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ABSTRACT 

Graeme Bird developed the Direct Simulation of Monte Carlo (DSMC) in the 1960s, and nowadays this method 
has gained popularity in simulation of rarefied gas dynamics and micro gas flow problems. In addition to the 
requirement of employing multidimensional computational mesh, the DSMC method uses a finite set of particles 
or simulators, denoted by their positions and velocities, to model the advection and collision terms of the 
Boltzmann equation. The requirement of these large computational resources have been a prohibitive barrier in 
the DSMC analysis of massive computational two- and three-dimensional problems in rarefied gas dynamics. 
This work is dedicated to review some recent advancements in reducing the DSMC computational requirements 
by using Kac model -based collision schemes in the Direct Simulation of Monte Carlo. In general, two major 
concepts exist for obtaining collision schemes, and here we focus our attention to the one based on the Kac 
stochastic model. The common advantage of these schemes is that their algorithms avoid the repeat collisions, 
and can be used to reduce the number of particles as a portion of computational resources. The paper reviews 
this conception since Yanitiskiy first introduced the Bernoulli Trials collision scheme (BT), to the introduction of 
Simplified Bernoulli Trials (SBT), proposed by Stefanov. We also present a new intelligent variant of the SBT 
collision scheme, entitled  ISBT, which enters some semi-deterministic elements in the SBT scheme, that ensure 
selection of closer placed collision pairs. 

1. INTRODUCTION 

The Direct Simulation Monte Carlo (DSMC) [1] is a particle-based method commonly used to solve 
the Boltzmann equation  by using stochastic schemes. In the framework of the DSMC method, the real 
gas dynamics process is discretized in time and space, and two successive split stages of free 
molecular motion and binary intermolecular collisions are defined in a way directly to simulate the 
advection and collision terms of the Boltzmann equation. The collision algorithm plays the major role 
in the DSMC method, and calculates the most sophisticated term of the Boltzmann equation. 
Theoretical works on the construction of a collision scheme can be categorized in two groups. The 
concept of the first group is based on the principle of the maximum collision rate per time step, e.g. 
“No Time Counter (NTC)” [1], “Null-collision” [2], “Majorant Frequency Scheme” [3]. In this group, 
the Bird’s NTC scheme has been widely used as a highly reliable scheme. Since the collision pairs in 

                                                      
* Author to whom correspondence should be addressed, Tel: +98 (51) 38805136, Fax: +98 (051) 38763304, 
Email: e.roohi@ferdowsi.um.ac.ir 

3



Proceedings of the 2nd European Conference on Non-equilibrium Gas Flows – NEGF15  
December 9-11, 2015 – Eindhoven, the Netherlands 

 

2

this scheme are merely chosen through random selections, NTC requires a number of particles in the 
cell that is suitable/high enough to avoid successively repeated collisions.  
It should be noted that besides the inherent discretization problems of deterministic numerical 
approaches, DSMC calculations suffer from two extra problems: (a) the presence of statistical noise in 
output results, and (b) the dependence of the results on particle number per cell. It has been shown that 
[4-5] a modified Monte Carlo simulation, which takes into account the asymptotic properties of near 
continuum low speed regimes, is capable to overcome the first problem. In response to the second 
problem, other type collision schemes , proposed by Belotserkovskii and Yanitiskiy [6] and Yanitiskiy 
[7], are constructed on the base of the Kac stochastic model. Contrary to the first group of collision 
schemes, the latter group in accordance with the Kac stochastic model defines a collision probability 
function for each particle pair and checks all pair combinations for collision occurrence, hence it 
avoids at least part of the successively repeated collisions. 
In this paper, first we review the Yanitskiy approach to show how the Bernoulli-Trials collision 
scheme (BT) was derived from the Kac stochastic model to avoid the repeat collisions. Next, we 
mention how Stefanov introduced a simplified variant of the Bernoulli Trials scheme entitled as ‘SBT’ 
[8-9]. Unlike the former scheme (BT), which has a quadratic dependency of the computational cost on 
the particle number in cells, the latter one (SBT) has a linear dependency and a higher computational 
efficiency. Finally, considering the mean collision separation distance (MCS) as an important 
parameter of the quality of collisions, we review how it is possible in Bernoulli-Trials collision 
schemes to reduce MCS and increase the quality of the collision process by using the Transient 
Adaptive Subcell technique (TAS) [10-12]. A variety of problems ranged from low-speed flows in 
micro-scale geometries to flows in hypersonic regimes, e.g. the Steady Hypersonic cylinder, were 
simulated using SBT or its combination with the transient adaptive sub-cell technique (SBT-TAS). 
These simulations confirm our idea that the SBT/SBT-TAS compared with other methods, i.e. 
NTC/NTC-TAS, is capable to give an accurate solution by using smaller number of particles per cell 
or smaller sample-size. Furthermore, in this work as an evolution of the SBT scheme to its intelligent 
variant, we introduce a new collision scheme entitled as the Intelligent Simplified Bernoulli Trials 
(ISBT). Benefiting from the procedure of SBT in sorting and choosing collision pairs in an 
hierarchical order, the ISBT attempts to provide a semi-cognition of distance for the collision scheme. 
This semi-cognition then will lead to the creation of pseudo-circular subcells that reduce 
approximately 25-32% of the overall mean collision separation distance (MCS). Understanding the 
recent notes of Gallis et al. [13-15] in the preference of choosing a near neighbor partner rather than 
the nearest neighbor one, which consequently leads to the saving of the collision scheme from losing 
some of its probable collisions during the advection phase of particles, the ISBT scheme also follows 
the same policy of near neighbor pair-selection.  

