2015 23" Iranian Conference on Electrical Engineering (ICEE)

A Diskless Chekpointing Approach for Failure Recovery in
Multiprocessor Safety-Critical Embedded Systems

Sima Nokarizi', Yasser Sedaghat?, Reza Ramezani?

Dependable Distributed Embedded Systems (DDEmS) Lab
Department of Computer Engineering
Ferdowsi University of Mashhad
Mashhad, Iran

sima.nokarizi@stu.um.ac.ir', y_sedaghat@um.ac.ir’, reza.ramezani@stu.um. ac.ir’

Abstract— Backward recovery is the one of the most
important techniques for error recovery in safety-critical
systems which are usually based on nonvolatile memories.
Since storing checkpoints in hard disks —as a nonvolatile
memory- imposes noteworthy timing overhead to the
system, diskless checkpointing would be a good solution for
low cost fault tolerance in parallel and distributed systems.
In this paper an algorithm is proposed which is able to
recover a multiprocessor system from failure when up to
half of the processors are failed, simultaneously. In contrast
to many existing work, in the presented work each
processor can have more than one task. The algorithm also
by grouping tasks and by coding checkpoints eliminates the
need of hard and nonvolatile disks to store checkpoints. The
simulation results show the ability of the proposed
algorithm in recovering system from failure when up to half
of processors are simultaneously failed without using any
extra dedicated checkpointing processor. Also compared to
the existing approaches, the presented method requires
fewer processors.

Keywords- Fault Tolerance, Backward Recovery,
Multiprocessor Error Recovery, Diskless Checkpointing.

1. INTRODUCTION

Embedded systems are usually used to control and
build larger systems. Such systems have an important role
in safety-critical applications [1]. Any failure in safety-
critical applications would cause catastrophe for humans
or environment. Thereby, fault tolerance is a key feature
in such systems. A system is fault-tolerant when it can
continue its operation even in the presence of faults and
errors.

Fault tolerance techniques have usually four steps:
fault detection, fault location, fault isolation, and finally
fault recovery. In fault and error recovery, a faulty system
is recovered to a correct and safe situation before the fault
occurrence [1].

There are generally two techniques for error recovery:
backward recovery and forward recovery. In the forward
recovery, when an error occurs, the system continues its
operation until it finds an error-free state and then
recovers the system to that state. Forward recovery
techniques are chiefly based on an N-Version
Programming (NVP) technique which has a great energy
and computational overhead. Hence, this technique is not
suitable for embedded systems [2]. In contrast, backward
recovery techniques store fault-free system states (a.k.a.

978-1-4799-1972-7/15/$31.00 (©2015 IEEE

688

checkpoints) in a safe and nonvolatile memory (such as
hard disks). Whenever the system fails, it is recovered to
the last fault-free checkpoint and the system operation is
continued from that point [2]. This technique has less
energy and computation overhead.

In recent decades, parallel and distributed systems
have absorbed the attention of many researches, because
of their ability in efficiently performing many complex
and data-intensive computations. Therefore on one hand
embedded systems are enthusiastic to use multiprocessors
to achieve higher performance, but on the other hand by
increasing the number of processors, the failure
probability of such systems increases as well [3]. Hence
fault tolerance is even more important in multiprocessor-
based embedded systems.

Error recovery via checkpointing can be done in disk-
based or diskless manners. In the disk-based approach,
checkpoints are stored and read-back from a safe and a
nonvolatile disk (especially a hard disk) which incurs a
great timing overhead to the system. But in diskless
approach, the need of disks is eliminated and instead of
such low speed storage devices, fast speed processors'
memories are used to store and read-back checkpoints. In
this method, the checkpoints and states of a processors is
stored in the memory of other processors. When a failure
occurs, the faulty processor can be recovered by restoring
its checkpoints stored in the memory of a healthy
processor [4].

Since disks are known as low speed devices, using
them for storing and reading-back checkpoints would
increase the total system runtime. On the other hand as
diskless approaches uses fast memories, compared to
disk-based approach they would have a great impact on
system performance. Some fault-tolerant schedulers
employs diskless checkpointing scheme to increase
system performance [5]. Therefore, in diskless methods it
is possible to store more checkpoints and hence reduce
the error recovery time [3, 6]. It also would be beneficial
to point out that in multiprocessor systems which employ
shared I/O and system bus, storing and reading-back
checkpoints from disk would become a bottleneck. But in
contrast, using diskless approach alleviates this problem.

