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Abstract— in this study the effect of input EDM process 
parameters on AISI2312, hot worked steel, widely used in 
mold manufacturing, is modeled and optimized. The 
proposed approach is based on statistical analysis on the 
experimental data. The input parameters are peak current, 
pulse on time and pulse off time, duty factor and voltage. 
Tool wear rate is one of the most important performance 
characteristic of the EDM process. Taguchi robust design 
technique was applied to obtain the signal to noise ratio for 
the quality characteristics being investigated. In order to 
establish the relations between the input and the output 
parameters, various regression functions have been fitted 
on the evaluated data, based on output characteristic. The 
significance of the process parameters on the quality 
characteristic of the EDM process was also evaluated 
quantitatively using the analysis of variance method. Then, 
statistical analyses and validation experiments have been 
carried out to select the best and most fitted model. In the 
last section of this research, simulated annealing algorithm 
has been employed for optimizations of process 
parameters. The results indicate that the proposed 
modeling technique and simulated annealing algorithm are 
quite efficient in modeling and optimization of EDM 
process parameters.

Index Terms— Electrical discharge machining (EDM), 
Optimization, Signal to noise analysis (S/N), Modeling, 
Simulated annealing (SA) algorithm, Analysis of variance 
(ANOVA). 

I. Introduction

AISI2312 is one of the most difficult-to-cut hot worked 
alloys. Formation of complex shapes (of this material) 
along with reasonable speed is very difficult by 
traditional machining. Electric discharge machining 
(EDM) is one of the most suitable non-conventional 
material removal processes to shape this alloy. EDM is a 

thermo-electric process in which material is removed 
from work piece by erosion effect of series of electric 
discharges (sparks) between tool and work piece 
immersed in a dielectric liquid. Its unique feature of 
using thermal energy to machine electrically conductive 
parts has been its distinctive advantage in the 
manufacture of moulds, dies; aerospace and surgical 
components. The EDM process has a very strong 
stochastic nature due to the complicated discharge 
mechanisms making it difficult to optimize the process 
[1-5]. The process performance can be improved by 
selecting the optimal combination of process parameters.   
However, experimental optimization of any machining 
process is costly and time consuming due to the complex, 
coupled and non-linear nature of the input–output 
variables of machining processes. Hence, many 
researchers have concentrated on improvement and 
optimization of performance measures of EDM process by 
using different modifications and optimization methods 
like Taguchi technique, response surface methodology, 
artificial neural network, genetic algorithm (GA), grey 
relational analysis (GRA), fuzzy logic, factorial design, 
simulated annealing (SA) algorithm etc. with variation of 
different electrical and non-electrical process parameters 
[6-9]. 

II. Experimental Details

A. Experimental details

a) Work piece Material

Hot worked alloys are among the hardest materials to
shape because of their strength and chemical reactivity 
with tool materials. AISI2312 hot worked steel is a 
popular alloy used in various industries such as aerospace 



and plastic injection molding. Despite its unique 
properties, the usage of this alloy is limited due to the 
high processing costs, which arise because of the 
processing difficulties such as poor machine ability. This 
study applied AISI2312 hot worked steel parts since only 
a few researchers have done the studies regarding this 
material using EDM.

The EDM operation is performed on AISI2312 hot 
worked steel parts having 10mm thick and 40×20mm 
dimension.

b) Die-sinking Machine
In the present study, an Azerakhsh-304H die-sinking

machine has been used to perform the experiments (Cross 
Travel 300×250, 7kw, Iran). Die-sinking machine used is 
shown in figure 2. 

Fig. 1. Die-sinking EDM machine used

c) Electrode and Dielectric
A total of 36 cylindrical shape electrodes of 20-mm

diameter made from pure copper (99% purity and 8.98 
g/cm3 density) were used as tools. The electrodes were 
replaced after each experiment. 

The dielectric for all experiments was pure kerosene.
d) EDM Parameter Setting

A challenging task in EDM is the selection of
optimum machining parameter combinations for 
obtaining higher accuracy due to process variables and 
complicated process mechanisms. 

