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ABSTRACT

We solve the set of hydrodynamic equations for optically thin advection-dominated accretion flows by assuming a
radially self-similar spherical coordinate system r, ,q f( ). The disk is considered to be in steady state and
axisymmetric. We define the boundary conditions at the pole and the equator of the disk and, to avoid singularity at
the rotation axis, the disk is taken to be symmetric with respect to this axis. Moreover, only the rt f component of
the viscous stress tensor is assumed, and we have set 0v =q . The main purpose of this study is to investigate the
variation of dynamical quantities of the flow in the vertical direction by finding an analytical solution. As a
consequence, we found that the advection parameter, f adv, varies along the θ direction and reaches its maximum
near the rotation axis. Our results also show that, in terms of the no-outflow solution, thermal equilibrium still
exists and consequently advection cooling can balance viscous heating.
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1. INTRODUCTION

Accretion onto a compact object such as a black hole is a
fundamental phenomenon in the universe and most likely is the
primary power source in systems like X-ray binaries, active
galactic nuclei, and gamma-ray bursts. Observation of X-ray
and gamma-ray emission lines from black hole accretion disks
demonstrates the idea of forming a hot atmosphere above the
accretion disk or perhaps radiatively inefficient flows (RIAFs;
e.g., Blair et al. 1984; Raymond 1993; Jimenez-Garate
et al. 2005).

In the standard accretion disk model (Shakura &
Sunyaev 1973) the energy released via viscosity is radiated
locally and the accreting flow becomes cool very efficiently.
Therefore, this model cannot produce a high-energy spectrum
and the idea of the existence of a hot corona above the disk is
needed to predict such high-energy emissions. In terms of
RIAFs, in fact, the heat generated through viscosity is stored as
entropy and can be transported with flow inwardly rather than
immediately being radiated away from the system. Conse-
quently, the flow temperature becomes extremely high and
nearly reaches the virial temperature. As a result, the disk can
radiate high-energy emission such as gamma-rays (see Kato
et al. 2008; Yuan & Narayan 2014 for more details). The disks
and flows with this essential feature are called optically thin
advection-dominated accretion flows (ADAFs). Historically,
the significance of advection energy in hot accretion flows was
first recognized by Ichimaru (1977) and more importantly, a
wide range of studies on optically thin ADAFs has been
performed by Narayan & Yi (1994, 1995a, 1995b) and
Abramowicz et al. (1995) where the disk was thermally stable
(more details in Yuan & Narayan 2014).

It should also be mentioned that in the field of hot accretion
flows, many numerical hydrodynamic (HD) and MHD
simulations have been carried out to investigate the dynamics
of hot accretion flows and one of the most important findings
by those simulations is that the mass inflow rate decreases
inwardly (e.g., Igumenshchev & Abramowicz 1999, 2000;
Stone et al. 1999; Hawley et al. 2001; De Villiers et al. 2003;
Igumenshchev et al. 2003; Yuan & Bu 2010; Pang et al. 2011;
Yuan et al. 2012a, 2012b; Bu et al. 2013), and it is not constant

as was previously believed. Following those simulation results,
one- and two-dimensional self-similar solutions of ADAFs in
the presence of outflow and a magnetic field have been
performed (e.g., Xu & Chen 1997; Blandford & Begelman
1999, 2004; Xue & Wang 2005; Akizuki & Fukue 2006;
Abbassi et al. 2008; Zhang & Dai 2008; Bu et al. 2009; Jiao &
Wu 2011; Abbassi & Mosallanezhad 2012; Mosallanezhad
et al. 2013, 2014; Samadi et al. 2015). Note that the properties
and dynamics of the hot accretion flows with a magnetic field
and outflow is beyond the scope of this work.
In the optically thin ADAFs, the accretion rate is very low,