This paper focuses on diskless backward recovery in
multiprocessor systems such that each processor can run
one or more tasks. In these systems, each processor has

its own dedicated memory and these memories are used
instead of hard disks to store checkpoints. The goal is to
recover system from failure when multiple processors
fail, simultaneously. In the proposed method each
processor stores its checkpoints in the memory of other
processors. Hence, when a processor fails, its tasks can be
recovered by restoring tasks' states stored in the other
processors memory. In order to reduce the size of
checkpoints an XOR-based coding scheme is employed
too.

The paper is organized as follows: Section 2 reviews
some related work. Section 3 describes the proposed
method and demonstrates how processors are grouped
and how checkpoints are coded, compressed, and stored
in the memory of other processors. Section 4 reveals the
simulation details and evaluates the proposed method and
finally section 5 concludes the paper.

II. RELATED WORK

As mentioned earlier, there are two disk-based and
diskless approaches for storing checkpoints in backward
recovery technique. Many authors [2, 7-11] have focused
on disk-based checkpointing and tried to reduce the
associated overheads. Also some other techniques such as
incremental checkpointing [12], buffering checkpoints
[13], compressing checkpoints [14], and memory
exclusion [15] are proposed to reduce the time and
memory overhead in disk-based checkpointing technique.

In disk-based checkpointing scheme, a long time is
spent to write and store checkpoints in the disk. As
indicated by [16], it usually takes 5 to 15 ms to access hard
disks whereas in DRAM memories this time is 40 to 80
ns. It shows that in spite of using some techniques to
reduce the overheads of disk-based checkpointing
approach, its overhead compared to diskless approaches
is still much greater and would be a bottleneck for
systems which use backward recovery for fault tolerance.

Diskless checkpointing technique was first introduced
in [17] to overcome the overheads of storing and reading-
back checkpoints. This technique eliminates the need of
low speed hard disks for saving checkpoints which
eventually leads to reduce the time takes to store
checkpoints as well as reduces the interval of saving
checkpoints [3]. This technique is also implementable in
multiprocessor systems which use processors' memory to
store checkpoints.

As mentioned before, since access time to internal
memory is much faster than hard disk (it is almost
100,000 times faster [16]), diskless methods use internal
memory for storing checkpoints. Reducing the time
required to store and restore checkpoints leads to gain a
better performance [18].

There are many methods for diskless checkpointing
technique. Neighbor-based and coding-based are two of
the most famous methods of this technique [19, 20].
Neighbor-based method is very simple. It stores a copy of
space address and registers as a checkpoint in the memory
of the neighboring processor. When a processor fails, it is
recovered by restoring its state from its neighbor
processor’s memory [19].

Neighbor-based method has three approaches:
mirroring, pair neighbor, and ring neighbor [20]. In the
mirroring approach a processor which only stores

689

2015 23" Iranian Conference on Electrical Engineering (ICEE)

checkpoints (a.k.a. checkpointing processor) is dedicated
to each processor which only runs tasks (a.k.a. application
processor). In this approach the checkpoints of the
application processor is stored in the memory of the
checkpointing processor. The mirroring approach cannot
recover failure when both application processor and
checkpointing processor fail simultaneously. In the pair
neighbor approach, each two processors constitute a pair
and each processor sends its own checkpoint to its paired
processor and vice versa. Hence, no dedicated
checkpointing processor is required. This approach
cannot tolerate coincident failure of both processors,
neither. Finally ring neighbor approach does not need any
dedicated checkpointing processor. In this approach, all
processors constitute a virtual ring and each processor
sends its own checkpoint to the next processor in the ring.
In this approach it is impossible to recover system from
failure if one processor and its next neighbor processor
fail, simultaneously. Memory consumption is one of the
most significant drawbacks in neighbor-based approaches
[20], since a full copy of tasks data and states is stored in
the memory of the other processors.