In design of experiments (DOE), the number of 
required experiments (and hence the experiment cost) 
increases as the number of parameters and/or their 
corresponding levels increase. That is why it is 
recommended that the parameters with less likely 
pronounced effects on the process outputs be evaluated at 
fewer levels. In addition, the limitations of test equipment 
may also dictate a certain number of levels for some of 
the process parameters. The die-sinking EDM machine 
used for the experiments had only two settings for pulse 
of time - Toff (10 and 75 μs).

According to the process variables and their 

corresponding levels (Table I), two sets available using 
the Taguchi technique (L8 and L36). For this study, the L36
has been selected. 

TABLE I. PROCESS VARIABLES AND THEIR CORRESPONDING LEVELS

No Symbol Factor Unit Range L1 L2 L3

1 A TOFF μs 10 – 75 10 75 -

2 B TON μs 25-200 25 100 200

3 C I A 2.5-7.5 2.5 5 7.5

4 D V V 50-60 50 55 60

5 E  S 0.4-1.6 0.4 1 1.6

e) Sample Preparation and Experimental
Procedure

All the specimens were cleaned in an alcohol bath and 
then dried using a drier.

III. Evaluation of Performance Measures

The TWR, usually expressed as a percentage, and is 
defined by the ratio of the tool wear weight (TWW) to 
the work piece removal weight (WRW) which is obtained 
using equation (1). To measure the TWR an A&D 
electronic balance with 0.01gr accuracy was used.

100(%) 
WRW
TWWTWR (1)

IV. Signal To Noise Analysis

To help determine the best process design, signal-to-
noise (S/N) ratio is used in Taguchi methods as an index 
of robustness. In the Taguchi method, the term ‘signal’ 
represents the desirable value (mean) for the output 
characteristic and the term ‘noise’ represents the 
undesirable value for the output characteristic (figure 2).

Noise factors cause variability and deterioration of 
performance from the ideal function and lead to 
variability in the quality characteristic. Generally, there 
are a number of noise factors existing in the EDM 
process, such as, machining time, electrode consumption, 
electrode shape and size, and aging working oil, etc. Very 
clearly, they have close mutual interaction, leading to 
somewhat uncertain control over the gap conditions. For 
the simplification of experimentation, every experimental 
trial uses the very new electrode with the same sizes. 
[10]. Based on the process under consideration, the S/N 
ratio calculation may be decided as “the Lower the 
Better, (LB)” for output characteristics which the lower 
values are desired such as TWR and “the Higher the 
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Better, (HB)” for output characteristics which the higher
values are desired such as material removal rate, are
given in the following equations [11, 12].

Fig. 2. Schematic of an engineered system









 



n

i
iy

n
NS

1

21log10)(/ :LB (2)









 



n

i iyn
N

1
2

11log10)(/S :HB (3)

Where n is number of iteration in a trial, in this case, n =1
and yj is the jth measured value in a run.

The results of S/N ratios for the process promoters are
shown in Table II.

TABLE II. THE PROCESS CHARACTERISTICS AND  THEIR 
CORRESPONDING SIGNAL TO NOISE RATIO (S/N)

No Tool Wear Rate S/N for Tool Wear Rate

1 11.4 -21.159

2 2.6 -8.404

3 0.6 4.467

4 9.0 -19.172

. . .

. . .

. . .

33 0.7 3.046

34 47.0 -33.453

35 1.6 -3.876

36 0.2 14.202

V. Mathematical Modeling

Regression models can be used to predict the behavior
of input variables (independent variables) and S/N values

associated with each test response results [13].
The last three columns of Table II are the S/N ratio 

outputs for each test setting. These data can be used to 
develop mathematical models. Any of the above S/N
ratios is a function of process parameters, which are
expressed, by linear, curvilinear or logarithmic functions; 
as stated in Equations 4 to 6 respectively.