M L c0.1 Edd
2˙ , where LEdd is the Eddington luminosity and c

is the speed of light. In addition, the optically thin ADAFs are
geometrically thick disks, i.e., H R 1 , where H is the disk’s
scale height and R is the radius in cylindrical coordinates. It
should be noted here that in the novel vertically averaged self-
similar methodology presented by Narayan & Yi (1994,
hereafter NY94), the energy equation expressed as

q q q fq , 1adv = - º+ - + ( )

where qadv represents the rate of the entropy advection in the
radial direction, i.e., Tds dRrvr , ρ is the density of the gas at
the equatorial plane of the disk, vr is the radial velocity, and s
and T are the specific entropy and temperature of the gas,
respectively. In Equation (1), q+ gives the total heat generated
by viscosity per unit volume per unit time in the radial
direction. They defined the advection parameter as
f q qadvº +, which measures the fraction of the advection
energy stored as entropy. Consequently, f1 -( ) will be
radiated away from the system. They integrated the flow
equation in the vertical direction. Making the usual assump-
tions such as steady state, axisymmety, and α-viscosity, they
obtained a set of ordinary differential equations for the
variables as a function of r. They have shown that the equation
has an exact self-similar solution where all variables have
power-law dependencies on r. Vertical integration is a standard
approximation that has been used for thin disks where the
vertical thickness is usually much smaller than the local radius.
However, as we mentioned, optically thin ADAFs are
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geometrically thick disks, therefore the height-integrated
approximation is not appropriate because the physical variables
are not only a function of r but they should also be a function of
the vertical direction, θ. Then, in the case of optically thin
ADAFs, the 1D approach is not suitable. Later on, Narayan &
Yi (1995a, hereafter NY95a) tried to solve the HD equations in
spherical polar coordinates r, q( ) with radially self-similar
solutions but their results only corresponded to the simplest
form of the advection parameter, i.e., f constant= .

To find how the advection parameter varies along the
spherical polar angle, Gu et al. (2009) adopted a polytropic
relation, p Kr= G, in the vertical direction which is normally
used in the vertically integrated geometrically thick disk model
(e.g., Kato et al. 2008). They defined the inclination sq near the
polar axis as the surface of the disk. Therefore, the main
conclusion was that the optically thin ADAFs are geometrically
thick since the free surface of the disk is very close to the polar
axis. By taking into account the effect of a toroidal magnetic
field and its corresponding heating, Samadi et al. (2014)
determined the thickness of ADAFs. Their results show that the
vertical component of the magnetic force acts in the direction
opposite to gravity and compresses the disk; thus, compared
with the non-magnetic case, in general the disk half-thickness,
qD , is significantly reduced. It should be emphasized that in

both the abovementioned works, the power index Γ was
considered to have a typical value above unity, for example,

4 3G = . Also, the constant K is set equal to one, K 1.0= , to
solve their one-boundary differential equations starting from
the surface of the disk. Simulations carried out by De Villiers
et al. (2005) revealed that the time-averaged density drops
faster than the pressure in the vertical direction, which means
that the power index Γ should be less than one to satisfy the
polytropic relation in the θ direction.

A few analytical solutions in the case of hot accretion have
been presented and such solutions need to assume some
simplifications. For instance, Shadmehri (2014) considerd the
energy equation of the gas with the inclusion of only the rt f
component of viscosity in the viscous energy dissipation term
and found a very creative analytical solution. Later, based on
the new simulation results mentioned above, Gu (2015,
hereafter G15) repeated his previous work, Gu et al. (2009),
with the new idea of finding an analytical solution. The
behavior of physical variables is in satisfactory agreement with
those in NY95a except for the variation of the isothermal sound
speed and radial velocity profiles along the vertical direction.
The main conclusion was that viscous heating and advection
cooling cannot balance each other. Therefore, no thermal
equilibrium exists under the purely inflow assumption.

The analytical solution we present here is from the same
methodology as described in G15, with three modifications.
First, we define the first boundary conditions at the rotation axis

0q =  to increase the angular range of our calculation. We
made this change because in terms of optically thin ADAFs, the
disk is considered to be geometrically thick and there might
exist low density with a high-temperature flow above the
surface of the disk. Second, following NY95a, to avoid
singularity at the poles, the disk is taken to be symmetric with
respect to this axis. The second change leads to finding a
relation between the value of constant K and the density at the
rotation axis. Finally, we will adopt the modified “α”
description of viscosity defined by Bisnovatyi-Kogan &
Lovelace (2007). In the next section we explain with more

details why this form of viscosity is needed. With the
aforementioned modification, we can address whether there
exists thermal equilibrium in the purely inflow case and check
how the advection parameter changes along the vertical
direction.
The outline of this paper is as follows. In Section 2, the basic

equations and boundary conditions are introduced. The
numerical results are shown and discussed in more detail in
Section 3. Finally, a brief summary and conclusions will be
given in Section 4.