In coding-based methods, m-out-of-n existing
processors are used as checkpointing processor to code
and store checkpoints of the application processors.
Therefore the checkpoints of the faulty processors can be
decoded and calculated again by using both
checkpointing and application processors. Coding-based
methods have two steps. In the first step, each application
processor calculates its own checkpoints. Then
checkpoints are coded and stored in the memory of the
checkpointing processors which solely codes, stores and
decodes checkpoints. Parity and Reed-Solomon are the
most widely used coding techniques in coding-based
checkpointing methods [19].

Parity technique requires only one dedicated
checkpointing processor to store checkpoints of all
application processors. The j byte of the checkpointing
processor is the result of taking XOR from j® byte of
checkpoints of all application processors. When a
processor fails, the checkpointing processor recovers the
faulty processor by using its coded checkpoint and the
checkpoints of other healthy processors. This technique
reduces the size of checkpoint, but to recover a faulty
processor, all other processors must be healthy and also
synchronous [20]. Reed-Solomon technique uses
mathematic operation to code the checkpoints and it
requires m checkpointing processors to recover m
simultaneously failed processors. This technique is very
complex and incurs a huge timing overhead, but is can
recover more than one faulty processor [3, 19].

Some authors have proposed diskless solutions by
combining two aforementioned methods. For example in
[3, 18, 20], on one hand, similar to neighbor-based
methods, do not need any dedicated checkpointing
processor and checkpoint of any given processor is stored
in the memory of other application processors. On the
other hand, they similar to coding-based techniques use
some coding algorithms to reduce the size of the
checkpoints.

II1. PROPOSED METHOD

In this paper a new diskless checkpointing strategy is
proposed which does not require any dedicated

checkpointing processor and also can tolerate more than
one simultaneous processor failure in multiprocessor
systems in which each processor can have more than one
task.

A. Assumptions

The proposed strategy deals with a multiprocessor
system consisting of Po, P1, .., Pn processors. Each
processor has its own dedicated memory and can directly
connect to all other processors by message passing. Due
to reliable communication channel it is supposed
messages are transferred reliably as well. Sending and
receiving of messages takes no time and also similar to
previous work it is supposed there is no cache memory.

In contrast to previous work [3, 18, 20], which
suppose each processor has only one task, the proposed
method supposes each processor can have more than one
task.

From the fault type perspective, it is supposed that
faults are transient and processors are not failed
permanently. But it is supposed more than one processor
would fail simultaneously. Also it is assumed that taking
and saving checkpoints has a very low cost, therefore
their cost is ignored.

B. The proposed Checkpointing and Recovery
Technique

The proposed method is a combination of neighbor-
based and coding-based approaches which stores
checkpoints in the memory of other processors and
therefore the need of hard disks for storing checkpoints is
eliminated. Our method also uses a simple XOR-based
coding technique to reduce the size of the stored
checkpoints in a way that in spite of compressing
checkpoints, it can recover faulty processors even when
up to half of processors are failed simultaneously.

It is supposed there are n7processors in the system and
each processor can have one or more tasks. The proposed
method groups processors. The number of groups is equal
to the number of simultaneous faults that the system must
tolerate. For example if k& simultaneous faults should be
tolerated, k groups are created in a way that each group
contains |[n/k| processors. Remaining processors are
located at the last group. It is supposed only one failure
occurs at each group. By increasing the number of groups,
the number of recoverable simultaneous failures increases
as well.

At first, each processor calculates its checkpoint and
stores it in its dedicated memory. To tolerate &
simultaneous faults, after grouping processors into &
distinct groups, An XOR is taken from the first tasks of
processors of a given group and the result is stored in the
memory of the first and second processors of the next
group (these two processors run their assigned tasks and
also stores the coded checkpoints of the previous group.
For brevity we refer to these processors as checkpointing
processors). This process is repeated for all corresponding
tasks in all processors of all groups. Figure 1 shows this
process. Therefore the Parity of all groups is calculated
and stored in the memory of two checkpointing
processors in the next group. In each group one faulty

e

690

2015 23" Iranian Conference on Electrical Engineering (ICEE)

processor is recoverable (this faulty processor can even
be the checkpointing processor).

