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A novel approach for monitoring and
improving the quality of welded joint
in gas metal arc welding process
using adaptive neuro-fuzzy systems

Hamid Shahabi and Farhad Kolahan

Abstract
In gas metal arc welding, like other welding techniques, the quality of welded joint may be described in terms of weld
bead geometry and the presence of welding defects. In turn, the characteristics of welding signals, such as voltage, cur-
rent and sound, may be used to predict and improve the quality of welded joint. In this work, two sets of adaptive
neuro-fuzzy inference system have been used to predict and improve the weld quality characteristics. The required data
for modeling were obtained from 57 experiments based on D-optimal design of experiments. The first set is developed
to predict the possible welding defects (discontinuity, lack of fusion and overlap) and shape factor of the weld bead.
These ‘‘predicting adaptive neuro-fuzzy inference system models’’ have been developed using 13 statistical parameters of
the sound, voltage and current signals. The objective of the second set of models, called ‘‘improving adaptive neuro-fuzzy
inference system models,’’ is to adjust the input welding parameters in such a way that the weld defects are minimized.
These models simulate the experiences of professional human welders as the learning databases. Verification tests reveal
that the proposed predicting adaptive neuro-fuzzy inference system models can accurately estimate the main weld qual-
ity indices in actual gas metal arc welding process. Moreover, experimental results for improving the adaptive neuro-fuzzy
inference system models confirm that the defects of faulty weldment can be eliminated after applying the process para-
meters settings given by these models. The proposed adaptive neuro-fuzzy inference system models may pave the way in
assisting the human welder to predict and enhance the weld quality characteristics.
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Gas metal arc welding, welding output signals, weld defects, adaptive neuro-fuzzy inference system, weld quality
optimization
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Introduction

The gas metal arc welding (GMAW) process is exten-
sively used for mass production of a variety of metal
parts. The experience of welding operators is an impor-
tant factor for adjusting the input welding parameters
to have a high-quality welded joint. But, dependency of
welding quality to the human operator skills, some-
times, may make non-uniformities or mistakes in the
mass production.

The objective of this study is to decrease the operator
dependency of GMAW process in the fault detecting of
the welded joints and adjusting the input welding para-
meters. This is a way to minimize the operator mistakes
in the welding process by employing the human welder
experiences in the intelligent models.

Defects and geometry of weld bead are two impor-
tant indicators of weld quality. Welding signals, such
as sound and electrical signals, contain a large amount
of useful information about the weld quality.1–3 On the
other hand, the characteristics of these signals are
directly affected by input parameter settings, such as
voltage, feed rate, welding speed and electrode-to-work
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piece distance. Hence, the welding signals may be uti-
lized to correlate the input welding parameters setting
to the weld quality state.4,5 This relationship may then
be used to adjust the settings of input welding para-
meters to improve the quality of welded joints.

There are broad researches about the welding signals
and their characteristics. Generally, they investigate the
relationship between welding signals and input welding
parameters. Arata et al.6 were among the pioneers who
have studied the relationship between the welding
sound signal and input welding parameters. Cudina
et al.7 have showed that the welding sound power can
be calculated by the welding current. They have
believed the arc ignition and extinction as well as the
arc ionization are the two main sources of generating
weld sound. Wang et al.8 have reported that acoustic
signal of gas tungsten argon welding (GTAW) process
of aluminum is strongly affected by the input welding
parameters. Based on the Fourier transforms and
recursive least square method, they have developed
mathematical models to state the relationship between
welding power and sound.

Some researchers have focused on the relationship
between welding signals and some welding output spec-
ifications, such as defects, strength or other characteris-
tic of welded joints. It has been shown that analysis of
welding sound signal in time domain may be more
obvious in detecting defects than frequency domain.9

Welding penetration as an output parameter of welding
process may be estimated by the features of welding
sound signal.10 For friction stir welding process,
Senthilkumar et al.11 studied the correlations between
the tensile strength of the joints and the sound signal
parameters.

In the welding process, the transferring of molten
mass to the work piece may be in three different modes:
short circuit, globular and spray. These transference
modes are different in droplet size and its rate of trans-
fer. Each of transfer modes may be determined by the
statistical characteristics of welding signals. Cayo and
Absi Alfaro12 have used some of the main statistical
parameters of the sound pressure level spectrums, such
as mean value, variance, standard deviation and num-
ber of pulses per second to determine the transference
mode during the welding process. Poopat and
Warinsiriruk13 have specified the weld transfer mode
based on the values of sound level and frequency of
sound peaks.