2. BASIC EQUATIONS AND BOUNDARY CONDITIONS

2.1. Basic Equations

The standard HD equations are employed in the spherical
coordinate system r, ,q f( ) where the steady state accretion
flow is taken to be axisymmetric (i.e., 0f¶ ¶ = ). The
gravitational potential of the central black hole is described
in terms of the Newtonian potential, which is more convenient
for the self-similar formalization, r GM ry = -( ) ( ) . In
addition, the flow is in the non self-gravitating regime and
initially the relativistic effects are neglected. Following NY95a,
we assume 0v =q , which corresponds to a hydrostatic
equilibrium in the vertical direction. However, this assumption
is not appropriate when investigating the effects of outflow on
the dynamics of the accretion flow (see, e.g., Jiao & Wu 2011;
Mosallanezhad et al. 2014 for more details). Therefore, the
continuity equation and the three components of the equation
of motion are as follows,
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where vr and vf are radial and azimuthal components of
velocity, ρ is the mass density, p stands for the gas pressure,
and in Equation (5), rt f represents the rf component of the
anomalous stress tensor. It should be emphasized that in a real
case, the magnetic stress driven by the magneto-rotational
instability (MRI) transfers the angular momentum outside the
disk (Balbus & Hawley 1991, 1998). Since in our HD case we
do not consider the magnetic field, the anomalous shear stress
tensor has been considered to mimic the magnetic stress (see
the HD simulations performed by Yuan et al. 2012a for more
details). This parameter can be written as

r
r r

, 6r
v

⎜ ⎟⎛
⎝

⎞
⎠t m=

¶
¶

f
f ( )

where m nrº( ) is the viscosity coefficient, which determines
the magnitude of the stress, and ν is called the kinematic
viscosity coefficient. There are a lot of uncertainties about how
to prescribe such a viscosity parameter. Most researchers adopt
the “α” description for standard thin disks introduced by
Shakura & Sunyaev (1973), which is proportional to the speed
of sound as hcsn a= . Here, h is the disk’s scale height and α is

2
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a constant parameter less than unity. We know that if the
viscosity coefficient scales with radius as r1 2n µ then radial
self-similarity will be possible.

It should be pointed out that some simulations have been
carried out for different forms of viscosity coefficients in
accretion disks which found that the azimuthal components
dominate other components (e.g., Stone et al. 1996); therefore,
in HD calculations, it would be more convenient to take into
account the azimuthal components (see Stone et al. 1999; Yuan
et al. 2012a, 2012b).

NY95a obtained their solutions for the ADAF model
corresponding to the usual “α” description of viscosity. They
also checked whether the results are sensitive to the viscosity
by adopting a different form, rcsn a= , and concluded that
their solutions with the new form are similar to those with the
“α” description. This prescription may not be suitable in a real
case, since there exists a low-density corona above the disk
with a nearly virial temperature. In addition, in the case of a
geometrically thick and hot disk (ADAF model), the hottest
temperature should be achieved at the rotation axis, 0,q p=
(see Figure 1 of NY95a for more details). On the other hand,
the viscosity is due to MRI turbulence and this quantity should
vanish at the surface of the disk (Bisnovatyi-Kogan & Lovelace
2007; Lovelace et al. 2009). Then, if the kinematic viscosity
coefficient is proportional to the isothermal sound speed,

csn µ , then this quantity cannot vanish at the surface of the
disk as MRI turbulence predicts.

In order to avoid the disparateness in terms of the turbulent
viscosity, following Lovelace et al. (2009), we adopt the
modified “α” description of viscosity as

c
g . 7

k

s
2

n a q=
W

( ) ( )

In the above equation, GM rK
3W º( ) is the Keplerian

angular velocity of the disk and g q( ) is a dimensionless
function equal to unity and zero in the body and surface of the
disk, respectively (e.g., Lovelace et al. 2009). For simplicity,
we consider g sinq q=( ) to satisfy the aforementioned
conditions.