A5D+ b4F + b3V + b2S + b1+ b0= b1Y (4)

A5D +b4F +b3V +b2S +b1+b0= b2Y

AA 55+bDD44FF +b33VV +b22SS + b11+b

VF23SA +b15SD +b14SF +b13SV +b12+b

DA45FA +b35FD +b34VA +b25VD +b24+b

(5)

b5Ab4Db3Fb2Vb1S0= b3Y (6)

In the above formula b0, b1, … b5 are the regression 
coefficients to be estimated. In this study, based on the 
S/N data given in Table II, the regression model is
developed using MINITAB software.

The choice of the model depends on the nature of 
initial data and the required accuracy. Using regression 
technique, in MINITAB Software, three types of 
mathematical functions (linear, curvilinear and 
logarithmic) have been fitted to the experimental data.
[14-16]: Models representing the relationship between 
process parameters and output characteristics can be 
stated in equations 7 to9.

Stepwise elimination process was used to modify the
initial proposed models. For instance, as can be seen in
Equation 9, independent variable A was eliminated 
because of its improper effect on TWR in the curvilinear
model.

a) Linear Model

S/N (TWR) = - 38.3 - 0.0402 A + 0.172 B -
1.48 C + 0.297 D + 0.372 E (7)

b) Curvilinear Model
S/N (TWR)  = -12.5099 + 0.150794 B - 4.32222 C
- 0.000479414 BB + 0.0262243BC

(8)

c) Logarithmic Model

S/N (TWR) = e 6.240A 0.149B -1.640C 0.751D -

1.850E -0.117 (9)

Adequacies of models were checked by analysis of 
variance (ANOVA) technique within the confidence limit
of 95% [17, 18]. Results are shown in Table III. Given 
the required confidence limit (Pr), the correlation factor
(R2) and the adjusted correlation factor (R2

-adj) for these 
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and plastic injection molding. Despite its unique 
properties, the usage of this alloy is limited due to the 
high processing costs, which arise because of the 
processing difficulties such as poor machine ability. This 
study applied AISI2312 hot worked steel parts since only 
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material using EDM.

The EDM operation is performed on AISI2312 hot 
worked steel parts having 10mm thick and 40×20mm 
dimension.

b) Die-sinking Machine
In the present study, an Azerakhsh-304H die-sinking 
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Travel 300×250, 7kw, Iran). Die-sinking machine used is 
shown in figure 2. 
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c) Electrode and Dielectric
A total of 36 cylindrical shape electrodes of 20-mm 

diameter made from pure copper (99% purity and 8.98 
g/cm3 density) were used as tools. The electrodes were 
replaced after each experiment. 

The dielectric for all experiments was pure kerosene.
d) EDM Parameter Setting

A challenging task in EDM is the selection of 
optimum machining parameter combinations for 
obtaining higher accuracy due to process variables and 
complicated process mechanisms. 

In design of experiments (DOE), the number of 
required experiments (and hence the experiment cost) 
increases as the number of parameters and/or their 
corresponding levels increase. That is why it is 
recommended that the parameters with less likely 
pronounced effects on the process outputs be evaluated at 
fewer levels. In addition, the limitations of test equipment 
may also dictate a certain number of levels for some of 
the process parameters. The die-sinking EDM machine 
used for the experiments had only two settings for pulse 
of time - Toff (10 and 75 μs).

According to the process variables and their 

corresponding levels (Table I), two sets available using 
the Taguchi technique (L8 and L36). For this study, the L36
has been selected. 

TABLE I. PROCESS VARIABLES AND THEIR CORRESPONDING LEVELS

No Symbol Factor Unit Range L1 L2 L3

1 A TOFF μs 10 – 75 10 75 -

2 B TON μs 25-200 25 100 200

3 C I A 2.5-7.5 2.5 5 7.5

4 D V V 50-60 50 55 60

5 E  S 0.4-1.6 0.4 1 1.6

e) Sample Preparation and Experimental 
Procedure

All the specimens were cleaned in an alcohol bath and 
then dried using a drier.