Stability of weld arc is another criterion to have fine
joints. Grad et al.14 have studied the effects of the input
welding parameters on the arc stability. They have con-
cluded that the welding process is more stable in higher
frequencies of molten mass droplets. Roca et al.15 have
proposed a welding stability measure using standard
deviation of acoustic peak amplitude and time intervals
between peaks.

The microstructure of welded joint affects the overall
quality and strength of the joint. In this regard, Grujicic
et al.16,17 have proposed thermal–mechanical coupled

model combined with the physical–metallurgy concepts
to predict the distribution of crystalline phases within
the as-welded microstructure. This procedure has been
applied to the low-carbon steel AISI1005 and high-
hardness armor-grade MIL A46100 martensitic steel. In
an improved analysis, for GMAW process, comprehen-
sive multi-physics computational model has been pre-
sented by Grujicic et al.18 The model has been applied
to the butt-welding of MIL A46100 in order to predict
the microstructure evolution and the local properties of
the fusion zone (FZ) and heat affected zone (HAZ).

Some researchers have used the soft computing strat-
egy to develop models for welding output parameters.
Recently, Liu et al.19,20 have addressed the dynamic
estimation of the weld penetration in GTAW process.
They have developed a nonlinear dynamic adaptive
neuro-fuzzy inference system (ANFIS) to estimate the
weld penetration by measuring the back-side bead
width. Later on, they utilized the proposed ANFIS
model to develop a linear predictive controller for
adjusting the weld penetration specified by back-side
bead width.21 They have completed their research by
developing an iterative local ANFIS model-based data-
driven approach to control an automated GTAW
process.22

Kovacevic and Zhang23 have developed a neuro-
fuzzy system to control the fusion state by estimating
the back-side and top-side weld bead of pool geometry.
Manikya and Rao24 developed a back propagation
neural network model for the prediction of weld bead
geometry in pulsed GMAW process. Dhas and
Kumanan25 proposed an ANFIS model to predict the
weld bead width in the submerged arc welding (SAW)
process. Nele et al.26 have utilized the neuro-fuzzy
modeling approach to provide adaptive control of
GMAW input process parameters’ adjustment and pre-
dict final weld joint characteristics.

Most of these studies do not specifically concentrate
on the prediction and improving the quality of the
welded joints by means of welding signal features. The
analysis of in-process welding signals including sound,
voltage and current signals in the time and frequency
domain will be useful for these purposes. These signals
should be simultaneously considered in order to have
an accurate representation of the weld quality since
each of which has certain information about the weld
quality which may not be shown by the others.

The present work may be divided into two main
parts. In the first part, ANFIS called ‘‘predicting mod-
els’’ have been proposed to relate the most important
weld quality measures to the main GMAW output sig-
nals. The quality measures consist of the three most
important visual defects, lack of fusion (LF), overlap
(OL) and discontinuity (DS) as well as the bead shape
factor (SF). These models would predict the four men-
tioned weld quality indices according to the three weld-
ing signals. The predicted weld defects will be corrected
by another set of ANFIS models named ‘‘improving
models’’ which is developed in the second part of the
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article. The inputs of these models are the outputs of
the predicting models, while the outputs are the adjust-
ments to the welding parameters so as the predicted
defects are eliminated. The training databases for these
models consist of the corrective adjustments in the
input welding parameters for faulty welds to make
them flawless. These databases may be prepared based
on the experiences of the professional welders.

Experimental methods

In this work to construct the required databases for
ANFIS learning, experimental tests have been per-
formed based on D-optimal method of design of
experiment (DOE) approach. D-optimal maximizes the
determinant of the information matrix. In this way, the
corresponding design table is a subset of full factorial
experiments. The merit of D-optimal is that it could
provide large amount of useful information about the
system under study with minimal number of actual
tests. In addition, the design matrices may be non-
orthogonal and the process parameters can be
correlated.27

The input welding parameters in this study include
voltage, welding speed, wire feed rate and electrode to
work piece distance. The first three parameters are con-
sidered at four levels while the last one is set at three
levels. Table 1 lists the input parameters and their cor-
responding levels used in DOE table.

Based on the D-optimal method, a total of 57 experi-
ments are required for modeling procedure (Table 2).
For each test, the output signals have been recorded
and the corresponding statistical parameters computed.
These statistics are then used as the input variables of
the predicting models.