We are interested in investigating whether or not the
advection parameter, f, which is normally considered to unity,
f = 1, in the case of ADAF, remains constant along the polar
angle (e.g., NY95a; Xu & Chen 1997; Jiao & Wu 2011).
Therefore, following Gu et al. (2009) and Gu15, we apply the
polytropic relation, p Kr= G, in the θ direction as our last
equation. Although they obtained solutions by fixing K = 1, we
explain how this constant parameter will be determined in the
next section. We also note that the simulations of De Villiers
et al. (2005) revealed that the power index Γ is less than unity.
This is mainly important because their results show that the
time-averaged density drops faster than pressure from the
equatorial plane to the polar axis. Based on those results, Γ is
set to be less than one throughout this paper.

We adopt self-similar solutions in the radial direction to
simplify the equations as

r r, , 83 2r q r q= -( ) ( ) ( )

r
GM

r
r, , 9Kr r rv v v vq q q= =( ) ( ) ( ) ( ) ( )

r r, , 10Kv v vq q=f f( ) ( ) ( ) ( )

p r p GMr, . 115 2q q= -( ) ( ) ( )

By substituting the above self-similar solutions into Equa-
tions (2)–(5), they will be reduced to

K
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We will put Equations (12) and (14) into (13) in order to obtain
the differential equation for the density. Before doing that, it
should be noted that the first term on the left-hand side of
Equation (12) is very small compared to the other terms. This is
because, in the case of ADAF, the radial velocity is very low
and the viscosity constant considered here is fixed as 0.1a =
(see Equation (14)). Hence, without any significant change in
our results we can neglect this term and, therefore, the
differential equation will be written as (see G15 for more
details)

d

d K

cot 5

2
. 15

2⎛
⎝⎜

⎞
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r q
q

q r q
r q=

G
-

-G( ) ( ) ( ) ( )

The above differential equation has an analytical solution that
will be obtained after introducing the boundary conditions in
the following section.

2.2. Boundary Conditions

We define the boundary conditions at the rotation axis 0q =
and equatorial plane 2q p= to occupy the angular range
0 2 q p . Following NY95a, to avoid singularity at the
polar axis, we assume the boundary condition to be

d

d
0: 0. 16q

r
q

= = ( )

The above boundary condition leads to a value of constant K.
Therefore, in Equation (15), the term inside the parentheses
should become zero to satisfy the above boundary condition.
So, the K parameter can be derived as

K
2

5
170

1⎜ ⎟⎛
⎝

⎞
⎠r= -G ( )

where 0r represents the value of the density at the rotation axis.
Figure 1 shows the variation of constant K versus Γ

corresponding to different values of 0r . Note that since we
will fix the value of the density at the equatorial plane to unity,

2 1.0r p =( ) , the magnitude of 0r in our figures represents the
ratio of the density at the polar axis to the midplane of the disk.
It is clear from Equation (17) and also Figure 1 that K increases
with increasing power index Γ for different fixed values of 0r .
Another feature that can be seen in this figure is that the value
of K cannot exceed 2 5, which is the higher limit of this
parameter with the Γ index in the range 0 1.0< G < . As we
explained before, we consider this range for Γ because
according to the simulation results carried out by De Villiers
et al. (2005) the time-averaged density drops faster than
pressure in the θ direction. This figure is compared with Figure
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2 in G15 because at first we decided to modify G15.
Comparing Equation (17) with Equation (10) from G15,
obviously both will be equal if one considers the surface angle
to be 0. In order to avoid defining the parameter

p K0 0
2vl rº( ( ) ) as the energy advection on the midplane of

the disk (G15), we instead use the constant K, which is the
coefficient inside the polytropic equation.

Now we turn our attention to finding an analytical solution
for the density in the vertical direction. By integrating
Equation (15) along the θ direction, we can easily obtain the
density profile as

K
K

1

5
5 2 2 sin 2

18

1 5 1
2

1
1⎡⎣ ⎤⎦r q r p q= - +G- - G-

G
G-{ }( )( ) ( )

( )

( )

where the value of the density at the equatorial plane is set to be
2 1.0r p =( ) throughout this paper. To complete the specifi-

cation of the results, we need to define the advection parameter,
f adv. In the self-similar formalism, the advective cooling rate
and the viscous heating rate per unit volume can be expressed
as

q
pv

r

5 3

2 1
, 19adv rg

g
= -

-
-( )

( )

q
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rv
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4
sin . 20

K

2
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q= f+ ( )

Therefore, by vertical integration over qadv and q+, we can
obtain Qadv and also Q+ as

Q q r d2 sin 21adv

0

adv2

ò q q=
p

( )

Q q r d2 sin . 22
0

2

ò q q=+ +
p

( )

Then, the energy advection factor is given by
f Q Qadv advº +. In the next section we will show the

behavior of all variables and also the variation of advection
cooling and viscous heating by explanation and comparing our
results to those in Gu15 and Gu et al. (2009).