III. Evaluation of Performance Measures 

The TWR, usually expressed as a percentage, and is 
defined by the ratio of the tool wear weight (TWW) to 
the work piece removal weight (WRW) which is obtained 
using equation (1). To measure the TWR an A&D 
electronic balance with 0.01gr accuracy was used.

100(%) 
WRW
TWWTWR (1)

IV. Signal To Noise Analysis 

To help determine the best process design, signal-to-
noise (S/N) ratio is used in Taguchi methods as an index 
of robustness. In the Taguchi method, the term ‘signal’ 
represents the desirable value (mean) for the output 
characteristic and the term ‘noise’ represents the 
undesirable value for the output characteristic (figure 2).

Noise factors cause variability and deterioration of 
performance from the ideal function and lead to 
variability in the quality characteristic. Generally, there 
are a number of noise factors existing in the EDM 
process, such as, machining time, electrode consumption, 
electrode shape and size, and aging working oil, etc. Very 
clearly, they have close mutual interaction, leading to 
somewhat uncertain control over the gap conditions. For 
the simplification of experimentation, every experimental 
trial uses the very new electrode with the same sizes. 
[10]. Based on the process under consideration, the S/N 
ratio calculation may be decided as “the Lower the 
Better, (LB)” for output characteristics which the lower 
values are desired such as TWR and “the Higher the 
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Better, (HB)” for output characteristics which the higher 
values are desired such as material removal rate, are 
given in the following equations [11, 12].
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Where n is number of iteration in a trial, in this case, n =1
and yj is the jth measured value in a run.

The results of S/N ratios for the process promoters are
shown in Table II.

TABLE II. THE PROCESS CHARACTERISTICS AND  THEIR 
CORRESPONDING SIGNAL TO NOISE RATIO (S/N)

No Tool Wear Rate S/N for Tool Wear Rate

1 11.4 -21.159

2 2.6 -8.404

3 0.6 4.467

4 9.0 -19.172

. . .

. . .

. . .

33 0.7 3.046 
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Regression models can be used to predict the behavior 
of input variables (independent variables) and S/N values 

associated with each test response results [13].
The last three columns of Table II are the S/N ratio 

outputs for each test setting. These data can be used to 
develop mathematical models. Any of the above S/N 
ratios is a function of process parameters, which are 
expressed, by linear, curvilinear or logarithmic functions; 
as stated in Equations 4 to 6 respectively.
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(5)

b5Ab4Db3Fb2Vb1S0= b3Y (6)

In the above formula b0, b1, … b5 are the regression 
coefficients to be estimated. In this study, based on the 
S/N data given in Table II, the regression model is
developed using MINITAB software. 

The choice of the model depends on the nature of 
initial data and the required accuracy. Using regression 
technique, in MINITAB Software, three types of 
mathematical functions (linear, curvilinear and 
logarithmic) have been fitted to the experimental data. 
[14-16]: Models representing the relationship between 
process parameters and output characteristics can be 
stated in equations 7 to9.

Stepwise elimination process was used to modify the 
initial proposed models. For instance, as can be seen in 
Equation 9, independent variable A was eliminated 
because of its improper effect on TWR in the curvilinear 
model.

a) Linear Model

S/N (TWR)  = - 38.3 - 0.0402 A + 0.172 B -
1.48 C + 0.297 D + 0.372 E (7)

b) Curvilinear Model
S/N (TWR)  =  -12.5099 + 0.150794 B - 4.32222 C 
- 0.000479414 BB + 0.0262243BC

(8)

c) Logarithmic Model

S/N (TWR)  = e 6.240A 0.149B -1.640C 0.751D -

1.850E -0.117 (9)

Adequacies of models were checked by analysis of 
variance (ANOVA) technique within the confidence limit 
of 95% [17, 18]. Results are shown in Table III. Given 
the required confidence limit (Pr), the correlation factor 
(R2) and the adjusted correlation factor (R2

-adj) for these 
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models, it is evidence that Curvilinear model is superior 
to other two, thus, this model is considered as the best 
representative of the authentic EDM process throughout 
in this paper. 