All experiments have been performed using the
apparatus illustrated in Figures 1 and 2. A Pars-MIG-
SP501 welding machine with constant static voltage
was used. The filler wire electrode was a 1-mm dia-
meter mild steel. The shielding gas composed of a mix-
ture of 80%Ar and 20%CO2. The test specimens were
selected from API 5LX42 plates with dimensions of
150mm 3 50mm 3 5mm. The surface of the work
pieces was cleaned by sand blasting process. For each
test, the total length of the welded joint was 10 cm out
of which the first 2 cm and the last 1 cm were cut off to
increase the accuracy of the measurements.

The electrical signals (voltage and current) have been
recorded using a PCI Eagle 703S data acquisition card.

The sound signals have been collected through a
Taskam144 external sound card connected to a C3
Dynacord microphone. The microphone was, in turn,
mounted on the welding table with constant distance of
30 cm from the welding pool. The sampling rate of data
collection was set at 40 kHz by data accusation subrou-
tine in LabVIEW 7.0.

Part I: ANFIS models for predicting
welded joints quality

The problem of finding membership functions and
appropriate rules in fuzzy models is a tiring process of
trial and error. This leads to apply the learning algo-
rithms for fuzzy systems. Neural networks are good
alternatives for tuning fuzzy membership function.28

Neuro-fuzzy approach determines the parameters in
fuzzy models using learning techniques developed in
neural networks, and it has been successfully applied in
various areas.19–23

Generally, there is not a certain numerical value of a
definite variable for exact determination of welded joint
quality. The weld quality is naturally a descriptive vari-
able and may be described more precisely by fuzzy con-
cepts. According to this and because of employing the
human welder experiences in models training, in this
work, the ANFIS has been used to construct predictive
models for determining the quality of welded joints
according the weld signal characteristics.

The statistical parameters of welding signals as
inputs of models and the factors for evaluating weld
quality as the outputs of models are described in the
following.

The statistical characteristics of welding
signals (model inputs)

As mentioned, the welding sound and electrical signals
are strongly correlated to the quality of the weldment.
Hence, the signal characteristics of a faultless weld are
quite different than those of faulty ones. As illustrated
in Figure 3, for all signals in defect zone, the ampli-
tude and the occurrence frequency of the peaks are
completely different than those of faultless regions.
These changes in the signal patterns and shapes may
be evaluated by its statistical parameters in time or
frequency domain. With regard to this, some of the
statistical parameters of welding signals have been

Table 1. Input welding parameters and their values.

Number Welding parameter Representation Values

1 Voltage (V) V 20 25 30 35
2 Welding table speed (mm/min) S 217 319 420 522
3 Wire feed rate (m/min) F 6 9 12 15
4 Electrode to work piece distance (mm) D 5 12 19
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used as the model inputs in the ANFIS modeling pro-
cedure (Table 3).

It should be noted that the different defects may
exhibit similar patterns on a given welding signal. For
instance, in Figure 3, the DS defect has affected on all
three signals. Some of these effects may be like other
defects. As a result, an individual welding signal may
not conclusively determine a specific weld defect.
Therefore, to determine a specific defect by the patterns
of the output signals, all of the three signals should be
considered simultaneously.

Table 2. Design of experiments table.

Test number V S F D Test number V S F D Test number V S F D

1 20 319 15 19 20 30 217 6 12 39 35 217 6 5
2 25 522 15 19 21 30 420 6 19 40 20 217 12 19
3 25 420 9 12 22 30 319 9 12 41 35 217 9 12
4 35 420 12 5 23 25 522 12 5 42 30 217 9 19
5 25 420 12 19 24 30 522 15 19 43 30 522 9 12
6 20 420 12 12 25 30 217 12 5 44 35 522 12 19
7 25 217 9 5 26 35 522 15 5 45 25 217 12 12
8 25 522 6 12 27 25 217 6 19 46 25 420 15 5
9 20 420 9 19 28 20 522 9 5 47 35 319 9 5
10 20 420 6 5 29 30 319 12 19 48 30 217 6 5
11 20 522 15 12 30 35 522 9 19 49 35 319 15 12
12 30 522 12 12 31 30 217 15 12 50 25 319 9 19
13 25 319 6 5 32 30 420 9 5 51 20 217 9 12
14 25 319 15 12 33 20 319 6 12 52 20 522 12 5
15 35 319 12 12 34 35 522 6 12 53 30 420 15 12
16 35 217 15 19 35 20 217 6 12 54 20 217 15 5
17 35 319 6 19 36 20 522 6 19 55 30 319 15 5
18 35 420 15 19 37 20 420 15 19 56 30 420 12 19
19 20 319 12 5 38 35 420 6 12 57 30 522 6 5

V: voltage; S: welding table speed (mm/min); D: wire feed rate (m/min); F: electrode to work piece distance (mm).

