RESEARCH ARTICLE

Estrogen Receptor Alpha Gene Expression in Breast Cancer Tissues from the Iranian Population - a Pilot Study

Arezoo Hosseini^{1&}, Vinod Gopalan^{2&*}, Mohammadreza Nassiri^{1*}, Kamran Ghaffarzadehgan³, Ali Aslaminejad¹, Shahrokh Ghovvati¹, Robert A Smith², Alfred KY Lam²

Abstract

Estrogen receptor alpha (ER α) is one of the major sub-types of estrogen receptors. ER α plays an important role in cellular proliferation and differentiation, chiefly in mammary tissues. In the present study we aimed to quantify of ER α mRNA and protein expression in breast tissues from the Iranian population using a real-time PCR assay. Twenty nine breast tissues including 19 adenocarcinomas and 10 normal controls were recruited from the Iranian population. mRNA extraction and cDNA synthesis were performed from these tissues using commercial kits. ER α mRNA and protein expression was quantified using real-time PCR and immunohistochemistry respectively. The results showed high expression of ER α mRNA (68%) and protein (53%) in the majority of breast cancer tissues compared to normal breast tissues (p= 0.035). Also, high ER α mRNA was associated with tumour size of breast carcinomas. In this study, we first reported the expression of ER α in Iranian patients with breast cancers and demonstrated prevalence of the expression to be similar to breast cancers noted in other populations.

Keywords: Breast cancer - gene expression - $ER\alpha$ - relative quantitative real-time PCR - Iran

Asian Pac J Cancer Prev, 15 (20), 8789-8791

Introduction

Previous studies suggest that during breast cancer development alterations occur in estrogen signaling pathways, mainly estrogen receptor α (ER- α) (Medina-Jaime et al., 2014). Role of estrogen receptors and its modulators in breast cancer have been widely studied in western population (Buzdar, 2013). Recently, there were Few studies have been reported recently on the genetic variance of ER- α in the Iranian population (Abbasi et al., 2009; 2012; Izadi et al., 2012). Abbasi et al. (2012) reported that single nuclear pleomorphism (SNP) s in estrogen receptor α and β have additive effects in increasing risk for developing breast cancer among Iranian breast cancer patients (Abbasi et al., 2012; Rahimzadeh et al., 2014). Also, another study reported the incidence of hypermethylation in the promoter promoter region of ER in Iranian population (Izadi et al., 2012). To the best of our knowledge, there was no study has been reported so far to determine the expression patterns of ER α mRNA or protein in breast cancer tissues due to the lack of access to human tissue samples. In this study, we aimed to measure $ER\alpha$ gene expression in breast cancer tissues obtained from Iranian population at both mRNA and protein. Also, some clinopathological parameters from these patients

were analyzed (compared to control) in conjunction with the changes in $ER\alpha$ expression.

Materials and Methods

Selection of patients

Formalin fixed paraffin tissues from 19 female patients diagnosed with breast carcinoma and 10 non-neoplastic (control) breast tissues were recruited from Moayyed laboratory, Mashhad, Iran. All breast cancers selected in this study were ductal adenocarcinomas and they were recruited retrospectively with no selection bias. Histopathological analysis was confirmed a hospital pathologist.

Total RNA extraction and quantitative RT-PCR

Total RNA was extracted using similar methods we published previously (Lam et al., 2011; Gopalan et al., 2014). Reverse transcription of the mRNA into cDNA was carried out using RevertAidTM H Minus Reverse Transcriptase kit (Fermentas, Burlington, USA). Details of the primers and amplicon size are illustrated in Table 1. A quantitative RT-PCR was used for the determination of ER α gene expression levels in the breast specimens on an ABI Prism 7300 Thermal Cycler (Applied Biosystems,

¹Animal Science department & Research Institute of Biotechnology, Ferdowsi University of Mashhad, ³Department of Pathology, Razavi Hospital, Mashhad, Iran, ²Cancer Molecular Pathology, Griffith Health Institute, Griffith University, Gold Coast, Australia [&]Equal contributors *For correspondence: v.gopalan@griffith.edu.au