2. CONSTRUCTION OF BERNOULLI TRIALS COLLISION SCHEMES 

The probability function of the collision pair (i,j) in the Kac stochastic model with a particle evolution 

system of ሼ	ݔሺ௟ሻ, ேሺ௟ሻሽܥ ൌ ሼ	ݔ௝ሺ௟ሻሺݐ௞ሻ, ௝ܿሺ௟ሻሺݐ௞ሻ	ሽ, ݆ ൌ 1, . . . , ܰሺ௟ሻ	 in cell (l) with volume ܸሺ௟ሻ for time ߬, 
can be constructed as the following: 
 

௜௝߬ݓ  ൌ ఙ೔ೕ௚೔ೕఛ௏ሺ೗ሻ , (1) 

, where ߪ௜௝ is the product of collision cross-section and ݃௜௝ ൌ |ܿ௜ െ ௝ܿ| is the particles relative 
velocities. Considering this equation and the standard kinetic approach, it is possible to derive the Kac 
master equation of density distribution, denoted by ܨேሺ௟ሻሺݐ, ,ሺ௟ሻݔ  ேሺ௟ሻሻ, for all possible velocityܥ
vectors of ܥேሺ௟ሻ. In case of the given state at time ݐ଴, the operator form of the Kac master equation 
could be solved at time ݐ with the definition of the transition operator ܩሺݐሻ in the following form: 
,ݐேሺ௟ሻ൫ܨ  ࢞ሺ௟ሻ, ேሺ௟ሻ൯࡯ ൌ ,଴ݐேሺ௟ሻሺܨ	ሻݐሺܩ ࢞ሺ௟ሻ,  ேሺ௟ሻሻ (2)࡯
, and ܩሺݐሻ is defined as follows: 
ሻݐሺܩ  ൌ 	ݐൣ ∑ ௜௝ሺݓ	 ௜ܶ௝ െ ሻଵஸ௜ழ௝ஸேሺ೗ሻܫ ൧ ൌ ሺܶݐሾ	݌ݔ݁ െ  ሻሿ, (3)ܫ

4



Proceedings of the 2nd European Conference on Non-equilibrium Gas Flows – NEGF15  
December 9-11, 2015 – Eindhoven, the Netherlands 

 

3

, where 

߰ܫ  ≡ ߰,																	 ௜ܶ௝ ൌ ׬ ߰൫࡯௜௝൯ସగ଴  ሻ (4)ߗ௜௝ሺߪ݀	
are operators, acting on a linear normal space of continues functions ߰ሺܥሻ over ߪ݀ ,ߗ௜௝ሺߗሻ is a 
differential cross section (see [16]). For small interval ߬ each term of the equation (3) can be extended 
to turn ܩሺݐሻ into the following form ܩଵሺ߬ሻ (while terms of order equal or higher than ܱሺ߬ଶሻ are 
neglected): 