Figure 1. Schematic representation of experimental setup.

Figure 2. Welding torch and microphone.

Figure 3. The effect of weld defects on the sound, voltage and
current signals patterns.
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The quality of the weldment is strongly related to the
patterns of the weld signals; especially, signal peaks. In
this study and by experience, for sound signal, peaks
are those samples that are 3s larger than average ampli-
tude of overall signal. For current and voltage signals,
the signal samples that are 1s larger than average
amplitude of overall signals are considered as peaks.
The number of threshold Sigmas for sound and electri-
cal signals are selected based on experience and the
nature of signals. For instance, welding sound signals
by nature have large variations. Therefore, to limit the
number of sound signal peaks within a reasonable
range, which would contain useful information about
the process and could appropriately reflect the occur-
rence of any possible defect, a larger number of sigma
has been selected. In contrast, electrical signals have
much smaller variations. Therefore, using the same
notion, smaller number of Sigma is chosen for analyz-
ing welding voltage and current signals. These values
have been selected by close observations on the signal
samples and characteristics of the corresponding welded
joints.

The signal patterns may be described by mean val-
ues (M) and standard deviations (s) of peak ampli-
tudes and the times between consecutive peaks. In this
research, all of the statistical parameters of welding sig-
nals are defined based on these quantities. It is noted
that since the values of welding signal samples (sound
and electrical) are always larger than zero, their mean
values are also non-zero positive numbers. This would
prevent the occurrence of singularity (being divided by
zero) for those parameters that are calculated by taking
the ratios.

The uniformity of peak amplitudes in sound signals
is usually an indication of perfect welds. In this study,
parameters x1 and x3 are defined to evaluate sound uni-
formity. Parameter x1 is the ratio of the standard devia-
tion to the mean value of sound peaks. While x3 is the
ratio of the standard deviation to the mean value of

number of sound peaks in five different amplitudes.
Together, they assess the uniformity of amplitudes and
distribution of sound peaks.

Similar patterns of peak distributions along the dif-
ferent segments of weldment may introduce a consistent
weld quality along the entire welding pass. This is an
important specification of fine welding process. To
quantify this feature, parameters x2 and x4 have been
recommended. The weld path may be divided into some
segments of equal sizes (10 segments for 7 cm of weld-
ing path in our case). Then, the averages of peak ampli-
tudes are calculated for each segment. The amplitude
consistency of the welding process can now be shown
by x2 which is the standard deviation of the peak’s
averages of all segments. The similarity of time intervals
between following peaks is another important sign of
welding consistency. To enumerate this, the parameter
x4 is introduced, that is, the ratio of the standard devia-
tion to the mean value of times between consecutive
sound peaks. In general, the lower the x2 and x4, the
more organized sound signals would be.

Fast Fourier Transform (FFT) is a powerful tech-
nique in signal processing that can determine the domi-
nant frequencies of signals. The parameters x5, x6 and
x7 have been defined in frequency domain on the FFT
diagram of sound signal.

The parameter x5 is the ratio of standard deviation
to the mean value of peaks in the FFT of sound signals.
It determines the amount of variations in the FFT of
sound signal. The large values of x5 show that there is
a dominant frequency band in the sound signal. For
instance in Figure 4, dominant frequency band is less
than 400Hz. For the envelope curve of FFT diagram
of sound signal, the coordinates of its center of area,
defined by x6 and x7, are the mathematical estimated
values for frequency and amplitude, respectively.
Together x6 and x7 are approximate indications for the
values of dominant sound signal frequency and its
intensity (Figure 5).

Table 3. Statistical parameters of sound, voltage and current signals (input parameters of predicting ANFIS models).

Statistical parameter Symbol Statistical parameter Symbol

ssound peaks

Msound peaks

x1 Prms x8

smean of segments sound peaks x2
s time between consecutive peaks in

electrical power signals

M time between consecutive peaks in
electrical power signal

x9

snumber of sound peaks in five deviations

Mnumber of sound peaks in five deviations

x3 svoltage signal x10

stime between consecutive sound peaks

Mtime between consecutive sound peaks

x4
stime between consecutive voltage peaks

Mtime between consecutive voltage peaks

x11

speaks of sound signal FFT

Mpeaks of sound signal FFT

x5 scurrent signal x12

Epeaks amplitude of sound signal FFT x6
stime between consecutive current peaks

Mtime between consecutive current peaks

x13

Epeak frequencies of sound signal FFT x7
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The adequacy of electrical power is an essential con-
dition for ideal welding. The parameter x8 is the root
mean square (rms) value of electrical power signal, that
is, an indication of input heat to the welding pool.