Py Pry Py

Figure 1-Coding and storing checkpoints to recover multiple
failures

The intuitive behind storing parities of a group into
two processors of the next group is to have a backup
checkpointing processor when one of them is failed and
therefore increasing the system reliability. In this way if
only one failure occurs in each group, then at least one of
the checkpointing processors in each group would be
healthy to be used for error recovery. The worst case
scenario is the situation in which k& failures occur
simultaneously and as only one processor fails in each
group; all k& faulty processors are still recoverable.

The recovery process is as follows. Whenever a
processor fails, a message is sent to the first
checkpointing processor in the next group. If the
checkpointing processor is healthy, the recovery process
starts. Otherwise the message is sent to the second
checkpointing processor. As always at least one of these
checkpointing processors is healthy, then a message is
sent to the all other healthy processors in the group of the
faulty processor. As each processor always has
checkpoints of its own tasks, an XOR is taken from
checkpoints of all application processors of the group and
then the result is sent to the checkpointing processor of
the next group. The checkpointing processor, using its
coded checkpoints and the received checkpoints, decodes
and recovers the checkpoint of the faulty processor and
sends it back to the previous group to recover the faulty
processor. The recovered processor recalculates and
stores checkpoints of its tasks to be used for other
processors failure in the future.

It is noteworthy to state that storing the XOR result in
more than two processors does not have any positive
impact on increasing the number of tolerable failures in
each group. Because as there are more than one unknown
checkpoint data, even having more checkpointing
processors do not help to decode XOR.

IV. SIMULATION AND EVALUATION

A. Simulation

To evaluate the proposed method, a simulation
environment is implemented by C# language. Each task
has an individual checkpoint which its size depends on
the variables and states of the task. For simplicity, in the
simulation it is assumed that the size of checkpoint of
each task is 25 bits.

The implementation has three functions. As the
ini_start() function in Figure 2 shows, after assigning

tasks to processors and calculating their checkpoints, the
processors are grouped based on the maximum number of

2015 23" Iranian Conference on Electrical Engineering (ICEE)

in Figure 4 by using checkpointing processors, recovers a
faulty processor and all of its assigned tasks. As this

tolerable failures. function shows, if the faulty processor is a checkpointing
processor, addition to restoring its tasks' checkpoints, it
should get a copy of the coded checkpoints of the
previous group from the alternate checkpointing

processor.

1. // group_length: number of processors in each group

2. // fault_count: number of simultaneous failures that should be recovered
3. // Processors: a collection of system processors

4. // Groups: a collection of processor groups

5.ini_start()

6.{

7. group_count = fault count

8. group_length= Processors.count / group_count
9. for i=1 to Processors.count

In the recovery process, at first the group of the faulty
processor and then the group which stores checkpoints of
the faulty processor are identified. Afterward an XOR is
taken from corresponding tasks in the group. However it
should be noted that faulty processors should not be

1(1) ¢ Assign some tasks to Processors]i] involved in the calcglation.. A faulty processor can be

b for =1 to Processors(i]. Tasks.count recovered by calculating Parity of the corresponding tasks
‘ T in the group and the coded and stored checkpoints in the

13. T = Processors{i]. Tasks(]] checkpointing processors in the next group.

14. Processors{i]. Tasks{j].CP = Checkpoint(T)

15. Index= ((i-1) / group_length) +1; B. Evaluation

16. Groups{index]. Add(Processors|i]) 1) The number of processors

As mentioned before, it is supposed the number of
processors is limited and hence resources should be used
efficiently. Therefore in contrast to the work presented by
Chiu et al [3] which assumes each processor has only one
task, our presented method supposes each processor has
more than one task and tries to recover all of the tasks
assigned to a given processor when the processor fails.