ଵሺ࣎ሻܩ  ൌ ∏ ∏ ൣ൫1 െ ܫ௜௝൯ݓ࣎ ൅ ௜௝ݓ࣎ ௜ܶ௝൧		ேሺ೗ሻ௝ୀ௜ାଵேሺ೗ሻିଵ௜ୀଵ   

                                           ൌ ∏ ∏ ൣ൫1 െ ௜ܹ௝൯ܫ ൅ ௜ܹ௝ ௜ܶ௝൧	ேሺ೗ሻ௝ୀ௜ାଵேሺ೗ሻିଵ௜ୀଵ , (5) 

2.1 The BT algorithm  

The Bernoulli trials (BT) collision algorithm proposed by Yanitskiy [7] implements the ௜ܹ௝ in the 
right hand side of the equation (5) as the probability function for collision of the pair(i,j) within time 
interval of ߬. The BT algorithm states that for all of the available particle pairs in the collision cell (l), 
the acceptance/rejection should be checked, i.e. the following inequality should be checked for all 
available particle pairs(i,j) ሼ݅ ൏ 	݆ ൌ 1, . . . , ܰሺ௟ሻሽ	  (before their velocities are changed to post collision 
values): 

 ௜ܹ௝ ൌ ఙ೔ೕ௚೔ೕఛ௏ሺ೗ሻ ൐ ܴ݂ܽ݊, (6) 

, and the probability for ௜ܹ௝ ൐ 1 should be kept always close to zero, by choosing appropriate time 
step and cell size. 

2.2 The SBT algorithm  

The computational cost of the BT algorithm has a quadratic dependency with the number of particles 
in a cell. Stefanov [8-9] extended the internal product in the right hand side of the equation (5) in a 
series of j with respect to τ to reach to a new simplified transition operator ܩଶሺ߬ሻ (where terms of 
order equal or higher than ܱሺ߬ሻ are neglected): 

ଶሺ࣎ሻܩ  ൌ ∏ ሾቀ1 െ ∑ ଵ௞ ሺ݇࣎ݓ௜௝ሻேሺ೗ሻ௝ୀ௜ାଵ ቁ ܫ ൅ ∑ ଵ௞ ሺሺ݇࣎ݓ௜௝ሻ ௜ܶ௝ሻேሺ೗ሻ௝ୀ௜ାଵ ሿேሺ೗ሻିଵ௜ୀଵ  (7) 

, where ݇ ൌ ൫ܰሺ௟ሻ െ ݅൯.	  
The algorithmic interpretation of operator ܩଶሺ߬ሻ states that the SBT procedure starts with a locally 
indexing of particles in the ݈௧௛ cell from 1 till ܰሺ௟ሻ. The first particle, say ݅, is sequentially selected 
from 1 to ܰሺ௟ሻ, while its pair, say ݆, at each sequent is randomly selected among the further available 
particles, by considering this approach: 

 ݆ ൌ ሺ݅ ൅ 1ሻ ൅ ݐ݊݅ ቀܴ݂ܽ݊ ൈ ൫ܰሺ௟ሻ െ ݅൯ቁ (8) 

, where Ranf ∈ [0, 1). Eventually, the collision is accepted if the SBT probability function of ௜ܹ௝ 
fulfills the following inequality: 

 ௜ܹ௝ ൌ ௡ܨ݇ ఙ೔ೕ௚೔ೕఛ௏ሺ೗ሻ ൐ ܴ݂ܽ݊  (9) 

, where ܨ௡ is the ratio of the number of real molecules to the simulated particles. Similar to BT 
algorithm, the probability for ௜ܹ௝ ൐ 1, should be kept always close to zero by choosing appropriate 
time step and cell size. 

 2.3 Comparison of BT and SBT collision algorithms 

Previous studies on the BT and SBT algorithms revealed that in general both schemes have the same 
behavior pattern. For instance, in relative to other collision schemes, e.g. the NTC scheme, Stefanov 
[9] demonstrated that the BT and SBT schemes could employ much smaller number of particles in 
rarefied or in micro gas flow problems. However, the performance studies indicated that in case of 
employing the same number of particles, the computational costs of BT and SBT schemes are larger 
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than the NTC, and the SBT scheme obtains a much lower computational costs than the BT scheme 
(see Ref. [9]). 

