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Abstract
An artificial intelligence method is presented for on-line microstructural
characterization of decarburized steels. Detection of microstructural
changes is a great importance matter in production lines of steel parts. A
new method for microstructural characterization based on the theory of
magnetic Barkhausen noise nondestructive testing method is introduced
using artificial neural network (ANN). In order to obtain the accurate depth
of decarburized layer of carbon steels and to eliminate the frequency effect
on the magnetic Barkhausen noise outputs, the magnetic responses were
fed into the ANN structure in terms of position, height and width of the
Barkhausen profiles. The obtained results showed that the ANN is able to
detect and characterize microstructural changes, accurately, despite serious
effect of the frequency on the outputs. In other words, implementing
multiple outputs simultaneously enables the ANN modeling to approach to
the accurate results using only height, position and width of the magnetic
Barkhausen noise peaks without knowing the amount of the used
frequency.
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Abstract 
 

An artificial intelligence method is presented for on-line microstructural 
characterization of decarburized steels. Detection of microstructural 
changes is a great importance matter in production lines of steel parts. 
A new method for microstructural characterization based on the theory 
of magnetic Barkhausen noise nondestructive testing method is 
introduced using artificial neural network (ANN). In order to obtain the 
accurate depth of decarburized layer of carbon steels and to eliminate 
the frequency effect on the magnetic Barkhausen noise outputs, the 
magnetic responses were fed into the ANN structure in terms of 
position, height and width of the Barkhausen profiles. The obtained 
results showed that the ANN is able to detect and characterize 
microstructural changes, accurately, despite serious effect of the 
frequency on the outputs. In other words, implementing multiple 
outputs simultaneously enables the ANN modeling to approach to the 
accurate results using only height, position and width of the magnetic 
Barkhausen noise peaks without knowing the amount of the used 
frequency. 
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Introduction 

Detection of microstructural changes is a great importance matter in production lines of steel parts. 
To implement such a task, many destructive tests including metallography, hardness measurement, 
mechanical tests, etc. are involved in industries; however, these conventional tests are expensive and 
also time consuming. Therefore, there has been resurgence of interest for application of modern types 
of nondestructive testing. 

Nowadays, there is a broad range of nondestructive testing techniques based on different physical 
principles. Among them, magnetic Barkhausen noise (hereafter denoted as MBN) has been widely 
used for nondestructive characterization of a wide range of ferromagnetic materials under various 
conditions [1]. The MBN technique can be performed with magnetic sensors positioned locally on top 
of the surface of a part, which enable the MBN for in-process measurement with extremely short 
measuring time [2]. 

As a time varying magnetic field increases, when a ferromagnetic material is subjected to an 
external varying magnetic field, the nucleation, the motion and the annihilation of magnetic domain 
walls occurs which result in the nucleation and growth of magnetic domains. The MBN originates 
from discrete motion of magnetic domain walls overcoming various pinning such as precipitates, grain 
boundaries, inclusions, dislocation pile-ups, etc. This irreversible movement of magnetic domain walls 
is responsible for the production of a pulsating magnetization (a noise like signal) corresponding to the 
changes of magnetic flux [3-6]. 

Typical utilization of the MBN testing includes extracting of certain features of the signal and 
comparison of this information to the studied material properties. However, quantitative 
prediction of material properties using the MBN measurement is a very challenging task due to 
complex interactions between material properties and each MBN outputs [7]. On the other hand, 
another important issue to be considered is to find the best magnetizing frequency. This 
frequency can be anywhere between 0.5 to 10 Hz or even higher [8]. Since the frequency of the 
output is rich in information, it can seriously affect the MBN outputs and corresponding results 
which complicate the situation of nondestructive testing. Nevertheless, in order to increase the 
applicability of the MBN as a reliable nondestructive testing tool, it is necessary to establish an 
accurate relationship between the features of the MBN signals measured by the sensor and the 
material's microstructure. This goal can be achieved by means of artificial intelligence methods. 

In the current study, a novel approach of using artificial intelligence was considered to 
overcome to the probable inaccurate results of the MBN. Fulfilling this task, having in mind 
very complex and non-linear relationships of affecting parameters, a variety of useful soft 
computing techniques can be utilized. Among them, artificial neural networks (ANNs) are 
powerful computational approaches that were first inspired from the human nervous systems by 
organizing a model consisting of several computing units, called neurons, connected in a 
comprehending network [18]. ANN involves solving variety of complex and non-linear 
engineering problems such as classification, function estimation and also pattern recognition by 
especial kind of computing implementing on simultaneous interconnections of neurons [19]. 
ANN has inherent ability to being learnt from available examples and to recognize patterns in a 
series of inputs and outputs, which often solves problems much faster than other approaches; 
therefore, it has become widely popular in the last few years [18]. 