In the next step the proposed models validation using 
new set of experiments (Table IV).  Table V illustrates 
the mean error of the new six experiments for the output 
characteristic. According to the result, the curvilinear 
model is the best model among the proposed models for 
the process characteristic.

TABLE III. ANOVA RESULTS FOR S/N RATIO MODELS 

Model 2R (adj)2R F value Pr>F

Linear 85.7% 83.4% 36.82 <0.0001

Curvilinear 93.9% 92.8% 91.80 <0.0001

Logarithmic 85.6% 83.2% 35.56 <0.0001

TABLE IV. NEW PROCESS VARIABLES FOR MODEL VALIDATION

V(V) (Sec.) I(A) m)(onT m)(offT NO

55 1.31215075 1

55 11850752

55 0.7 24100753

55 124150754

55 0.718150755

55 0.71250756

TABLE V. RESULTS OF VALIDATION EXPERIMENTS 

Error (%)

Machining 
parameters CurvilinearLogarithmicLinear

4.255.626.38TWR

Figure 3, demonstrates the interaction effect of peak 
current and pulse on time on TWR (three out of the five 
parameters remained constant). As illustrated, within the 
range of 25-to-200 μs, by increasing the pulse on time the 
TWR decreases. Similarly by increasing the peak current, 
within the range of 2.5-to-7.5A, the TWR increases.

Fig. 3. interaction plot for TWR

VI. Analysis Of Variance (Anova)

The ANOVA is used to investigate the most 
influential parameters to the process factor-level 
response. In this investigation, the experimental data are 
analyzed using the F-test and the contribution rate. [13,
16]. ANOVA has been performed on the above model to 
assess their adequacy, within the confidence limit of 
95%. ANOVA results indicate that the model is adequate 
within the specified confidence limit. The calculated 
determination coefficient (R2) for this model is 95.2%. 
Result of ANOVA is shown in Table VI.

According to ANOVA procedure, large F–value 
indicates that the variation of the process parameter 
makes a big change on the performance characteristics. In 
this study, a confidence level of 95% is selected to 
evaluate parameters significances. Therefore, F–values of 
machining parameters are compared with the appropriate 
values from confidence table, Fα,v1,v2; where α is risk, v1
and v2 are degrees of freedom associated with numerator 
and denominator which illustrated in Table VI [14-19 ].

TABLE VI. RESULT OF ANOVA FOR TOOL WEAR RATE

parameters

Degree
of 

freedom 
(Dof)

Sum of 
square
(SSj)

Adjusted
(MSj)

F-Value
Contribution 
Percentage 

(%)

B 1 5479.63 146.49    9.537*  80.00

C 1 329.12 853.36   55.557*  4.54

BB 1 102.73 102.73    6.688*  1.27

BC 1 530.11 530.11   34.512*  7.45

Error 27 476.16   15.36 - -

Total 35 6917.75 - - -

*Significant Parameters,        F0.05,1,26 = 4.23

ANOVA results may provide the percent contributions 
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of each parameter [20].

SqureofSumTotal
MSDOFSSP errorii

i
)((%) 

 (10)

In the above formula according to the ANOVA results 
(table.VI), Pi is Contribution percentage, SSi is sum of 
square, DOFi is degree of freedom of i th factor, and 
MSerror is mean sum of square of error [20].

The percent contribution of the EDM parameters on 
TWR is shown in Figures 4. According to Figure 4, the
main process parameter affecting tool wear rate is pulse 
on time with 80% contribution. 

