method calculates the statistical moments by the following formula:

mr
∼= E

⎡
⎣ N∑

j=1

ur(μ1, . . . , vj, . . . , μN )

⎤
⎦ − (N − 1) ur(μ1, μ2, . . . , μN ). (8)

According to the definition of the expectation operator and by designating f (vj) as the marginal
PDF of variable vj, one can write:

E

⎡
⎣ N∑

j=1

ur(μ1, . . . , vj, . . . , μN )

⎤
⎦ =

N∑
j=1

∫ ∞

−∞
ur(μ1, . . . , vj, . . . , μN ) f (vj) dvj. (9)

Youn, Xi, and Wang (2008) developed an enhancement of the DR method which is referred
to as the EDR method. Their approach incorporates three main modules of one-dimensional
response approximation, eigenvector sampling, and stabilised Pearson system. The first module
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354 A. Hashemian and B.M. Imani

Figure 5. Surface continuity condition in a sheet metal component.

enhances computing one-dimensional integrals of Equation (8) in which instead of using the
original response function, its one-dimensional approximations can be treated as the integrand.
It is a practical process in stochastic problems when the original response function does not exist.
The accuracy of the response approximation increases as the number of data points. However,
dealing with a large number of data points, it is not economically reasonable since, particularly
in the current research, the value of the response function at each data point should be obtained
by FEM. Eigenvector sampling scheme suggests the use of 2N + 1 or 4N + 1 sampling points
depending on the system nonlinearity. These sample points should be selected along the principal
directions (eigenvectors) of covariance matrix of input variables. The application of the stabilised
Pearson system is in special cases where the original Pearson system fails to construct the PDF
of the response function. The singularity problem of the Pearson system may be resolved by
fixing the first three statistical moments and slightly increasing or decreasing the kurtosis of the
response function until the PDF is successfully constructed. More details on EDR method can be
found in (Youn, Xi, and Wang 2008).

3.2. Improved SFPA

In sheet metal components, the geometric covariance always arises from surface continuity con-
dition that makes the deformations of the neighbouring points correlated (Figure 5). However,
Equation (8) cannot be directly used for correlated variables, since the correlation between vari-
ables is not included in the additive decomposition. In order to improve the above-mentioned
SFPA to account for geometric covariance of sheet metal components, this research suggests
the use of PCA incorporated into EDR method. PCA has two main advantages: (1) to convert
correlated variables into uncorrelated ones; and (2) to identify the dominant variation patterns
of sheet metal parts which have greater contribution to the part variation. Therefore, PCA not
only improves the SFPA method to deal with a set of correlated variables but also reduces the
computational efforts of the EDR method by neglecting variables with minor contributions.

3.2.1. Principal component analysis

In multivariate statistics, PCA transforms a set of correlated variables V = [v1, v2, . . . , vN]t into
an independent set of V ′ = [v′

1, v′
2, . . . v′

N ]t by means of the following equation (Johnson and
Wichern 2007):

V = T V′. (10)

The transformation matrix T = [t1 t2 . . . tN] is constructed from the eigenvectors of the input
covariance matrix. In other words, the vector ti represents ith eigenvector of �V. According to
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Journal of Engineering Design 355

Equation (10) and from the statistical definition of covariance, one can write:

�V = T �V′ Tt. (11)

Using matrix algebra, it is inferred from the above equation that all off-diagonal terms of
�V ′ are zero, so that there is no correlation between the components of V ′. It means that using
PCA, the correlated input variables v1, v2, . . . , vN are transformed into the independent set of
v′

1, v′
2, . . . v′

N . Moreover, the eigenvalues of �V ′ , or in other words, the principal variances of
V are actually the variances of V ′. In such a case, the components of V ′ are referred to as the
principal components of V (Johnson and Wichern 2007).

In compliant sheet metal assemblies, V may be defined as the initial deformation of indi-
vidual parts and �V as the geometric covariance matrix. Thus, eigenvectors of �V correspond
to deformation mode-shapes or variation patterns of the components. Furthermore, each eigen-
value indicates the contribution of the corresponding variation pattern to the overall deformation
of the components. Some common variation patterns in a sheet metal component are illustrated
in Figure 6.