3. EXTENSION OF THE SBT-TAS ALGORITHM TO CURVED BOUNDARY 
GEOMETRIES 

3.1 Transient Adaptive Sub-Cell Technique (TAS) 

In DSMC, the mean collision separation distance (MCS) is a critical parameter that is used as a 
quality-meter of accepted collisions. It is said that, a good collision is a one, which its MCS is smaller 
than one-third of the local mean free path. Subcell is an aided tool for collision schemes that provides 
a closer look upon cell space. It means subcells help the collision operations to work in smaller 
frameworks. However, as the numerical simulation goes by and the number density variation increases 
among cells, the idea of using a constant number of subcells for all cells might look inefficient. 
Transient adaptive subcell technique (TAS) is a response to the desire of dynamically adapting 
collision cell space in accordance with the instantaneous available particle numbers in that cell. It is 
while that subcell generation in the TAS technique has only transient burden on memory allocation of 
numerical simulation. In other words, the adaptation will dynamically allocate and deallocate its 
memory requirements at each collision stage, and the size of the allocation is dependent to the most 
populated cell. For each cell, this transient layer of subcells is fabricated by a special number of 
divisions along x (D୶) and y (D୷): 

௫ܦ			  ൌ ට ேሺ೗ሻ஺ோൈா௡௩௘௟௢௣ൈ௉௉ௌ஼						 (10) 

௬ܦ				  ൌ ௫ܦ 	ൈ ;	ܴܣ ܴܣ	 ൌ ∆௬೎೐೗೗∆௫೎೐೗೗ ; ݌݋݈݁ݒ݊ܧ	 ൌ 	 ௏ሺ೗ሻ∆௬೎೐೗೗	ൈ	∆௫೎೐೗೗							 (11) 

, where AR is the aspect ratio,	PPSC is the desired number of particles per subcell and Envelop is used 
to increase the number of subcells, in case the cell is not fully rectangular. 

3.2 SBT-TAS 

TAS grid divides the collision cell into equally spaced rectangular divisions, and the SBT procedure 
can independently operate within their space. Although these divisions are physically rectangular and 
particle indexing is also made with this consideration, their effect on the probability function is not 
necessarily based on fully rectangular divisions. By fabricating subcell divisions over a collision cell, 
we would have three types of subcell (Fig.1-a): (1) The first group is the ones, which are out of the 
borders of the collision cell and they are not considered in the flow in relative to the current collision 
cell. (2) The second group is the ones, which are in flow, but they are vacant, and consequently they’re 
assumed inactive in collision occurrence. (3) The third group of subcells is the ones that are totally or 
partially in the flow and at the same time contain at least one particle. These subcells are called as “in-
flow active” subcells. SBT scheme can rely on in-flow active subcells as the probable areas for 
registering a collision. The ∀୫ in the probability function of the SBT-TAS scheme (equation (11)) is 
the available volume that is assigned to the stack of indexed particles. Because the collision cell is 
considered a homogeneous space, it is possible to assume that cell volume is equally distributed 
among in-flow active subcells (type 3). Fig.1-b demonstrates how the cell volume is heterogeneously 
divided among the type3 subcells. In the regards of the new borders, we can modify the probability 
function in the form of the Equation (11). For each subcell, i.e. for the subcell m୲୦ it will be: 

 				 ௜ܹ௝௠ ൌ ሺܰ௠	௡ܨ െ ݅ሻ	ሺ݃ߪሻ௜௝ 	 ∆௧∀೘ ;	∀௠ൌ ௏ሺ೗ሻேௌ೟೤೛೐	య	 (11) 

, where ௜ܹ௝௠ is the probability of the pair ሺ݅, ݆ሻ in the ݉௧௛ subcell, ܰ௠ is the number of indexed 
particles for this subcell, NS୲୷୮ୣ	ଷ is the number of type 3 subcells, and ∀୫ is calculated in a way that 
all the collision cell volume (ܸሺ௟ሻ) is equally distributed among type 3 subcells. 
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Figure 1: Different subcell types; (a) subcell divisions for indexing particles, (b) subcell divisions based on the 
assigned volume in the estimation of probability function (divisions are tried to represent an equivalent volume 
of ∀୫) . 
 