Fig. 4. The effect of machining parameters on the TWR

VII. Simulated Annealing Algorithm

For real and large size optimization problems, the 
traditional optimization methods are often inefficient and 
time consuming. With the advent of computer technology 
and computational capabilities in the last few decades, 
the applications of heuristic algorithms are widespread. 
These techniques are usually based on the physical or 
natural phenomena. In 1953, Metropolis proposed a 
procedure used to simulate the cooling of a solid for 
reaching a new energy state. The annealing process, used 
in metalworking, involves heating the metal to a high 
temperature and then letting it gradually cools down to 
reach a minimum stable energy state. If the metal is 
cooled too fast, it will not reach the minimum energy 
state. Later Kirkpatrick and his colleagues used this 
concept to develop a search algorithm called Simulated 
Annealing (SA) [14]. Among different heuristic 
algorithms, SA is one of the most powerful optimization 
methods that simulates the cooling process of a molten 
metal. The general stages of the SA algorithm for the job 
scheduling on parallel machines are as follows:

1. Begin: Initialize the temperature parameter T0 and 
the cooling schedule; r (0 < r < 1) and the termination 

criterion (e.g. number of iterations k = 1… K). Generate 
and evaluate an initial candidate solution (perhaps at 
random); call this the current solution, c.

2. Generate a new neighboring solution, m, by making 
a small change in the current permutation of jobs and 
evaluate this new solution
3. Accept this new solution as the current solution if:

3-a) the objective value of new solution, f (m), is 
better than of the current solution, f (c).

3-b) The value of acceptance probability function 
given by (exp (f (m) – f (c)) / Tk ) is greater than a 
uniformly generated random number “rand”; where 0 <
rand < 1.

4. Check the termination criterion and update the 
temperature parameter (i.e., T k = r ×T k-1) and return to 
Step 2.

The main advantages of SA are its flexibility, its 
fewer tuning parameters, and its ability to escape local 
optima and to approach global optimality [14].

The algorithm is quite versatile since it does not rely 
on any restrictive properties of the mathematical 
formulation of the problem and hence can be adapted to a 
wide range of problems. In addition, for any heuristic 
optimization procedure, the algorithm parameters should 
be tuned to enhance its performance. Therefore, the ease 
of tuning a given algorithm is an important feature in 
selecting a proper solution technique. In SA there are 
only two major tuning parameters - the initial 
temperature and cooling schedule. As a result, SA can 
easily be "tuned" with minimum trial runs [14].

Simulated annealing can avoid local optima by 
occasionally taking downward steps. That is, a non-
improving neighbor may be accepted as the new current 
solution. To do so, the initial temperature, T, starts out 
large and is gradually reduced as search progresses (see 
Step 4). The result is that early in the search, the current 
solution "bounces around" the search landscape with little 
inhibition against moving to the solutions of lower 
fitness. As the number of iterations increases, the 
bounces become lower in amplitude and worse neighbors 
are accepted with lower probabilities and only when they 
are not much worse than the current solution. Thus, at the 
start of SA most worsening moves are accepted, but at 
the end only improving ones are likely to be accepted. 
This, to a large extend, helps the algorithm jump out of 
local optima. The details of this technique and its various 
applications are well documented in relate literature [14]. 

The final optimization result is summarized in Table 
VII. Figure 5, shows the simulated annealing algorithm 
convergence for minimization of TWR.
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models, it is evidence that Curvilinear model is superior 
to other two, thus, this model is considered as the best 
representative of the authentic EDM process throughout
in this paper.

In the next step the proposed models validation using
new set of experiments (Table IV).  Table V illustrates 
the mean error of the new six experiments for the output 
characteristic. According to the result, the curvilinear 
model is the best model among the proposed models for 
the process characteristic.