Figure 2 — Assigning tasks and grouping processors

After grouping processors, the first and the second
processors of each group (checkpointing processors) in

addition to run their tasks are nominated to store the

coded checkpoints of the previous group processors. 1./ NextGroup: index of the next group to store checkpoints of current group
. . . 2.// CP, TaskCP: Tasks Checkpoint
Afterwards parities of corresponding task in processors of : o
R 3.// CID: ID of the checkpointing processor

each group are calculated and sent to the checkpom‘gng 4. ini_recover()

processors of the next group. The process of calculating, 5.4

coding and storing tasks' checkpoints in the 6. for i=1 to group_count

checkpointing processors memory is done through 7. if Groups{i] has a faulty processor

ini_CC() function which is depicted in Figure 3. 8 {

9. if i < group_count
1. // NextGroup: index of the next group to store checkpoints of current group 10. NextGroup=1+1;
2.// CP, TaskCP: Tasks Checkpoint 11. else
3.ini_CC(12. NextGroup= 1,
44 13, PID= index of faulty processor
5. fori=l1 to group count 14. if PID=1
6 { 15. Groups{i). Processors{1]. TasksCP = Groupsli]. Processors{2]. TasksCP
7. if i < group_count 16. else if PID=2
8 NextGroup= i+1; 17. Groups{i). Processors|2). TasksCP = Groups{i). Processors{1]. TasksCP
9 else 18. MaxTask= Maximum Task Count in Processors of Groupsi]
10, NextGroup= 1; 19. for j=1 to MaxTask
11. MaxTask= Maximum Task Count in Processors of Groupsl[i] 20. {
12. for j=1 to MaxTask 21 TasksCP=null; .
13. { 22. for k=1 to Groups[l].length //processors in the group
14. TasksCP = null; 23. {) _ _
15. for k=1 to Graups[i].length //processors in the group 24. if GI‘OUpS[l].PI’UCEISSOI‘.S[k]. TaSk[]] 7 nu”_and k# PID
16. { 25. CP= Groupsli]. Processors{k]. Task{j].CP
17. if Groups{i]. Processors(k]. Task(j] # null 26. TasksCP=XOR(TasksCP , CP)
18. CP= Groups(i]. Processors{k]. Task{j].CP 27. .
19, TasksCP=XOR(TasksCP, CP) 28. if Groups[NexiGroup]. Processors|1] is faulty
20. } 29. CID=2;
21. Groups{NexGrow). Processors{ 1. Add(TasksCP); 30. else
22. Groups{NexGrow). Processors{2]. Add(TasksCP); 3L cID=1; _
2. } 32. CP= Groups{NexGrow). Processors{ CID). TasksCP [j]
2.} 33. TasksCP=XOR(TasksCP, CP)
2.} 34. Groupsii).Processors{PID). Task{j].CP = TasksCP
35. }
)) o , 36}
Figure 3 — calculating parities of groups checkpoints 37}

When a failure occurs, it is recovered by

ini_recover() function. This function which is depicted Figure 4 - The pseocode of faulty processors recovery

691

2015 23" Iranian Conference on Electrical Engineering (ICEE)

(O = (YT 5o) 5 (55 0 () 5 (9

P(4;) =

With the assumption of having only one task per
processor, Figure 5 shows that at least how many
processors is required to recover different number of
simultaneous processor failure. By increasing the number
of simultaneous failures 4, the minimum number of
required processors to recover faulty processors in the
basic paper [3] increases dramatically. For example to
tolerate 10 simultaneous failures, the work presented by
[3] requires 167 processors whereas our proposed method
only requires 20 processors.

As Figure 5 shows there is a significant difference
between the number of required processors. This is due to
the special condition that is considered for error recovery
in [3]. For example, [3] indicates that if each processor
has a set of checkpointing processors to store its
checkpoints, any two given checkpointing processors set
cannot have more than one common processor. By
considering such conditions determination of
checkpointing processors become hard which leads to use
more processors to recover system from failure.

180
160
140
120
100
80 ——[3]

60 = this

Number of Processors

40
20

0
2 3 4 5 6 7 8 9 10

Number of failures

Figure 5 - Comparision of the number of processors for
different number of simultaneous failures in the proposed
method and the method proposed by [3]

2) Optimal Groups

It is clear that by having a fixed number of tasks, when
the number of processors is decreased, the number of
tasks on each processor is increased as well. Therefore
tasks Makespan highly depends on the number of
processors and the number of tasks on each processor.
The less the number of processors, the more the
Makespan of tasks is achieved. On the other hand running
only one task on each processor would decrease
processors utilization dramatically.

As result, in order to group processors optimally,
some criteria such as the number of processors, the time
required to calculate Parity when coding checkpoints, the
time required to decode checkpoints when recovering,
and finally the number of simultaneous tolerable failures
should be taken into account.