3.2.2. Incorporating PCA into EDR method

Referring to Equation (10), the assembly response function u(v1,v2, . . . ,vN) can also be
expressed in terms of independent variables as U(v′

1, v′
2, . . . v′

N ). The statistical moments of U
will then be calculated as follows:

mr = E

⎡
⎣ N∑

j=1

Ur(μ′
1, . . . , v′

j, . . . , μ′
N )

⎤
⎦ − (N − 1) Ur(μ′

1, μ′
2, . . . , μ′

N ). (12)

Once the input variables are converted into an independent set, Equation (12) can be used to
calculate the statistical moments in terms of independent variables taking into account the effect
of geometric covariance. Another advantage of PCA is that in a multivariate statistical distri-
bution, commonly a remarkable number of principal variances are zero or very close to zero.
If the variance of v′

j is zero, its corresponding term in integrals of Equation (12) will vanish.
As a result, in the domain of transformed independent variables V ′, those variables which have
negligible variances can be excluded from the analysis. The remaining independent variables

(a) (b)

(c)

Figure 6. Three example variation patterns in a sheet metal component (Camelio, Hu, and Marin 2004).
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356 A. Hashemian and B.M. Imani

with non-zero variances, which are referred to as dominant variables in this article, will then
be involved in computation. Therefore, PCA significantly improves the time efficiency of SFPA
by reducing the number of involved variables in the integrals of the EDR method. Referring to
a basic criterion in tolerance analysis, a variable that has a smaller tolerance (variance) would
have a lower contribution in the assembly response function (Chase and Parkinson 1991). In
other words, the influence of input variables in the assembly function, to a great extent, depends
on their variances. In sheet metal systems, it can also be inferred that variables with negligi-
ble variances will have a minute contribution to the deformation of the component. As a result,
the assembly response function, which inherently depends on the component deformations, will
almost be unaffected by those variables and, therefore, will only be a function of dominant vari-
ables. It is interesting to note that the applicability of removing variables with negligible variance
has been earlier suggested and performed for sensitivity analysis of sheet metal systems when a
linear force–displacement rule is implemented (Camelio, Hu, and Marin 2004).

By incorporating PCA into the EDR method, the statistical moments can be calculated by
Equation (13) in terms of M dominant independent variables. The other variables with negligible
variances will only participate in the equation with their mean values.

mr = E

⎡
⎣ M∑

j=1

Ur(μ′
1, . . . , v′

j, . . . , μ′
N )

⎤
⎦ − (M − 1) Ur(μ′

1, μ′
2, . . . , μ′

N ) M << N . (13)

In sheet metal assemblies, where generally a few variation patterns contribute to the defor-
mation of a compliant part, PCA identifies the dominant patterns from the geometric covariance
matrix. As demonstrated in Figure 7, considering the M dominant patterns and by disregarding

Figure 7. Overall variation analysis procedure of sheet metal assemblies.
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the other patterns that have minor contributions, the EDR method creates 2M + 1 or 4M + 1
sampling points within the range of µ ′ ± 3σ ′. The next step is to calculate the values of the
assembly response function by implementing the nonlinear FEM which has been described in
Section 2. Then, the EDR method is called again to construct one-dimensional response approx-
imations so that the statistical moments can be computed using a numerical integration. In
this paper, the Gauss–Kronrod quadrature rule, which is among the most effective methods
for numerical integration, is suggested as an integration method. The Gauss–Kronrod quadra-
ture rule typically uses an n-point Gaussian rule Gn paired with a (2n+ 1)-point Kronrod rule
K2n+1 whose integration points are optimally chosen subject to the constraint that all points
of Gn are reused in K2n+1 (Piessens and Branders 1974). It is commonly suggested to use a
pair of G7 and K15 rules in order to preserve a good accuracy in results (Piessens et al. 1983).
Once the statistical moments are computed, the PDF of the assembly’s KC will be estimated by
Pearson system. Using the proposed methodology, the number of FEM runs as well as numer-
ical integration will considerably decrease since some random variables are excluded from the
analysis.

4. Experimental case study

The application of the proposed methodology in variation analysis of compliant sheet metal
assemblies is investigated by studying a set of 30 assemblies of two flat steel plates. The
plates have identical dimensions of 300 × 240 mm2 but different thicknesses of 1 and 1.5
mm. The Young’s module and Poisson’s ratio of plates are measured as of 200 × 103 N/mm2

and 0.3, respectively. As illustrated in Figure 8, an overlap of 60 mm is considered in
the assembly where four joining points are marked with white dots. The initial devia-
tion of each individual part from the ideal position is measured with an accuracy of 0.01
mm by the RENISHAW® 3D contact digitising CMM (Figure 9). Once the surface pro-
files are digitised, a routine was written to extract data points from the point clouds
and generate a code in APDL (ANSYS Parametric Design Language) format for further
processing.