Having the modified SBT-TAS collision scheme, now it is possible to simulate the flowfields that are 
highly dependent on the adaptation of the computational grid.  
Using the Bird’s DS2V code [17], we implemented the SBT-TAS collision algorithm [11-12] and 
compared the computational resources and costs of SBT-TAS with respect to the most recent DSMC 
collision-pair selection algorithm, i.e., No Time Counter-Nearest Neighbor (NTC-NN, or as is called: 
NN) [18-19]. The hypersonic rarefied gas flow past a cylinder [19] is selected here to show the 
performance behavior of SBT-TAS. It is a Mach 10 (2634.1 m/s) flow of argon at T=200 K passing 
over a 12 inch circular cylinder with a fully diffusive surface at Ts=500 K and a nominal free-stream 
Knudsen number of 0.01. Tab.1 represents the comparison between the SBT-TAS and NN in the 
hypersonic cylinder test case.  
 

Scheme Division 
grid 

Particle 
per cell 

CPU-time Sample-Size Normalized CPU-time Normalized Sample 
size 

NTC-TAS 100×95 10 61 min 4.0308 E9 1 1 
SBT-TAS 100×95 10 33 min 2.2402E9 0.5409 0.5557 
Table 1:  Comparison of CPU-time and Sample-size between the collision schemes of NN and SBT-TAS in the 
simulation of the hypersonic cylinder. 
 
In order to evaluate the performance of SBT-TAS at higher Knudsen numbers, we consider this test 
for the hypesonic flow over the cylinder geometry in Knudsen numbers of 0.05, 0.5 and 1. Tab.2  
presents the comparative performance data between SBT-TAS and NN for this test. This table states 
that SBT-TAS can employ a smaller number of particles at high Knudsen numbers. This issue could 
be attributed to the SBT property that for a definite number of particles checks for more number of 
collisions. Consider that the number of collision checking in the SBT scheme is equal to ܰሺ௟ሻ-1, where ܰሺ௟ሻ is the number of particles in the cell/subcell, while in the NTC scheme the number of collision 
acceptance/rejection checking is a function of collision rate. The positive point for the SBT collision 
scheme is that in the DSMC method as the Knudsen number increases, the required number of 
particles within the flow field would start to decline. Consequently, this reduction would help SBT 
collision scheme to employ smaller amount of particles, and increase the collision scheme efficiency. 
 
 
 

7



Proceedings of the 2nd European Conference on Non-equilibrium Gas Flows – NEGF15  
December 9-11, 2015 – Eindhoven, the Netherlands 

 

6

Knudsen 
number 

Scheme Division Grid Total collision 
cells 

Total 
particles 

Elapsed time 
(seconds) 

Sample-size 

0.05 SBT-TAS 55×45 9553 7.5E4 229 4.57E8 
NTC-TAS 70×35 9455 7.E4 180 4.87E8 

0.5 SBT-TAS 45×45 8034 4.E4 143 2.96E8 
NTC-TAS 55×55 12000 10.E4 220 9.79E8 

1 SBT-TAS 20×15 1194 3.E4 182 2.84E8 
NTC-TAS 45×25 4480 8.E4 244 12.3E8 

Table 2:  Comparison of CPU-time and Sample-size between the collision schemes of NN and SBT-TAS in the 
simulation of the hypersonic cylinder at high Knudsen numbers. 