As pointed out before, processors are grouped based
on the maximum tolerable failures. The ideal situation
occurs when failure of half of processors is tolerable and
recoverable. In the proposed method, an optimal grouping
happens when each group has only two processors and
each processor has only two tasks. By this grouping

CHCT - GE)

692

(1

strategy, compared to basic paper [3], less processors is
required to run tasks and also maximum tolerable
processor failure is attainable. That is in this method the
system can be recovered even when up to half of
processors are failed simultaneously which results an
acceptable system reliability.

Based on the optimal grouping if it is possible to have
two faulty processors in one group and there are k groups
coupled with n processors, while k =n/2 , the
probability of recovering i faulty processors (1 < i < k)
is denoted by P(A;) and can be obtained from (1). This
equation is derived by dividing all favorable states by all
possible states. A state is favorable for a group if there is
at most one faulty processor in the group. As there are i
faulty processors and 2k — i healthy processors, there

exist (i)(Zkl_.i) favorab.le states for group 1; similarly,
there will be (1_11) (Zk_ll_l) favorable states for group 2

and (1)(2](_12”1) favorable states for group i .
Afterwards, as for groups i + 1 to k all processors are
healthy, there are actuall (Zk_Zi) * Lk (2) favorable

Y, YU SR Ot .
states for these groups. This selection can be done in (L)
different ways.

After simplification, (1) can be easily seen as (2):

itx 2k — D+ (¥) « 20
P = (2k)!

Therefore, by optimal grouping strategy, the
probability of recovering half of faulty processors is
obtained by (3):

(2)

(k)? * 2k

P(Ay) = 2k)!

3)

V. CONCLUSIONS

Error recovery is one of the most important parts of
fault tolerance which leads to increase systems
dependability. Backward recovery techniques store fault-
free system states (checkpoints) in some points and
resume the system operation from the last checkpoint
when an error occurs. As the time required to store and
read-back checkpoints from low speed nonvolatile
storage devices (such as hard disks) would become a
bottleneck, diskless checkpointing would be a good
alternative strategy. In this paper a diskless checkpointing
strategy for backward recovery in multiprocessor safety-
critical systems was proposed.

In contrast to previous work [3] that each processor
can run only one task, in the proposed method, the
number of tasks in each processor is not limited.
Therefore to tolerate a given number of simultaneous
failures, compared to [3], the proposed method needs
much less processors.

To achieve such fault tolerance our proposed method
combines neighbor-based and coding-based strategies.

The method groups tasks based on the intended maximum
number of tolerable faults. Then tasks of processor in
each group are corresponded and the Parity of
corresponding tasks in each group is stored in two
processors of the next group. When a processor fails, its
checkpoint is recovered by using checkpoints of other
processors of the same group and the checkpoint which is
coded, compressed and stored in the next group. This
strategy in addition to recover multiple errors, needs less
processors and also does not required any dedicated
processor for only saving checkpoints.

If processors and tasks are grouped optimally, that is
if each group has only two processors and each processor
has only two tasks, then the system can be recovered even
when up to half of processors are failed simultaneously.

For future work it is suggested to consider the cost of
taking and saving checkpoints in order to specify the
optimal number of groups in a way that by having
minimum computation cost, the maximum passible
simultaneous failures are tolerated.

ACKNOWLEDGEMENT

The authors wish to acknowledge the advices and
supports that they have received from outstanding
members of Dependable Distributed Embedded Systems
(DDEmS) Laboratory' of Ferdowsi University of Mashhad.

V1. REFERENCES

[1] M. Short, “Development guidelines for dependable real-time
embedded systems,” IEEE/ACS International Conference
on Computer Systems and Applications, 31 March-4 April
2008, pp. 1032-1039.

[2] T. Li, R. Ragel, and S. Parameswaran, “Reli:
Hardware/software Checkpoint and Recovery scheme for
embedded processors,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 12-16 March
2012, pp. 875-880.

[3] Ge-Ming. Chiu, J.F. Chiu, “A New Diskless Checkpointing
Approach for Multiple Processor Failures,” I[EEE
Transaction on Dependable and Secure Computing, Vol. §,
Issue 4, JULY/AUGUST 2011, pp. 481-493.