Table 1. Features of Designed Real-Time PCR Primers (Oligonucleotide Primer Sequences) for ERa and GAPDH

Gene	Primer sequence	Accession number	product size (bp)	Annealing temperature
ERα	5' TGGTCAGTGCCTTGTTGGATG 3'	MN_001122740	111	60°C
	5' TGTCTTGCCAGGTTGGTCAGTAAG 3'			
GAPDH	5' GAAGGCTGGGGGCTCATTTGA 3'	NM_002046	127	60°C
	5' GCTGATGATCTTGAGGCTGTTGT 3'			

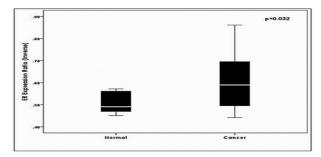


Figure 1. ER α mRNA Expression in Normal and Cancer Breast Tissues. The mean expression ratio (inverse ratio of ER α /GAPDH) showed high expression of ER α m RNA in breast cancer tissues compared to control samples (p=0.032)

Foster city, USA) using GAPDH as a ubiquitous control.

Immunohistochemical determination of $ER\alpha$ protein expression

Immunohistochemical (IHC) staining for ER α protein was performed by the Pathology Department, Moayyed lab following routine IHC procedures. Primary monoclonal ER α antibody (ER-6F11, Novocastra, Newcastle, UK) was used at 1:50 dilution. Counterstaining was performed using 3,3-Diaminobenzidine (DAB) and Mayer's hematoxylin. Cutoff for positivity was determined at % of tumor cells staining positively for ER (i.e<1% of cells in the tumor stained was considered negative for ER α).

PCR efficiency and data analysis

PCR efficiency and data analysis was performed using similar methods we published previously (Gopalan et al., 2010; Lam et al., 2011; Gopalan et al., 2014). Statistical analysis was performed using the Statistical Package for Social Sciences for Windows (version 20.0, SPSS Inc., Chicago, IL, USA). Significance level of the tests was taken at p<0.05.

Results

High ERa mRNA expression in breast cancer tissues

The differences in ER α mRNA expression between the breast cancer and normal tissues were significant (Table 2). The mean inverse expression ratio between ER α and GAPDH (inverse) showed high ER α m RNA levels in the breast cancer tissues compared to the normal breast tissues (mean expression ratio, 0.612 versus 0.510, p=0.032) (Figure 1). In breast cancer tissues, 68% (n=13/19) had over expression of ER α mRNA, 21% showed reduced expression (n=4/19) and 11% (n=2/19) were within the normal range.

ERa protein expression in breast cancer tissues

The ER α protein expression was expressed in all

8790 Asian Pacific Journal of Cancer Prevention, Vol 15, 2014

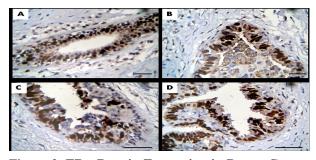


Figure 2. ER α Protein Expression in Breast Cancer Tissues (A-D). A strong brown staining on the nucleus of breast ductal epithelium indicates the high protein expression of ER α

Table 2. ER Expression in Different Breast CancerTissues from Iranian Population

Туре	No	Mean Age (Min-Max)	Expression Ratio (Mean±SD)	p value
Cancer	19	50 (28-75)	0.612 (±0.05)	0.035
Normal	10	33 (19-44)	0.505 (±0.02)	

Table 3. ER mRNA Expression Patterns andCorrelations with Clinical in Breast Cancer Patients

Features	Total Number	High Expression	Low Expression	Normal p value Expression		
Age Group						
Age≤50	12	8 (66.7%)	3 (25.0%)	1 (8.3%) 0.817		
Age>50	7	5 (71.4%)	1 (14.3%)	1 (14.3%)		
Size of tumour						
≤20mm	10	5 (50.0%)	4 (40.0%)	1 (10.0%) 0.039		
>20mm	9	8 (88.8%)	0 (0.0%)	1 (11.9%)		
Menopause status						
Yes	8	6 (75.0%)	1 (12.5%)	1 (12.5%) 0.734		
No	11	7 (63.6%)	3 (27.3%)	1 (9.1%)		