4. THE SIMPLIFIED BERNOULLI TRIALS COLLISION SCHEME WITH 
INTELLIGENCE OVER PARTICLE DISTANCES 

Here we review a modification of the Simplified Bernoulli Trials (SBT) scheme, called the Intelligent 
Simplified Bernoulli Trials (ISBT) scheme [20], which is capable to create pseudo-circular subcells 
that reduce approximately 25-32% of the mean collision separation distance (MCS).  
ISBT scheme arranges the particle indexing and the collision acceptance-rejection of the SBT scheme 
in a way that leads to the formation of virtual clusters. These inner-cell clusters then will cause the 
selection of the ‘near-neighbor’ pair, which leads to the smaller mean collision separation distances for 
ISBT compared with SBT. The following procedure will describe the evolution of SBT into ISBT 
scheme: 
The aim of the first step is to define a method for a locally indexing of particles based on the estimated 
inter-particle distances. The particle indexing should be modified in a way that a semi-perception of 
distance emerges in the hierarchical order of indexed numbers, i.e. in a collision cell with Nሺ୪ሻ 
particles, we need to have an indexing method that satisfies the condition of (ߜ௜ ൏ ,௝ߜ 0 ൏ ݅ ൏ ݆ ൑ܰሺ௟ሻ), where ߜ௜ is the distance of the ݅௧௛ particle to a reference point ® (see Fig.2-a).  
One can easily observe that the indexed points, relative to their hierarchical order, would be closer to 
each other if points are located in the list with respect to the distance to the corners of a rectangle that 
surrounds the particles (compare Figs. 2 (b-c) for example). Therefore, we suggest the random 
selection of cell/subcell corners to efficiently index particles. However, because the ߜ distance does 
not consider the angular distances, some particles continue to be indexed successively while they are 
far from one another. Specifically, this is seen for those particles on opposite sides of the diagonal 
(e.g., particles 4 and 5 in the Fig. 2-c). Statistically, these particles are not the majority, yet any other 
means of particle indexing would inevitably create situations where indexed particles would be far 
from each other. 
It is essential to note that while along the indexing direction (diagonal RB in Fig.2-a) particles are 
prevented to collide in opposite corners (because they are indexed at the bottom and the top of the 
hierarchical order), along the other one (diagonal AC in Fig.2-a) particles might be indexed as 
neighbors, and their collision reverse the angular momentum. Since these kinds of collisions might be 
inevitably supported in the ISBT scheme, as a solution, we suggest using elongated cell/subcells.  
In a quadrangular cell/subcell (‘RABC’ in Fig.2-d) the maximum distance (MD) that two far-indexed 
particles could have is √2 times greater than the side length. It can be shown that the corresponding 
values in the elongated rectangular cell/subcell (‘RDEF’ in Fig.2-d) will be smaller than those of 
equal-area quadrangle (compare the MDQ value of ‘RABC’ quadrangle and maximum corresponding 
value MDR1 of ‘RDEF’ elongated-rectangle).  
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(a) (b) (c) 

 
(d)

Figure 2: Distribution of some particles in a cell/subcell; (a) a system of particle indexing based on the distance 
of particles to a definite center point ®, (b) the indexing results for a group of nine particles when the ® is 
located on the center of the cell, (c) when this point is on the left-down corner of the cell, and (d) the geometrical 
comparison between one quadrangle cell/subcell (“RABC”) and its equal-area elongated cell/subcell (“RDEF”), 
while the calculated values for the maximum distance (MD) between two far-indexed particles are shown; they 
denote that elongated cell/subcell has smaller MD value. 
 
In the second step, the objective is to alter the acceptance-rejection method of the SBT scheme in favor 
of the selection of closer pairs. To perform this as simple as possible, the ISBT scheme just follows the 
SBT procedure, i.e. the first particle, say ݅, is sequentially selected from 1 to ܰሺ௟ሻ, while its pair, say ݆, 
at each sequent is randomly selected among the further available particles, identical to the SBT 
procedure in equation (8).  
Here we restate equation (8) in the following form with a new name for the generated random number 
as ܴܽ݊ ூ݂ ∈ [0, 1) :  

 ݆ ൌ ሺ݅ ൅ 1ሻ ൅ ݐ݊݅ ቀܴܽ݊ ூ݂ ൈ ൫ܰሺ௟ሻ െ ݅൯ቁ (12) 

The important point is that the acceptance-rejection sections of the SBT and ISBT collision schemes 
differ by their random numbers. In fact in the ISBT scheme instead of regenerating the second random 
number, which happens in the acceptance-rejection section of the SBT scheme (in inequality (9)), here 
ISBT does not call any new random number for the acceptance-rejection section and implements the 
first generated one. In other words, the condition for acceptance-rejection of the collision pair (i,j) in 
the ISBT scheme would be as follows: 

 ௜ܹ௝ ൌ ௡ܨ݇ ఙ೔ೕ௚೔ೕఛ௏ሺ೗ሻ ൐ ܴܽ݊ ூ݂  (13) 

Fig.3 compares the sequences of the ISBT and SBT procedures, in selection of the first and second 
collision pairs. Note that the main differences lie on the indexing section (the way to arrange particle 
numbers) and also in the acceptance/rejection section (the decision to generate or not the new random 
number ܴܽ݊ ூ݂). 
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Figure 3: The Simplified Bernoulli trials (SBT) and the Intelligent Simplified Bernoulli trials (ISBT) collision 
schemes, compared by their collision procedures. 
As a result of this modification, pseudo-circular subcells (Fig.4) will be created that allow an easier 
acceptance for closer-pairs and a more superior condition for far from each other particles; it is 
because that smaller number for ݆, as the second particle in the hierarchical list of indexed numbers, is 
only obtained if the ܴܽ݊ ூ݂ is closer to zero, and conversely, greater number for ݆, as the second 
particle, is merely obtained if the ܴܽ݊ ூ݂ is further from zero. 
 