The parameters x9, x11 and x13 are introduced for
the consistency of power, voltage and current signals,
respectively. They are the ratio of the standard devia-
tion to the mean value of times between consecutive
peaks of corresponding signals. During the process, the
welding voltage and current may be involved in rise
and fall due to unstable arc, defects or surface condi-
tions. To measure the extent of this subject, x10 and x12
are defined which are the standard deviation of voltage
and current signals, respectively.

In summary, the statistical parameters defined for
sound signals (x1–x7) as well as the ones for the electri-
cal signals (x8–x13) for 57 experiments may provide
comprehensive information about the process state and
the possibility of defects occurrence in the welded
joints. The weld quality measures may be modeled and
predicted using the proposed statistical parameters
through the proposed neuro-fuzzy systems.

Such statistical parameters such as x2, x6 and x7 that
are not in the range of [0–1] are normalized by the
unity-based normalization technique using equation
(1).

x9=
x� xmin

xmax � xmin
ð1Þ

Weld quality measures (models outputs)

In the first part of this research, first-order ANFIS mod-
eling strategy is used to predict the quality of welded

joints. The quality measures modeled by ANFIS include
the SF as well as three of the most important visual weld
defects, namely, DS, LF and OL.

LF, also called cold lapping, occurs when there is no
appropriate fusion between the molten mass and the
workpiece surface. This may occurs when the welding
pool is too large or welding speed is too slow.29

Overlapping may take place when the filler metal does
not spread enough on the workpiece and, as a result,
the angle between the base part and the weld bead is
less than 90�. Insufficient heat input to the welding
pool or excessive deposition rate of filler are possible
causes for this flaw.29 DS occurs when the weldment
line is broke up to the parts. Insufficient arc heat and
small wire feed rate may be the cause of this flaw. All
of the presented defects are visually detectable on the
welded joint. They have somewhat signatures on the
welding signals. Figure 6 schematically illustrates the
shapes and the possible locations of these defects.

SF is the ratio of the height to the width of the weld
bead (Figure 7). It is defined as an index of weld bead
geometry, one of the main quality measures in weld-
ing.29 The geometry of weldment has distinct effects on
the quality of welded joints. Depending on the specific
application and type of welding process, weld SF
should be in a specific range as the out of range SF
may be an indication of improper welding conditions
and poor weld quality.

ANFIS modeling procedure

ANFIS is a Sugeno-type fuzzy inference system imple-
mented in the framework of neural networks.25 A fuzzy
system has three major conceptual components:

Figure 6. Schematic illustrations of three-weld defects.

Figure 7. Weld bead geometry and shape factor.

Figure 4. FFTof sound signal.

Figure 5. Center of area for FFT signal envelope.
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database, rule base and reasoning mechanism.23 The
database contains the fuzzified inputs and outputs. The
rulebase includes the fuzzy if–then rules, and the rea-
soning mechanism performs the inference procedure
using fuzzy rules. This mechanism concludes a reason-
able output for given inputs. Similar to the neural net-
work models, the parameters of neuro-fuzzy systems
are computed through learning method using input–
output database.

For instance, a first-order Sugeno-type ANFIS with
two inputs and one output is schematically shown in
Figure 8. To clarify ANFIS structure and without loss
of generality, this simplified model is explained here.
Typical fuzzy rules for this structure are as follows:

If x1 is A11 and x2 is A21, then y1= a11x1+ a12x2+ a10;
If x1 is A12 and x2 is A22, then y2= a21x1+ a22x2+ a20.

As shown in Figure 8, Aij’s are membership func-
tions. In this work, the generalized bell-shaped func-
tions are selected as the membership functions.
Equation (2) shows general form of this function. The
parameters sij, bij and cij are said to be premise
parameters.

mAij
xið Þ=

1

1+
xi�cij

sij

� �2� �bij ð2Þ

In Figure 8, the symbol P in the second layer is a T-
norm operator and here multiplies the incoming inputs.
In the third layer, the arriving inputs will be normal-
ized. The outputs of this layer are multiplied by the con-
sequent part of each fuzzy rule in the fourth layer. The
coefficients of this layer are referred to as consequent
parameters (aij) which is denoted in the rules. The last
layer determines the overall output of ANFIS model by
summation of all incoming signals.