3. NUMERICAL RESULTS AND DISCUSSION

In this section, we first study the angular distribution of the
dynamical quantities derived from Equations (12)–(14) and
(18). Figure 2 shows the variation of physical quantities with
the polar angle using 0.75, 0.85, 0.95G = as three typical
examples and a density at the polar axis of 0.010r = . The
dimensionless radial velocity, Krv v , is plotted in the top left
panel of Figure 2. As can be seen, the radial velocity increases
from the rotation axis to the equatorial plane. Actually, vr is
zero at 0q =  and reaches its maximum at 2q p= for all Γ
power index values. It should be noted here that, in terms of

1G < , G15 found that the radial velocity increases toward the
rotation axis (see Figure 1, panel (b) of G15). This contra-
diction is simply because in this paper the modified form of the
α prescription for viscosity is adopted (see Equation (7) and
also Equation (14) for more details). In addition, our result
shows that the larger Γ leads vr to increase further.
The top right panel displays the dimensionless azimuthal

velocity, i.e., Kv vf . It is clear that vf increases from 0q =  to
2q p= and very close to the pole, vf vanishes and becomes

zero. This behavior is clearly because, as a second modification
to G15, the disk is taken to be symmetric with respect to the
polar axis. As a result, the centrifugal force will become zero at
the rotation axis. Moreover, the azimuthal component of the
velocity is larger for small values of Γ. In fact, the largest
variation of vf belongs to the smaller value of Γ. As seen in this
panel vf is changed from 0v =f to just above 0.8v =f for

0.75G = .
The bottom left panel shows the vertical profile of the

density ρ. It should be emphasized that the density profile is
scaled with the density value on the equatorial plane of the
disk. In this figure, the minimum value of the density at the
rotation axis is considered to be 0.010r = . As an overall trend,
it is clear that the density increases from 0r  at the rotation
axis to 1r = at the equatorial plane. What is more, for larger Γ,
ρ increases sharper than for smaller ones, which means there
exists extremely dense flow near the rotation axis, and the disk
is considered to be geometrically thick.
Finally, the bottom right panel of Figure 2 shows the vertical

variation of the isothermal sound speed, cs
2. As illustrated in

this panel, cs
2 has a decreasing trend from the rotation axis to

the equatorial plane. Furthermore, from the figure it is clear that
for the case with 0.95G = , cs

2 is almost independent of θ. Also,
the maximum variation of cs

2 belongs to 0.75G = , from
c 0.4s

2  at 0q = (at nearly virial temperature) to about
c 0.12s

2 = at 2q p= . In this case, a small value of Γ might
correspond to the thin disk model with a hot corona above the
disk. Most importantly, our results are totally in agreement with
those presented in NY95a. In fact, we should mention that by
using an analytical solution for the case of no-wind self-similar
solutions, solving a system of complex ordinary deferential HD
equations with two boundary conditions is not necessary
(readers are referred to NY95a for more details).
As we explained before, the main purpose of this work is to

check whether or not the advection parameter remains constant
along the vertical direction. Figure 3 represents the variation of
the energy advection factor, f Q Qadv advº +( ), with Γ in the

Figure 1. Variation of K with Γ for different values of density at the polar axis,
0.001, 0.01, 0.1r = .
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range 0.5 1 G < . In this figure the values of the density vary
over the range, i.e., 0.001, 0.01, 0.10r = . It is shown that f adv

increases with increasing Γ and reaches unity for high values of
Γ corresponding to the fully advected case. In contrary
to G15’s conclusions, this figure obviously demonstrates that
in the case of no outflow, i.e., 0v =q , there exists thermal
equilibrium and therefore, advection cooling can balance
viscous heating. Also, it can be seen that for three typical
density values on the rotation axis, full advection takes place
when 0.95G  . Therefore, Figure 1, together with this figure,
shows that when the energy equation is replaced with the
polytropic equation of state, p Kr= G, the fully advected case
will be possible if constants K and Γ vary only in the range