Figure 8. Two sheet metal test pieces before being assembled.
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358 A. Hashemian and B.M. Imani

Figure 9. Surface profile digitising of a test piece.

Figure 10. FE model of one experimental example before being assembled.

4.1. Accuracy evaluation of nonlinear FEA

Before statistically assessing the assembly variation of the current case study, it would be of
interest to evaluate the accuracy of the proposed nonlinear FE analysis. Figure 10 presents
the 3D model of one experimental example in ANSYS environment before being assembled.
The spot-welding points are designated by W1–W4 in Figure 11 and positioned along the line
x = 270 mm with intermediate distance of 60 mm. The displacement of a set of 23 points located
along the line x = 240 mm on Plate A in final assembly is measured by CMM and compared with
proposed nonlinear and conventional linear FE analyses. The result of this comparison is demon-
strated in Figure 12 for three different assemblies. In this figure, the ideal state of the assembly,
which shows no variation, is also illustrated. The difference between these assemblies is the input
deviation of respective plates. For better interpretation, the average deviation of plates A and B
at spot-welding points are written as δA and δB, respectively, at the top of each graph. The accu-
racy of the nonlinear explicit–implicit FE analysis is also quantitatively evaluated and tabulated
in Table 2. Compared with error calculated from conventional non-contact (linear) analysis, the
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Journal of Engineering Design 359

Figure 11. Positions of spot welds and measured points.

results show that the developed nonlinear contact analysis of this paper is in a great accordance
with experimental data.

4.2. Statistical variation assessment of final assembly

In sheet metal variation analysis, generally, the sources of variation are initial deviations of
components. For ease of computation, it is common to select a few points on components and
consider their corresponding deviation as the input variables. In the current study, the initial devi-
ation of the points W1 to W4 on two individual plates are input variables. These variables are
named as v1 to v4 for Plate A and v5 to v8 for Plate B. The assembly’s KC is assumed to be the
final displacement of one of measured points mentioned in Section 4.1. This point is located at
the position of x = 240 mm and y = 120 mm on Plate A (Figure 13). The location of assembly’s
KC is selected as far from fixtures as possible so that it will reflect the assembly variation to a
great degree. However, to prevent any probable local impact by spot-welding process, this point
should not be too close to spot welds.

As stated earlier, the deviation of neighbouring points on a plate, which creates the covariance
structure, cannot be independent. It means that the variation of input variables v1–v4 on plate A
and also v5–v8 on Plate B are dependent or they are statistically correlated. The mean vector (μ)
and covariance matrix (�) of the input variables are tabulated in Table 3 where the order of ele-
ments in respective arrays is in accordance with Figure 13. The diagonal elements of �A and �B

represent the variance (square of standard deviation) of input variables, whereas the off-diagonal
terms indicate the covariance. It is worth mentioning that the distributions of all variables are
reported as normal. In addition, using the transformation formula (V = TV′), the mean vector
and covariance matrix of independent variables can be determined as presented in Table 4. The
elements of diagonal matrices �A and �B represent the principal variances (eigenvalues) of
respective covariance matrices �A and �B. As stated in Section 3.2.1, these values are in fact
the variances of independent variables and indicate the contribution of the corresponding varia-
tion patterns to the overall deformation of the components. It is inferred from the table that both
plates have only one dominant pattern and the other patterns are not decisive. In order to have
a better comparison, the matrices can also be shown through bar charts (Figures 14 and 15). It
should be noted that variations of two plates are assumed to be completely independent since, in
the current experimental case study, the plates are from different sheet rolls. But, practically, it
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360 A. Hashemian and B.M. Imani

(a)

(b)

(c)

Figure 12. Deflection of measured points in three different assemblies with average input deviations of (a) δA = 0.08
mm, δB = − 3.21 mm; (b) δA = 0.14 mm, δB = − 1.78 mm; (c) δA = 0.41 mm, δB = − 2.16 mm.
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Table 2. Error comparison of proposed nonlinear and conventional linear FE analyses for assemblies of Figure 12.