 Table 4. ER Protein Expression Patterns and

 Correlations with Clinical in Breast Cancer Patients

Features	Total	0-30%	30-70%	>70%	p value	
	Number	Expression	Expression	Expression		
Age Group						
Age≤50	12	1 (8.3%)	5 (41.7%)	6 (50.0%)	0.82	
Age>50	7	1 (14.3%)	2 (28.6%)	4 (57.1%)		
Size of tumour						
≤20mm	10	1 (10.0%)	3 (30.0%)	6 (60.0%)	0.782	
>20mm	9	1 (11.1%)	4 (44.4%)	4 (44.4%)		
Menopause status						
Yes	8	1 (12.5%)	2 (25.0%)	5 (62.5%)	0.653	
No	11	1 (9.1%)	5 (45.5%)	5 (45.5%)		

selected tissues with breast carcinoma. The ER α protein staining was located in the nuclei of the tumour cells (Figure 2). Similar to mRNA expression changes, ER α protein also showed higher expression in breast cancer tissues compared to control samples. High ER α protein staining (> 70% of cells showing protein staining) was noted in almost half (53%, n=10/19) of the of the selected

20.3

6.3

10.1

breast cancer tissues. ER α protein expression pattern in the remaining samples were noted as 0-30% stained cells in 11% (n=2) and 30-70% stained cells in 37% (n=5).

Correlation analysis of ERa mRNA and protein expression with clinicopathological parameters

All selected breast cancer tissues were clinically grouped as stage II tumours. ER α mRNA expression was noted to be high in breast cancers with bigger tumours compared to cancers with small tumours (89% over 50%, p=0.039). Also, no low expression of ER α mRNA was noted on cancers with high tumour sizes (Table 3). ER α protein expression was not correlated with any of these clinicopathological parameters.

Discussion

Detection and quantification of estrogen receptor is a useful tool in the diagnosis and prediction of hormone therapy response in breast cancer patients. (Clark et al., 1987; Nilsson et al., 2001; Hooshmand et al., 2014). Quantification of ER α mRNA and protein expression in breast cancer tissues using real time PCR assay and immunohistochemistry has been previous reported (Bieche et al., 2001; De Cremoux et al., 2002; Chuangsuwanich et al., 2014; Wang et al., 2014). In this study, we demonstrated altered ER α mRNA and protein expression for the first time in Iranian population.

Over expression of ER α plays a major role in breast cancer pathogenesis via promoting cell growth and proliferation. This study showed increased expression of ER α mRNA and protein in breast cancer tissues compared to normal breast tissues. Also, over expression of ER α was correlated with tumour size in breast carcinoma. These results support the previous findings that ER α over expression is a common event in breast cancer population (Holst et al., 2007). Also, this finding on Iranian population shows the significant use of this gene in the molecular diagnosis and screening for Iranian women. Furthermore, ER α expression changes can be useful in selecting patients for anti-estrogen therapy in Iranian population as similar to the breast cancer management plans in western countries.

In conclusion, we have identified changes in the expression of ER α in breast cancer and normal tissues from Iranian population. In breast adenocarcinomas, ER α over expression was often noted at both mRNA and protein level. The difference in expression of ER α between normal and cancerous tissue suggests that ER α expression may be a useful surrogate molecular marker in breast adenocarcinoma. Also, these results show that ER α gene can be used as biomarker for screening and diagnosis of breast cancer patients in Iran. Further studies into this gene should be performed to identify its role in cancer development in different population.

Acknowledgements

The authors extend special thanks to Mr. Doosti for help us to perform this work. Meanwhile, we would like special thanks from Excellent Center in Animal Science of Ferdowsi University of Mashhad, Iran and Biotechnology *ERα Expression in Breast Cancer Tissue from Iranian Patients.* Institute of Ferdowsi University of Mashhad for kindly providing the funding for this research. We thank the Mouyed laboratory of Mashhad Iran for their assistance in specimen collection. This work was supported by a grant of Agricultural Faculty of Ferdowsi University of Mashhad, Iran.