 
Figure 4: Pseudo-circular subcells in the ISBT scheme that causes a biased selection for closer collision pairs. 

4.1.1  ISBT analysis in micro cavity 

Having described the ISBT scheme, let’s consider a square lid-driven cavity, shown in Fig.5-a, as a 
study tool to investigate the validation of primary properties of the ISBT collision scheme. Fig.5-b, 
represents the accuracy of the ISBT collision scheme relative to its other counterparts, the SBT and 
Nearest Neighbor (NN) schemes, in prediction of the velocity components along the cavity center 
lines.  

Indexing
•Indexing particles from 1 to N(l).

Select i

•Sequential selection of the first particle: 
i=1,N(l).

Select j

•Generate the Random number Ranf .
•Select the second pair from Eq. (8). 

Accept/
Reject?

•Generate the new Random number Ranf
•Check the Inequality (9).

Indexing

•Sort and index particles from 1 to N(l)

based on their distances to the cell 
corner.

Select i

•Sequential selection of the first particle: 
i=1,N(l).

Select j

•Generate the Random number RanfI .
•Select the second pair from Eq. (12). 

Accept/
Reject?

•Check the Inequality (13) while the 
RanfI is not a new Random number.

ISBT SBT 
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  (a) (b) 
Figure 5: (a) the lid-driven cavity used to investigate the validation of the ISBT scheme, (b) comparison of 
velocity components of the lid-driven cavity along the center lines, between NN, ISBT, and SBT schemes, in 
two different division grids of 100×100 and 200×200 with 10 particles per collision cell. 
 
The dimensionless number, ܱܵܨ, which is the mean collision separation distance ሺMCSሻ divided by 
the local mean free path ሺλሻ, is selected as a parameter for measuring the quality of collisions. Tab.3 
averts that the ISBT, compared with the SBT collision scheme, reduced the ܱܵܨ value about one-
third. 
 

Collision scheme Division size SOF value SOF normalized by the 
resembling NN value 

SOF normalized by the 
resembling SBT value 

NN 100-100 0.0477 1 0.182 
ISBT 100-100 0.1740 3.66 0.666 
SBT 100-100 0.2621 5.49 1 

Table 3:  Comparison of the ܱܵܨ	ሺெ஼ௌఒ ሻ value in the lid-driven cavity flow between NN, ISBT and SBT collision 

schemes. 

5.  CONCLUSIONS  

In general, the collision schemes used in the DSMC method can be categorized in two groups. The 
popular ones, e.g. NTC, are constructed on the estimation of maximum collision rate per time step. We 
paid our attention on the second group which are based on the Kac collision model. We demonstrated 
that their algorithm construction allows these collision schemes to avoid repeat collisions and therefore 
employ smaller number of particles per cell. Furthermore, the performance and accuracy analyses of 
the Bernoulli-trials family of collision schemes presented. It was shown that the simplification done in 
the Bernoulli Trials (BT) collision scheme lets the SBT collision algorithm to improve its efficiency. 
We reviewed how it is possible to implement the combination of the SBT collision scheme with the 
Transient Adaptive Subcell (TAS) over the curved boundary geometries. The performance-test data of 
SBT-TAS and NN schemes at the Hypersonic flow over the cylinder referred to the SBT-TAS method 
as a reliable collision scheme in hypersonic regimes. In this work, we also introduced a modified 
version of the SBT scheme - the intelligent simplified Bernoulli-trial (ISBT) scheme, which is 
supplied with a rule for estimation of inter-particle distances and is able to prioritize the collision 
acceptance of closer pairs. We noticed that ISBT compared with the SBT scheme, is able to reduce 
approximately one third of the overall mean collision separation (MCS) distance. 
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