δA = 0.08 mm, δB = − 3.21 mm δA = 0.14 mm, δB = − 1.78 mm δA = 0.41 mm, δB = − 2.16 mm

y-
Coordinate

of
measured

points

% error in
proposed
nonlinear

FEA

% error in
conven-
tional

linear FEA

% error in
proposed
nonlinear

FEA

% error in
conven-
tional

linear FEA

% error in
proposed
nonlinear

FEA

% error in
conven-
tional

linear FEA

10 1.63 72.35 13.34 91.29 11.97 81.27
20 1.12 71.57 13.20 91.29 12.49 81.30
30 4.20 70.75 12.75 91.31 13.00 81.35
40 5.51 70.35 10.12 91.49 12.13 81.58
50 4.62 70.50 5.74 91.79 9.41 82.07
60 3.24 70.80 1.39 92.08 6.57 82.57
70 2.00 71.23 1.12 92.27 4.69 82.98
80 2.08 71.58 1.58 92.37 4.03 83.31
90 2.16 72.06 1.04 92.44 3.56 83.64
100 1.88 72.46 0.16 92.45 2.89 83.92
110 0.52 72.84 0.37 92.49 1.56 84.17
120 1.00 72.98 1.26 92.51 0.15 84.33
130 1.77 72.93 1.88 92.50 1.23 84.38
140 0.75 72.60 0.96 92.42 0.85 84.29
150 0.54 72.29 0.71 92.31 0.13 84.19
160 0.48 72.19 2.01 92.19 0.19 84.12
170 0.30 71.98 1.83 92.10 0.97 84.02
180 1.54 71.67 1.44 91.96 1.82 83.82
190 2.37 71.32 0.61 91.82 2.46 83.58
200 1.07 70.74 0.75 91.67 1.65 83.26
210 2.46 69.85 2.35 91.48 0.73 82.82
220 6.53 68.91 5.20 91.23 3.77 82.33
230 8.16 68.68 5.74 91.19 4.94 82.17

Figure 13. Position of assembly’s KC in experimental case study.

is possible to find some assemblies in which the deviations of plates A and B are correlated. For
example, if the plates are parts of a same sheet roll or manufactured by a same die.

PCA shows that for plate A, the eigenvector t4 = [0.430 0.501 0.531 0.532]t corresponds to
the dominant variation pattern whose respective principal variance is considerably larger than
the others (Figure 15). It is also concluded that the eigenvectors t3 = [0.736 0.222 − 0.196 −
0.609]t and t2 = [ − 0.459 0.436 0.528 − 0.566]t are related to the second and third variation
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362 A. Hashemian and B.M. Imani

Table 3. Mean vectors and covariance matrices of input variables.

Vector of mean values (mm) Covariance matrix (mm2)

Test pieces A µA = [0.549 0.456 0.479 0.582]t �A =

⎡
⎢⎣

0.4001 0.4268 0.4277 0.4094
0.4268 0.4904 0.5123 0.5022
0.4277 0.5123 0.5497 0.5518
0.4094 0.5022 0.5518 0.5772

⎤
⎥⎦

Test pieces B µB = − [1.268 1.443 1.485 1.488]t �B =

⎡
⎢⎣

0.6629 0.7560 0.7478 0.6365
.7560 0.9252 0.9454 0.8118
0.7478 0.9454 0.993 0.8846
0.6365 0.8118 0.8846 0.8571

⎤
⎥⎦

Table 4. Mean vectors and covariance matrices of independent variables.

Vector of mean values Covariance matrix

Test pieces A µA
′ = [0.021 − 0.130 0.058 1.028]t �A =

⎡
⎢⎣

0.0003 0 0 0
0 0.0085 0 0
0 0 0.0765 0
0 0 0 1.9323

⎤
⎥⎦

Test pieces B µB
′ = [0.017 0.134 0.042 − 2.844]t �B =

⎡
⎢⎣

0.0003 0 0 0
0 0.0291 0 0
0 0 0.1316 0
0 0 0 3.2773

⎤
⎥⎦

patterns, respectively, which are not, however, as decisive as t4. Comparing these three eigen-
vectors with three patterns in Figure 6 shows that t4 is related to pattern 1 (bending along y-axis)
while t3 and t2 are related to patterns 2 (twisting) and 3 (bending along x-axis), respectively.
Same results can also be concluded for plate B. It means that all test pieces of this case study
remarkably follow pattern 1 and the other patterns have less contributions.

As illustrated in Figure 15, PCA reports variables v′
4 of plate A and v′

8 of plate B as the
principal variables in order to be used in the EDR method and the other variables with quite
smaller variances can be neglected. The nonlinear FE analysis will be applied to estimate the
values of the response function. Referring to Figure 7, the one-dimensional response functions
in terms of v′

4 and v′
8 can be used to calculate the statistical moments as:

mr = E[Ur(μ′
1, . . . , v′

4, . . . , μ′
8)] + E[Ur(μ′

1, . . . , μ′
7, v′

8)] − Ur(μ′
1, . . . , μ′

8). (14)

(a) (b)

Figure 14. Geometric covariance matrices of plates A (left) and B (right).
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(a) (b)

Figure 15. Principal variance matrices of plates A (left) and B (right).