K0 0.4< and 0.5 1 G < , respectively.
Finally, the vertical variation of the advection factor,

f q qadv visq =( ) (the ratio of advection cooling to the viscous
heating per unit volume), is plotted in Figure 4 for the same
three values of the density in Figure 3 with 0.95G = . It can be
seen that the value of the energy advection factor is not
constant in the θ direction and increases from the equatorial

plane toward the rotation axis. In addition, a lower value of the
polar axis density causes a smaller value of f q( ). It is also seen
that the energy advection factor is below unity, i.e., f 1q( )
for 0.001r = . What is more, for the case with 0.01r = the
value of the energy advection factor is first below unity and
then becomes greater than one near the rotation axis.
Furthermore, a larger value of the density close to the rotation
axis, i.e., 0.1r = , causes an upper limit of f q( ), i.e.,
f 2.8q ( ) at 0q = , and more importantly this factor is
always above unity for the entire vertical range. Therefore,
unlike NY95a’s assumption, which was to adopt f 1.0=
throughout the angular direction, our result clearly indicates
that the advection parameter is a function of θ, i.e., f q( ), and
may exceed unity in some cases.

4. SUMMARY AND CONCLUSIONS

In this paper, we tried to solve the HD equations of optically
thin ADAFs in the spherical coordinate system r, ,q f( ), where
the steady accretion disk is considered to be symmetric with
respect to the rotation axis as well as the equatorial plane. The

Figure 2. Variation of dimensionless physical quantities with polar angle θ. The dotted, dashed, and solid lines correspond to 0.75, 0.85, 0.95G = , respectively. Here
0.1a = and 0.010r = .
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central black hole gravity is described as the Newtonian
potential, since this form is more convenient in the self-similar
solutions, r GM ry = -( ) ( ) . In addition, instead of using the
energy equation with a constant value for the advection
parameter, f, following Gu et al. (2009) and G15, we adopted
the polytropic relation in the vertical direction as p Kr= G.
Compared with G15, we made three modifications. First, the
vertical range of the calculation is enhanced from the rotation
axis 0q =  to the equatorial plane of the disk, 2q p= . This
change has been made because in optically thin ADAFs the
disk is geometrically thick, i.e., H R 1 . Second, following
NY95a, to avoid singularity at the pole, the disk is taken to be
symmetric with respect to this rotation axis. This change causes

us to find a relation between the value of constant K and the
density at the rotation pole. Finally, the modified “α”
description of viscosity is adopted (see, e.g., Lovelace
et al. 2009 for more details).
With the abovementioned modifications and following

the G15 methodology, we find an analytical solution for
optically thin ADAFs. The presented results showed that
unlike G15, the radial velocity decreases toward the rotation
axis for all Γ values. In addition, vf becomes zero at the
rotation pole, which is due to the second modification.
Furthermore, cs

2, as in NY95a, has a decreasing trend from
0q = (virial temperature) to 2q p= .

In contrast to G15, our solution represents the existence of
thermal equilibrium in the vertical direction without outflow
emanating. So, advecting cooling can balance viscous heating
effectively. Moreover, If a polytropic relation is used rather
than the energy equation in the vertical direction for full
advection, K and Γ should only be in the range K0 0.4<
and 0.5 1 G < , respectively. At last, the value of the energy
advection factor is not constant in the θ direction and increases
from the equatorial plane toward the rotation axis.
In spite of the simplicity of our model in viscosity and the

disk itself, we think that the presented semi-analytical results
give us a better understanding of such a complicated system. It
is good to note here that some modifications can be applied to
ameliorate this study. Regarding the radial self-similar
approximation, it cannot ensure that this solution is relevant
to real accretion flows. In addition, the Newtonian potential
was taken into account rather than the Paczyńsky & Wiita
potential to avoid the general relativity effects in the innermost
region of the accretion disk. Not only should the rf component
of the viscous stress tensor, rt f, be employed, but also other
components such as tqf should be taken into consideration.
However, the advection factor f adv in the energy equation was
found to be function of the vertical direction, but this parameter
must be a function of the radial and more significantly the mass
accretion rate of the disk, i.e., ṁ. To resolve the aformentioned
remarks, considering the vq and also the tqf component of the
stress tensor may give more promising results in future works.

The authors thank Amin Mosallanezhad for useful sugges-
tions and discussions. We also appreciate the referee for
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