[4] D. Hakkarinen, Z. Chen, “Multilevel Diskless
Checkpointing,” IEEE Transaction on Computers, Vol. 62,

Issue 4, 2013, pp. 772-783.

[5] Ramezani, Reza, and Yasser Sedaghat. "An Overview of
Fault Tolerance Techniques for Real-Time Operating
Systems." In The 3rd International Conference on
Computer and Knowledge Engineering-ICCKE 2013.
2013.

[6] J.S. Plank, K. Li, and M.A. Puening, “Diskless
checkpointing,” IEEE Trans. on PARALLEL AND
DISTRIBUTED SYSTEMS, VOL. 9, Issue. 10, OCTOBER
1998, pp. 972-986.

[71 K. Naruse, S. Umemura, and S. Nakagawa, “Optimal
checkpointing interval for two-level recovery schemes,”

!http://ddems.um.ac.ir

2015 23" Iranian Conference on Electrical Engineering (ICEE)

693

Computers & Mathematics with Applications, VOL. 51,
Issue. 2, 2006. pp. 371-376.

[8] C.H. Chen, Y. Ting, and J.S. Heh, “Low Overhead
Incremental Checkpointing and Rollback Recovery Scheme
on Windows Operating System,” Third International

Conference on Knowledge Discovery and Data Mining, 9-
10 Jan 2010, pp. 268-271.

[9] T. Yeh, W. Cheng, “Improving Fault Tolerance through
Crash Recovery,” 2012 International Symposium on
Biometrics and Security Technologies (ISBAST), IEEE,
2012, pp. 15-22.

[10] S. Feng, S. Gupta, et al, “Encore: Low-cost, fine-grained
transient fault recovery,” Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture,
ACM, 2011, pp. 398-409.

[11] H. Tabkhi, S.G. Miremadi, and A. Ejlali, “An Asymmetric
Checkpointing and Rollback Error Recovery Scheme for
Embedded Systems,” [EEE International Symposium on
Defect and Fault Tolerance of VLSI Systems, 2008.

[12] S.I. Feldman, and C.B. Brown. “Igor: A system for program
debugging via reversible execution,” in ACM SIGPLAN
Notices, VOL. 24, Issue. 1, 1989, pp. 112-123.

[13] E.N. Elnozahy, D.B. Johnson, and W. Zwaenepoel, “The
performance of consistent checkpointing,” Proc. of 11th
IEEE Symposium on Reliable Distributed Systems, 5-7 Oct
1992, pp. 39 - 47.

[14] C.CJ. Li, and W.K. Fuchs. “Catch-compiler-assisted
techniques for checkpointing,” 20th International

Symposium in Fault-Tolerant Computing, IEEE, 26-28 Jun
1990, pp. 74-81.

[15] J.S. Plank, M. Beck, G. Kingsley, K.Li, “Libckpt:
Transparent checkpointing under unix,” Computer Science
Department, 1994.

[16] D.A. Patterson, and J.L. Hennessy, Computer organization
and design: the hardware/software interface, Morgan
Kaufmann, 2008.

[17] J.S. Plank, and L. Kai. “Faster checkpointing with N+1
Parity,” Twenty-Fourth International Symposium on Fault-
Tolerant Computing, IEEE, 15-17 June 1994, pp. 288-297.

[18] J.F. Chiu, “Double Mutual-Aid Checkpointing for Fast
Recovery,” [14th International Conference on High
Performance Computing and Communication & 9th
International Conference on Embedded Software and
Systems (HPCC-ICESS), IEEE, 25-27 June 2012, pp. 1015-
1020.

[19] N.A. Kofahi, S. Al-Bokhitan, and A. Al-Nazer, “On Disk-
based and Diskless Checkpointing for Parallel and
Distributed Systems: An Empirical Analysis,” Information
Technology Journal, VOL. 4, Issue. 4, 2005, pp. 367-376.

[20] JF. Chiu, and W.H. Hao, “Mutual-Aid: Diskless
Checkpointing Scheme for Tolerating Double Faults,” 10th
IEEE International Conference on High Performance
Computing and Communications, 25-27 Sept. 2008, pp.
540-547.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