TABLE III. ANOVA RESULTS FOR S/N RATIO MODELS 

Model 2R (adj)2R F value Pr>F

Linear 85.7% 83.4% 36.82 <0.0001

Curvilinear 93.9% 92.8% 91.80 <0.0001

Logarithmic 85.6% 83.2% 35.56 <0.0001

TABLE IV. NEW PROCESS VARIABLES FOR MODEL VALIDATION

V(V)(Sec.)I(A)m)(onTm)(offTNO

551.312150751

5511850752

550.724100753

55124150754

550.718150755

550.71250756

TABLE V. RESULTS OF VALIDATION EXPERIMENTS 

Error (%)

Machining
parameters CurvilinearLogarithmicLinear

4.255.626.38TWR

Figure 3, demonstrates the interaction effect of peak 
current and pulse on time on TWR (three out of the five 
parameters remained constant). As illustrated, within the
range of 25-to-200 μs, by increasing the pulse on time the 
TWR decreases. Similarly by increasing the peak current,
within the range of 2.5-to-7.5A, the TWR increases.

Fig. 3. interaction plot for TWR

VI. Analysis Of Variance (Anova)

The ANOVA is used to investigate the most 
influential parameters to the process factor-level 
response. In this investigation, the experimental data are
analyzed using the F-test and the contribution rate. [13,
16]. ANOVA has been performed on the above model to
assess their adequacy, within the confidence limit of 
95%. ANOVA results indicate that the model is adequate
within the specified confidence limit. The calculated
determination coefficient (R2) for this model is 95.2%. 
Result of ANOVA is shown in Table VI.

According to ANOVA procedure, large F–value
indicates that the variation of the process parameter
makes a big change on the performance characteristics. In 
this study, a confidence level of 95% is selected to
evaluate parameters significances. Therefore, F–values of
machining parameters are compared with the appropriate
values from confidence table, Fα,v1,v2; where α is risk, v1
and v2 are degrees of freedom associated with numerator 
and denominator which illustrated in Table VI [14-19 ].

TABLE VI. RESULT OF ANOVA FOR TOOL WEAR RATE

parameters

Degree
of

freedom
(Dof)

Sum of
square
(SSj)

Adjusted
(MSj)

F-Value
Contribution 
Percentage 

(%)

B 1 5479.63 146.49  9.537*  80.00

C 1 329.12 853.36 55.557*  4.54

BB 1 102.73 102.73  6.688*  1.27

BC 1 530.11 530.11 34.512*  7.45

Error 27 476.16 15.36 - -

Total 35 6917.75 - - -

*Significant Parameters,  F0.05,1,26 = 4.23

ANOVA results may provide the percent contributions

48

of each parameter [20].

SqureofSumTotal
MSDOFSSP errorii

i
)((%) 

 (10)

In the above formula according to the ANOVA results 
(table.VI), Pi is Contribution percentage, SSi is sum of 
square, DOFi is degree of freedom of i th factor, and 
MSerror is mean sum of square of error [20].

The percent contribution of the EDM parameters on 
TWR is shown in Figures 4. According to Figure 4, the
main process parameter affecting tool wear rate is pulse 
on time with 80% contribution. 

Fig. 4. The effect of machining parameters on the TWR

VII. Simulated Annealing Algorithm

For real and large size optimization problems, the 
traditional optimization methods are often inefficient and 
time consuming. With the advent of computer technology 
and computational capabilities in the last few decades, 
the applications of heuristic algorithms are widespread. 
These techniques are usually based on the physical or 
natural phenomena. In 1953, Metropolis proposed a 
procedure used to simulate the cooling of a solid for 
reaching a new energy state. The annealing process, used 
in metalworking, involves heating the metal to a high 
temperature and then letting it gradually cools down to 
reach a minimum stable energy state. If the metal is 
cooled too fast, it will not reach the minimum energy 
state. Later Kirkpatrick and his colleagues used this 
concept to develop a search algorithm called Simulated 
Annealing (SA) [14]. Among different heuristic 
algorithms, SA is one of the most powerful optimization 
methods that simulates the cooling process of a molten 
metal. The general stages of the SA algorithm for the job 
scheduling on parallel machines are as follows:

1. Begin: Initialize the temperature parameter T0 and
the cooling schedule; r (0 < r < 1) and the termination 

criterion (e.g. number of iterations k = 1… K). Generate 
and evaluate an initial candidate solution (perhaps at 
random); call this the current solution, c.