In this study, applicability of a new nondestructive system coupled with ANN is investigated. 
This more robust artificial intelligence system is implemented to assessment of decarburized 



 

 

  
 

 
  

depth of the heat treated carbon steels. Fulfilling this task, features of the MBN peaks is 
simultaneously fed to the ANN structure in order to achieve more accurate and reliable results. 

 
 

Method 
MBN measurements were carried out using a tailor-made experimental system developed at 

the authors’ laboratory. A schematic diagram of the designed setup is shown in Fig. 1. The unit 
implemented for magnetizing the samples and sensing the MBN signals is consisted of a U-core 
of Fe-Si with a driving coil of 1000 turns wound around it and a pick up coil with 500 turns 
wound on the test sample. A triangular voltage waveform with the frequencies between 5 to 12 
Hz was used in which generates the magnetizing force applied to the sample through the U 
shape coil. Consequently, the pick-up coil sense the MBN signal as the desired output during 
the magnetization process. The induced output signal was pre-amplified with a gain of 40 dB, 
band pass filtered (3-200 kHz), re-amplified with a gain of 40 dB, and then digitized by an A/D 
card, which is linked to a personal computer for further signal processing. The data was 
processed using a MATLAB script for obtaining MBN envelope characteristics. It has to be 
noted that, the MBN signal was packaged into an envelope profile which was provided via the 
RMS of the signal as a function of magnetizing field. For each sample, 5 signals were used and 
averaged.  

The magnetic responses were fed into the ANN structure in terms of position, height and 
width of the MBN envelopes, taking into account the depth of decarburized steels as system 
outputs. Fig. 2. shows a typical MBN signal with an RMS profile. The used architecture of the 
ANN shown in Fig. 3, consists of three different layers in which utilizing parallel 
interconnections of neurons results in solving this complex modeling challenge. Typically the 
input layer is not counted as a layer, because its only task is to distribute inputs over the 
neurons of the first hidden layer. Numbers of the hidden layer and the node in each hidden layer 
play a noteworthy role in the neural network performance. Selection of suitable numbers of 
them does not follow any specific rule or trend, but significantly depends upon the analyzer’s 
experience and problem’s nature [9].  

In feed-forward back propagation algorithm, the most popular training algorithm of neural 
computation in supervised networks, the initial weights are chosen randomly. Then, inputs pass 
through the network and finally, outputs are compared with desired values and error is 
calculated [10]. 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1. A schematic diagram of the designed MBN setup. 



 

 

  
 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Typical Barkhausen noise signal with the RMS envelope 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The used ANN structure 



 

 

  
 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Optical micrograph of the decarburized sample with a 0.45 mm decarburized layer 
 
 
 
Results and Discussion 

Fig. 4 shows the microstructure of the decarburized steel which has a decarburized layer at its 
surface with 0.45 mm of depth. After processing data and obtaining MBN envelope 
characteristics, i.e. height, width and position, these data were fed into the ANN structure. 
Normalization of the input data to values in a specific range is the first step of the calculation 
before using ANN approach and consequently, the last step is the denormalization of outputs. It 
has to be added that, normalization is done due to assurance of having sensitivity and accuracy 
for network, and the purposes of denormalization are calculating the actual desired values and 
achieving real errors. Using the following equation which puts data in a range with mean and 
standard deviation of 0 and 1 respectively, the normalization of the input data of the current 
study was carried out. 
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Where X (actual), X (mean) and X (STD-DEV), are respectively, the actual value, the mean 
value of all data and standard deviation of actual values, which produce X (normal) as a final 
normalized value for introducing as an input to ANN structure. 

 
 
 

Table 1. The MBN peak characteristics at different frequencies for various decarburized 
depth of steels used for constructing ANN model. 