References

- Abbasi S, Nouri M, Azimi C (2012). Estrogen receptor genes variations and breast cancer risk in Iran. *Int J Clin Exp Med*, 5, 332-41.
- Bieche I, Parfait B, Laurendeau I, et al (2001). Quantification of estrogen receptor a and b expression in sporadic breast Cancer. *Oncogene*, **20**, 8109-15.
- Buzdar AU (2013). Meta-analysis: Selective estrogen-receptor modulators reduce breast cancer incidence. Ann Intern Med, 159, 9.
- Clark GM, Sledge GW, Osborne CK, et al (1987). Survival from first recurrence: relative importance of prognostic factors in 1,015 breast cancer patients. J Clin Oncol, 5, 55-61.
- Chuangsuwanich T, Pongpruttipan T, O-Charoenrat P, et al (2014). Clinicopathologic features of breast carcinomas classified by biomarkers and correlation with microvessel density and VEGF expression: a study from Thailand. *Asian Pac J Cancer Prev*, **15**, 1187-92.
- De Cremoux P, Tran-Perennou C, Elie C, et al (2002). Quantitation of estradiol receptors alpha and beta and progesterone receptors in human breast tumors by real-time reverse transcription-polymerase chain reaction correlation with protein assays. *Bichem Pharmacol*, **64**, 507-15.
- Gopalan V, Pillai S, Ebrahimi F, et al (2014). Regulation of microRNA-1288 in colorectal cancer: Altered expression and its clinicopathological significance. *Mol Carcinog*, 53, 36-44.
- Gopalan V, Smith RA, Nassiri MR, et al (2010). GAEC1 and colorectal cancer: a study of the relationships between a novel oncogene and clinicopathologic features. *Hum Pathol*, **41**, 1009-15.
- Holst F, Stahl PR, Ruiz C, et al (2007). Estrogen receptor alpha (ESR1) gene amplification is frequent in breast cancer. *Nat Genet*, **39**, 655-60.
- Hooshmand S, Ghaderi A, Yusoff K, et al (2014). Differentially expressed proteins in ER+ MCF7 and ER- MDA- MB-231 human breast cancer cells by RhoGDI-α silencing and overexpression. Asian Pac J Cancer Prev, 15, 3311-7
- Izadi P, Noruzinia M, Karimipoor M, et al (2012). Promoter hypermethylation of estrogen receptor alpha gene is correlated to estrogen receptor negativity in Iranian patients with sporadic breast cancer. Cell J, 14, 102-9.
- Lam AK, Gopalan V, Nassiri MR, et al (2011). Altered JS-2 expression in colorectal cancers and its clinical pathological relevance. *Mol Oncol*, 5, 475-81.
- Medina-Jaime AD, Reyes-Vargas F, Martinez-Gaytan V, et al (2014). ESR1 and PGR gene promoter methylation and correlations with estrogen and progesterone receptors in ductal and lobular breast cancer. Asian Pac J Cancer Prev, 15, 3041-4.
- Mousavi SM, Mohagheghi MA, Mousavi-Jerrahi A, et al (2008). Outcome of breast cancer in Iran: a study of Tehran Cancer Registry data. Asian Pac J Cancer Prev, 9, 275-8.
- Nilsson S, Makela S, Treuter E, et al (2001). Mechanisms of estrogen action. *Physiol Rev*, 81, 1535-65.
- Rahimzadeh M, Baghestani AR, Gohari MR, Pourhoseingholi MA (2014). Estimation of the cure rate in Iranian breast cancer patients. *Asian Pac J Cancer Prev*, **15**, 4839-42.
- Wang LW, Yang GF, Chen JM, et al (2014). A clinical database of breast cancer patients reveals distinctive clinico-pathological characteristics: a study from central China. Asian Pac J Cancer Prev, 15, 1621-6.