In this case study, data obtained from measurements of the initial deviation of sheet metal
parts are considered as the input variables in the analysis. In order to investigate the efficiency
of the presented methodology, a set of 10,000 assemblies were also simulated and the results are
compared and evaluated with experimental data as presented in Table 5. The table shows a good
accuracy in the results of the presented approach compared with experimental data and MCS.
The table also shows how the analysis of the covariance structure can affect the final prediction
of assembly variation as neglecting the geometric covariance will result in a considerable error
in the analysis. Another important point is the type of the output distribution of the assembly’s
KC. Although all input variables have normal distribution, the output is not normal (in a normal
distribution γ 1 = 0 and β2 = 3).

As stated earlier, the Pearson system can predict the output distribution of the assembly’s
KC. The statistical specifications of the KC indicate that it has a Type I or beta distribution in
accordance with Pearson classification. Generally, a beta distribution in the interval [a,b] with
shape factors p and q is defined as follows where B is the beta function (Johnson, Kotz, and
Balakrishnan 1995):

p(u) = 1

B(p, q)

(u − a)p−1(b − u)q−1

(b − a)p+q−1 a < u < b, p, q > 0. (15)

The beta PDF that was predicted by the proposed approach is presented in Figure 16. The
figure shows that the improved SFPA which incorporates PCA into EDR method is in a good
accordance with MCS.

Finally, it should be noted that the computational effort of the variation analysis procedure

Table 5. Statistical specifications of the assembly’s KC.

Mean (μ) Std. dev. (σ ) Skewness (γ 1) Kurtosis (β2)

Experimental data − 0.7398 0.2955 − 0.4217 2.3164
MCSs (% error) − 0.7429 (0.42%) 0.3091 (4.60%) − 0.4299 (1.94%) 2.3332 (0.73%)
Proposed methodology

(improved SFPA) (%
error)

− 0.7427 (0.39%) 0.3080 (4.23%) − 0.4270 (1.26%) 2.3061 (0.44%)

Analysis regardless of
covariance (% error)

− 0.6980 (5.65%) 0.1907 (35.47%) − 0.0453 (89.26%) 1.7111 (26.13%)
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364 A. Hashemian and B.M. Imani

Figure 16. Assembly’s KC distributions vs. simulation result.

Table 6. Comparison of number of FE simulations and CPU time.

Number of FE simulations CPU time (minutes)

Improved SFPA (two independent variables involved) 9 14
Ordinary SPFA (all variables involved) 33 50
MCSs 10,000 15,000

of sheet metal assemblies is mainly based on the number of FE simulations. Assuming that all
necessary input data for the FE analysis are ready, for the current case study, it takes around 90
seconds to simulate the assembly process in ANSYS/LS-DYNA using a 3.0 GHz Intel® Core™2
Duo processor. As stated in Section 3.1.2, SPFA requires 4N + 1 FE simulations to determine
KC’s statistical specifications and construct the PDF. Therefore, as reported in Table 6, the
improved SPFA which predicts the assembly variation with two independent variables requires 9
simulations, whereas the ordinary SFPA with all involved variables needs 33 simulations. On the
other hand, when it comes to MCS which calculates the assembly response for the entire pop-
ulation of random input variables, the number of FE simulations and CPU time will drastically
increase.

5. Conclusions

This paper presents a comprehensive methodology for tolerance analysis and variation assess-
ment of compliant sheet metal assemblies. In comparison with previous research, the effect of
geometric covariance is included in the nonlinear sheet metal variation analysis where the nonlin-
earity arises in consequence of contact interactions of mating parts and tools. The methodology
integrates two main modules: (1) a nonlinear finite element analysis which includes contact inter-
actions during the assembly process using a sequential explicit–implicit analysis; and (2) an
improved SFPA which incorporates PCA into EDR method in order to include the effect of geo-
metric covariance in the final assembly variation. The approach is well applicable to sheet metal
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variation analysis. The improved SFPA lessens the computational effort of the variation analy-
sis procedure by reducing the number of involved random variables, so that time efficiency of
the new approach promisingly increases. The efficiency of the developed approach is evaluated
by an experimental case study as well as MCS. Results show that proposed methodology pro-
duces an accurate estimation of the assembly’s KCs in contrast to the case in which the effect of
geometric covariance is overlooked in the analysis.
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