 

Test Run Frequency 
(Hz) Height (mV) Width (ms) Position 

(A/m) Depth (mm) 

1 5 4762 1406 334 0.32 
2 5 4561 1371 306 0.45 
3 5 3207 1251 289 0.52 
4 5 2393 1114 278 0.64 
5 5 2342 1094 270 0.69 
6 6 2323 764 208 0.32 
7 6 2279 783 216 0.45 
8 6 2262 780 213 0.52 
9 6 2147 755 211 0.64 

10 6 2257 767 206 0.69 
11 7 1919 583 156 0.32 
12 7 1928 580 153 0.45 
13 7 1894 571 151 0.52 
14 7 1876 577 148 0.64 
15 7 1650 519 141 0.69 
16 8 2752 645 117 0.32 
17 8 2172 615 106 0.45 
18 8 3723 687 99 0.69 
19 9 1928 758 93 0.45 
20 9 1800 733 89 0.52 
21 10 1766 420 80 0.32 
22 10 1721 419 75 0.45 
23 10 1623 389 72 0.52 
24 10 1755 313 73 0.64 
25 10 1613 389 65 0.69 
26 12 1857 336 59 0.32 
27 12 1823 332 56 0.45 
28 12 1860 332 55 0.52 
29 12 1855 328 53 0.64 
30 12 1843 323 47 0.69 
31 11 2192 397 74 0.32 
32 11 2174 396 69 0.45 
33 11 2172 393 68 0.52 
34 11 2167 388 64 0.64 
35 11 2163 386 60 0.69 



 

 

  
 

 
  

 
Table 2. Training parameters used in this study. 

Neural network settings Value/Type 
Network type Feed-forward back-propagation 

Training function Levenberg–Marquardt 
No. of layers 3 

Hidden layer 1 8 neurons (Tansig transfer functions) 
Hidden layer 2 9 neurons(Tansig transfer functions) 
Output layer 1 neuron (Purelin transfer function) 

Performance function Mean square error (MSE) 
Epochs 150 
Max fail 45 

Min_grad 1 x 10-10 
mu 0.005 

mu_inc 10 
mu_dec 0.1 
mu_max 1 x 1010 

 
 
 
Then, database of Table 1 was divided into two sets. The first 30 data were chosen for both 

training and validating, and the remaining 5 data were held out for verification purpose. Last 
category was about the new data evaluating the performance and efficiency of the proposed 
network. 

To train the neural network of this study, several ANN structures with varying number of 
neurons in hidden layers were tested. According to the least mean square error (MSE) criterion, 
a structure of neural networks with two hidden layers, eight nodes for first layer and nine nodes 
for layer two, was implemented. Table 2 represents neural network settings used ultimately for 
this study. Supervised feed-forward architecture with a Levenberg–Marquardt back propagation 
training algorithm was utilized in an attempt to approach the true minimum of the error surface. 
Across plot of the testing predictions, which naturally present the lowest possible prediction 
accuracy of the network, was used to assess network performance. Potent pattern-recognition 
capability, a difficulty related with the calibration of neural networks, can sometimes leads to 
the unwanted problems like overfitting, overtraining and memorization. These problems take 
place due to the large network architecture, which can memorize data rather than recognizing 
trends among them. In the present study, this drawback overcame by cross validation and 
selection of reasonably small numbers of layers and neurons. Tan-sigmoid transfer functions 
were used in both hidden layers to allow the network to establish nonlinear and also linear 
relations and patterns between inputs and outputs. Finally for having output of network, a linear 
purlin transfer was used in structure of output layer.  

After achieving the most proper and efficient calibrated structure, the validation data sets 
(Test runs of 31-35) were introduced into ANN models to assess their recognition skill of 
microstructural characteristic predicting when facing unseen situation as well. Fulfilling this 
duty, both coefficient of determination (R2) and normalized root mean squared error (NRMSE) 
as the representatives of model’s performance were calculated and put into comparison for 



 

 

  
 

 
  

neural network results. Fig. 4 indicates regression graphs for prediction of decarburized depth 
using ANN model while facing unseen data. As can be clearly seen from the graphical results, 
the act of intelligence model is acceptable for test data on the whole.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Regression graph for modeled and actual decarburized depths while facing unseen data 

of 11 Hz.  
 
 
 
Conclusions 

This study has intended to analyze a new system for layer’s depth characterization of 
decarburized steels which is introduced using an expert nondestructive testing system based on 
MBN method, taking into account artificial intelligent modeling. In comparison to original 
experimental results, the new presented magnetic nondestructive system is more adjustable. 
Feeding multiple MBN outputs simultaneously, was enabled the ANN modeling to approach to 
the most accurate results using only height, position and width of the MBN peaks. While 
considering unseen data, high calculated correlation of coefficient (R2=0.95) confirmed that 
using ANN model to predict the decarburized depth was successful. Also, the modeled output 
was obtained without knowing the amount of frequency. Therefore it can obtain the accurate 
results with eliminating the frequency effect on the MBN outputs. In order to be used as a 
robust tool for industrial nondestructive inspection, the presented magnetic nondestructive 
system needs only to be calibrated on reference samples of known decarburized depth and then, 
it can separate the convenient and inconvenient samples, carefully. 
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