In this part of work, for each of weld quality factor,
a first-order ANFIS model is developed (totally four
models). The 57 pairs of input–output data (13 inputs
for each pair) would generate large number of rules,
parameters and equations, which would result in mas-
sive computational times. To avoid this problem, sub-
tractive clustering method has been used to reduce the
number of fuzzy rules. This method can be used to
define membership functions and also to generate rules
automatically.31 Generally, the purpose of clustering is
to identify natural groupings of data from a large data
set to produce a concise representation of a system’s
behavior using a minimum number of rules. The sub-
tractive clustering algorithm and the corresponding for-
mulas are well described in reference.31,32

As a result, the number of fuzzy rules for the four
presented predicting ANFIS models; such as DS, LF,
OL and SF are reduced to 6, 7, 6 and 4 rules,
respectively.

The structural coefficients of presented ANFIS mod-
els may be adjusted using hybrid learning algorithm. In

this algorithm, the consequent coefficients are identified
by least square method in the forward pass; while in the
backward pass, the premise parameters are updated by
the gradient descent method.33 The databases required
for training processes consist of 57 sets of input–output
data. In total, 13 statistical parameters of welding sig-
nals are involved as inputs while the 4-weld quality
parameters are considered as outputs. The overall pro-
cedure for developing prediction ANFIS models is illu-
strated in Figure 9.

Verification of predicting ANFIS models

In this research, the verification of predicting models
has been done by two separate procedures. First, the
possibilities of overfitting in the presented models have
been investigated. Next, the capabilities of models in
predicting new observations are verified.

The problem of ‘‘overfitting’’ is quite common in the
neuro-fuzzy systems like any other machine learning
models. Overfitting occurs when the model excessively
fits the data. This problem usually happens when
a model is very complex, such as having too many
structural parameters. This phenomenon and the

Figure 8. A schematic representation of Sugeno-type ANFIS
with two input–one output.

Figure 9. Procedure for construction of predicting ANFIS
models.
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corresponding solutions are well documented in related
researches.34,35

Having large amount of input parameters, in this
work, the models may possibly overfits the data. To
avoid this, the ‘‘early stopping’’ technique has been
implemented. By this method, the model training stops
when the error starts rising for checking data set during
the training process. For this purpose, the data are
divided into three subsets of training, checking and
testing. The first two groups are selected from 57 initial
experiments while the third group includes validating
test data, which are the results of 10 additional
experiments.

As per this technique, the number of iterations for
convergence of predicting models were 44, 39, 19 and
26 for DS, LF, OL and SF models, respectively.

The experimental test results for the four-welded
joint quality parameters and their corresponding theo-
retical values, predicted by the proposed ANFIS mod-
els, are compared in Figure 10. As shown, the predicted
values closely follow the experimental results.

To investigate the accuracies of the proposed models
in predicting process outputs, 10 additional experiments
have been performed. In Table 4, the input parameters
setting for validating tests and the measured output val-
ues are listed.

Figure 10. Measured and predicted values of weld quality parameters: (a) discontinuity, (b) lack of fusion, (c) overlap and (d) shape
factor real data predicted data.

Table 4. Input and output values for validating tests.

Input process parameters Measured outputs

Test number Volts (V) Weld speed (mm/min) Feed rate (m/min) Distance (mm) DS LF (mm) OL (�) SF

1 28 450 11 17 0 0 0 0.59
2 31 406 14 6 0 0 0 0.61
3 33 493 12 10 2 65 30 1.18
4 34 536 13 10 3 80 45 0.73
5 36 551 15 6 2 60 45 1.00
6 42 507 16 17 0 0 0 0.32
7 26 246 10 17 1 65 45 0.86
8 31 435 10 10 0 0 0 0.50
9 31 435 13 10 0 5 5 0.77
10 34 450 10 10 0 0 0 0.35

LF: lack of fusion; OL: overlap; DS: discontinuity; SF: shape factor.
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The average errors between the predicted and mea-
sured outputs are presented in Table 5. Such small
errors between the predicted and actual output para-
meters prove that the proposed models are quite effec-
tive and efficient in predicting the four main weld
quality measures. Therefore, the proposed ANFIS
models can appropriately substitute the actual GMAW
process in the modeling and optimization of this
process.

Part II: using ANFIS models to improve
weld bead quality

One of the most important and practical applications
of the proposed ANFIS models (predicting models) is
to use them to improve the quality of weldment by
removing the weld defects. To achieve this, another set
of ANFIS models, called ‘‘improving models’’ has been
developed. This set of ANFIS is trained based on the
corrective actions that an expert welder may take to
remove defects from faulty weldments. These actions
are basically corrective modifications of welding para-
meters settings to avoid defects. In this way, the pre-
dicting models, presented in Part I, predict the quality
indices of the weldment with any given set of input
parameter settings. Such a weldment would usually
contain a number of defects, as the parameters settings
are not optimized. Then, the predicted values of quality
indices are fed into the improving ANFIS models in
which the parameters settings are optimally modified
so as weld defects are minimized in subsequent welding
passes.