2. Generate a new neighboring solution, m, by making
a small change in the current permutation of jobs and 
evaluate this new solution
3. Accept this new solution as the current solution if:

3-a) the objective value of new solution, f (m), is
better than of the current solution, f (c).

3-b) The value of acceptance probability function
given by (exp (f (m) – f (c)) / Tk ) is greater than a 
uniformly generated random number “rand”; where 0 <
rand < 1.

4. Check the termination criterion and update the
temperature parameter (i.e., T k = r ×T k-1) and return to 
Step 2.

The main advantages of SA are its flexibility, its 
fewer tuning parameters, and its ability to escape local 
optima and to approach global optimality [14].

The algorithm is quite versatile since it does not rely 
on any restrictive properties of the mathematical 
formulation of the problem and hence can be adapted to a 
wide range of problems. In addition, for any heuristic 
optimization procedure, the algorithm parameters should 
be tuned to enhance its performance. Therefore, the ease 
of tuning a given algorithm is an important feature in 
selecting a proper solution technique. In SA there are 
only two major tuning parameters - the initial 
temperature and cooling schedule. As a result, SA can 
easily be "tuned" with minimum trial runs [14].

Simulated annealing can avoid local optima by 
occasionally taking downward steps. That is, a non-
improving neighbor may be accepted as the new current 
solution. To do so, the initial temperature, T, starts out 
large and is gradually reduced as search progresses (see 
Step 4). The result is that early in the search, the current 
solution "bounces around" the search landscape with little 
inhibition against moving to the solutions of lower 
fitness. As the number of iterations increases, the 
bounces become lower in amplitude and worse neighbors 
are accepted with lower probabilities and only when they 
are not much worse than the current solution. Thus, at the 
start of SA most worsening moves are accepted, but at 
the end only improving ones are likely to be accepted. 
This, to a large extend, helps the algorithm jump out of 
local optima. The details of this technique and its various 
applications are well documented in relate literature [14]. 

The final optimization result is summarized in Table 
VII. Figure 5, shows the simulated annealing algorithm
convergence for minimization of TWR.
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Fig. 5. Simulated annealing  algorithm convergence 

VIII. Running Confirmation Experiments

To evaluate the adequacy of the proposed approach 
and statistical analysis, a set of verification test has been 
carried out based on the predicted values. 

The optimal levels of the process parameters are 
predicted based on S/N value given in Table 2. Table VII,
shows the comparison between the predicted and 
experimental results using optimal process parameters. 
As indicated, the differences between predicted and 
actual process output is less than 6%. Given the nature of 
EDM process and its many variables, these results are 
quite acceptable and prove that the experimental result is
correlated with the estimated values.

TABLE VII. OPTIMIZATION RESULTS OF THE PROPOSED SA
ALGORITHM AND CONFIRMATION EXPERIMENTS 

TWR

Optimal condition

Prediction Experiment Difference Error (%)

0.18 0.17 0.1 5.5
Parameter setting  

(Toff =  10.01µs,  Ton =113.93  µs, I =2.6 A,  η =1.01  S, V =60 V)

IX. Concluding

This study is focused on modeling, and optimization 
of EDM process on AISI 2312 hot worked steel parts. 
The following can be concluded from the present study.

1. The S/N model for TWR was developed from
the experimental data. Then, statistical analyses
have been carried out to select the best and most
fitted models. Next, simulated annealing (SA)
algorithm has been employed for optimizations

of process parameters. The predicted and 
measured values are fairly close, which indicates 
that the developed model can be effectively used 
to predict the TWR for EDM process.

2. Validation of the models via new set of
experiments illustrated that the curvilinear
model is the best and most fitted among the
proposed models.

3. Pulse on time is the most significant factor
affecting the TWR with 80% percent
contribution.

4. The study can be extended using other methods
like response surface methodology, hybrid
approaches composed of ANN and heuristic
algorithms.
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