The underlying notion in developing the ‘‘improving
ANFIS’’ models is utilizing the knowledge of skilled
welding operators to determine the proper parameters
settings in GMAW process. If a faulty welded joint is
produced using a given set of parameter values, an
experienced welder would know how to increase or
decrease certain input parameters to avoid defects in
subsequent welding passes. The proposed improving
ANFIS have been trained based on the possible courses
of actions which an expert welder may take to avoid
weld defects. In this study, a total of 67 welding experi-
ments (57 tests of DOE design, and 10 tests for verifica-
tion of predicting models) have been performed, out of
which 37 are defective. The databases have been used
to train improving ANFIS models contain the correc-
tive actions for 27 faulty tests. The remaining 10-test
results are then applied for verification purposes.

It is noted that the number of possible parameter set-
ting combinations to prevent the occurrence of a cer-
tain defect may be extremely large. In other words, a
given defect may be avoided by adjusting voltage, feed
rate, welding speed, nozzle-to-workpiece distance or
any combination of these. To reduce computational
effort and to simplify modeling procedure, in this study,
the improving ANFIS models have been developed on
the basis of only two most prominent conditions: con-
stant voltage and constant welding speed.

In the first case, the voltage is held constant while
the wire feed rate, welding speed and nozzle to work
piece distance may be adjusted to improve weld quality.
In the second approach, the welding speed is constant
while the other factors may be changed to achieve a
flawless joint. Consequently, two separate databases
have been constructed and used to train two sets of
improving ANFIS models. Tables 6 and 7, respectively,
list parts of these databases in which the corrective
modifications to the welding parameters have been
incorporated. These tables include the weld quality
indices of 27 faulty experiments in the four left columns.
The three right columns are the corrective adjustments
in the three of input welding parameters. The databases
in Tables 6 and 7 are organized based on the unchanged
values of voltages and weld speed, respectively.

Table 5. Average errors for the modeled outputs.

Number Model outputs Average error (%)

1 Lack of fusion (mm) 2.3
2 Overlap (�) 2.6
3 Discontinuity 2.3
4 Shape factor (mm/mm) 0.3

Table 6. Training database with constant voltage.

Weld defects values and SF Corrective adjustments for input welding
parameters values to avoid defects

Test number DS (number) LOF (mm) OL (�) SF (mm/mm) Welding speed
(mm/min)

Wire feed
rate (m/min)

N–W
distance (mm)

1 1 80 45 0.94 0 29 210
2 1 40 10 0.95 102 0 214
3 7 75 45 1.14 0 23 214

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

26 0 10 0 0.83 0 26 27
27 0 70 45 0.88 0 23 14

SF: shape factor; DS: discontinuity; LOF: lack of fusion; OL: overlap.
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In these models, first-order Sugeno-type inference
systems have been incorporated. The input–output data
are fuzzified through the bell-shaped membership func-
tions. Using subtractive clustering method, the number
of fuzzy rules has been reduced for the two improving
strategies. As shown in Table 8, there are 62 and 64
rules for constant voltage and constant speed strategies,
respectively. To clarify, an illustrative example of such
fuzzy rules for improving weld quality measures is pre-
sented as follow:

If DS is A1, LF is B1, OL is C1, and SF is D1 then,
y1= c11 3 DS+ c12 3 LF+ c13 3 OL+ c14 3 SF.
In which, y1 is one of the input welding parameters.

The two sets of improving ANFIS models are then
trained using hybrid learning method described in pre-
vious section based on the two mentioned strategies
and using corresponding databases. The flowchart in
Figure 9 is proper for this section.

Results and discussions

To investigate the performance of the two presented
improving strategies (constant voltage and constant
welding speed), 10 additional faulty experiments were
used. For each experiment, the input welding para-
meters were corrected through trial and error so as a
flawless weldment was produced. These adjustments
were then compared against those of the proposed
improving ANFIS models.

For constant voltage strategy, the values of correc-
tive adjustments in the welding parameters, given by
the improving ANFIS model, have been compared with
those of trial and error experiments in Figure 11. As

shown, in most cases, the predicted values closely fol-
low those found during the experimental tests.

The disagreement between the predicted and actual
results in tests 2 and 3 may be due to the fact that in
these tests, the molten mass was not produced as the
wire was heated just below its melting point. Such tests
are not suitable for constructing ANFIS database. In
these cases, the welding arc is not generated, thus, there
are not any meaningful welding signals. For instance,
there are no arc ignitions and extinctions to generate
significant sound signals.

Similarly, Figure 12 exhibits the experimental and
predicted corrective adjustments for the case of con-
stant welding speed. It can be seen that the adjustments
in the welding parameters predicted by the improving
ANFIS models are in very good conformity with those
of experiments.

The comparison between Figures 11 and 12 reveals
that the strategy of constant welding speed works bet-
ter than the constant voltage approach. The advantage
of this strategy is the capability of voltage adjustment
which may improve the welded joint quality since it
affects directly on the amount and distribution of heat
in the welding pool.

Conclusion

The quality of the welded joints in most welding process
is strongly related to the amount of various weld defects
and geometry of the weld bead. During welding pro-
cess, sound and electrical signals are good indicators of
welding defects and bead specifications. As the collec-
tive characteristics of these signals are greatly correlated

Table 7. Training database with constant welding speed.

Weld defects values and SF Corrective adjustments for input welding parameters
values to avoid defects

Test number DS (number) LOF (mm) OL (deg) SF (mm/mm) Voltage(V) Wire feed rate (m/min) N–W distance (mm)

1 1 80 45 0.94 10 26 27
2 1 40 10 0.95 5 26 0
3 3 80 45 0.73 10 3 7

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

26 0 10 0 0.83 0 3 0
27 0 70 45 0.88 5 3 0

SF: shape factor; DS: discontinuity; LOF: lack of fusion; OL: overlap.

Table 8. Number of fuzzy rules for the two improving strategies.

No Model name Constant voltage Constant welding table speed

1 Voltage 11 12
2 Wire feed rate 15 11
3 Welding speed 17 20
4 Nozzle-to-workpiece distance 19 21
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Figure 11. Predicted and experimental values of corrective adjustments to remove defects for constant voltage models in (a) feed
rates, (b) weld speed and (c) nozzle-to-workpiece distance. Predicted data and experimental data

Figure 12. Predicted and experimental values of variations to remove defects for constant welding table speed models in (a) feed
rates, (b) weld speed and (c) nozzle-to-workpiece distance. Predicted results and experimental results
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to the quality of the welded joint, such signals may be
used to construct appropriate models in order to predict
weld quality measures. Moreover, prediction of weld
defects and systematical implementing of human welder
experiences may provide an opportunity to prevent
defects occurrences by model-based adjusting of input
welding parameters.

In this work, for GMAW process of API 5LX42
plates, two sets of ANFIS have been developed in order
to predict and improve weld quality measures. The
quality of the weldment is specified in terms of bead SF
and three types of weld defects: DS, LF and OL.

In the first set which is named as predicting models,
the weld quality specifications have been modeled in
terms of 13 statistical parameters of GMAW sound and
electrical signals. These models have been verified using
10 additional experiments. Having the average error of
less than 3%, they have shown very good conformities
with the actual process.

The second set of ANFIS models, called improving
models, take the weld quality characteristics obtained
from the first set as inputs. The improving models then
provide the amount of process parameters adjustments
needed to avoid producing defective joints in subse-
quent welding runs. The proposed ANFIS models work
on the basis of two strategies: constant voltage and con-
stant welding speed.

For this set of models, the ANFIS learning phase has
been performed by the databases containing the informa-
tion for parameters modifications required to correct 27
defective tests. Additional 10 defective experiments have
been utilized for verification purposes. Comparisons
between the amount of modifications given by the
improving models and those of real tests (based on
human experience) reveal that the developed models are
quite capable in GMAW process parameter optimiza-
tion; especially, the models with constant welding speed.

One of the main contributions of this work lies in
using the experiences of human welder to construct
ANFIS learning databases. Conclusively, the two pre-
sented set of ANFIS models may substitute the expert
welding operator. The probable weld defects are esti-
mated by the predicting ANFIS models while improv-
ing ANFIS models would correct the weld defects by
adjusting the input welding parameters with the help of
actual experiences. This paves the way for on-line mon-
itoring and optimization of welding process which may
be an interesting area for future researches.
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Appendix 1

Notation

D nozzle-to-workpiece distance
DS the number of weld bead discontinuity
F wire feed rate
LF the amount of Lack of fusion in weld bead
M mean value
OL the amount of Overlapping in weld bead
S welding table speed
SF shape factor of the weld bead
V welding voltage
xi ith statistical parameter of welding signals

s standard deviation
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