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NEW (FG )-EXPANSION METHOD AND ITS APPLICATIONS TO

NONLINEAR PDES IN MATHEMATICAL PHYSICS

M. MORTAZAVI, M. GACHPAZAN

Abstract. In this work, the new (F
G
) -expansion method is proposed for

obtaining traveling wave solutions of non linear evolution equations. This

method is more powerful than the method (G
′

G
) -expansion method. The ef-

ficiency of the method is demonstrated on a variety of nonlinear PDEs such

as convection-diffusion equation, Zoomeron equation. As a result, more trav-
eling wave solutions are obtained including not only all the known solutions
but also the computation burden is greatly decreased compared with the ex-
isting method. Abundant exact traveling wave solutions of these equations

are expressed by the hyperbolic functions the trigonometric functions. Also it
is shown that the proposed method is efficient for solving nonlinear evolution
equations in mathematical physics and in engineering.

1. Introduction

Nonlinear partial differential equations (NLPDEs) have been widely applied in
many branches of applied sciences such as fluids dynamics, bio-mechanics, chemical
physics, particle physics, quantum field theory, optical fibers and plasma physics
etc. So, the theory of nonlinear dispersive wave motion has recently undergone
much study. Today there are several and ever in creasing number of papers that
are being published in this area of research ([1]-[30]). The solutions of nonlinear
equations play a crucial role in applied mathematics and physics, because; solutions
of nonlinear partial differential equations provide a very significant contribution to
people about the exact solutions of nonlinear evolution equations have been estab-
lished and developed, such as the tanh-coth function expansion ([1]-[4]), the solitary
wave ansatz method ([5]-[8]), Lie symmetry analysis [9], the sub-ODE method [10],
exp-function method [11, 12], the homogeneous balance method [13], the first inte-
gral method [14, 15], the simplest equation method [16, 17] and so on. But there
is no unified method that can be used to deal with all types of nonlinear avolution
equations.
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Recently, Wang et al. [18] interoduced a new direct method called the (G
′

G )-
expansion method to look for traveling wave solutions of nonlinear evolution equa-
tions. One of the most effective straightforward method to construct exact solutions

of PDEs is the (G
′

G )-expansion method ([19]-[21]). Motivated by work in [18], the

main purpose of this paper is to introduce a new technique called (FG )-expansion
method is that the traveling wave solutions of a nonlinear evolution equation can
be expressed by a polynomial in (FG ), where G = G(ξ) and F = F (ξ) satisfy the

first order linear ordinary differential system (FLODS) as follows: F
′
(ξ) = λG(ξ),

G
′
(ξ) = µF (ξ), where µ, λ are constants. This new method will play an important

role in expressing the traveling wave solutions for nonlinear evolution equations via
the Zoomeron equation and convection-diffusion reaction (CDR) scalar transport
equation. CDR equation is practically important because the working equations
of many cases fall into this filed. Typical examples are the Helmholtz equation for
modeling exterior acoustics [22], constitutive equations for modeling the turbulent
quantities k and ε [23], and viscoelastic constitutive equations for modeling the ex-
tra stresses in non-Newtonian fluid flows [24]. The rest of this paper is organized as
follows: In Section 2, we give the description of the (FG )-expansion method. From
Section 3 to Section 4, we apply this method to solve Zoomeron equation and CDR
equation. In Section 5, some conclusions are given.

2. Description of the (FG )-expansion method

Suppose that a nonlinear equation is given by

p(u, ut, ux, utt, uxx, uxt, . . .) = 0, (1)

where u = u(x, t) is an unknown function and p is a polynomial in u(x, t) and its
partial derivatives, in which the highest order derivatives and nonlinear terms are
involved. In the following we give the main steps of the (FG )-expansion method.

Step 1. Combining the independent variables x and t into one variable ξ = x−wt,
we suppose that

u(x, t) = u(ξ), ξ = x− wt, (2)

where w is a nonzero constant. The traveling wave variable ξ permits us to reducing
(1) to an ODE for u = u(ξ),

p(u, u
′
, u

′′
, u

′′′
, . . .) = 0. (3)

Step 2. Suppose that the solution of ODE (3) can be expressed by a polynomial
in (FG ) as follows:

u(ξ) =
m∑
i=0

ai(
F

G
)i, (4)

where G = G(ξ) and F = F (ξ) satisfy the FLODS in the form

F
′
(ξ) = λG(ξ), G

′
(ξ) = µF (ξ). (5)

a0, a1, . . . , am, λ and µ are constants to be determined later, am ̸= 0. The posi-
tive integer m can be determined by considering the homogeneous balance between
the highest order derivatives and nonlinear terms appearing in ODE (3).
with the aid of (5), we can find the following solutions F (ξ) and G(ξ), which are



EJMAA-2016/4(1) ON THE FRACTIONAL-ORDER GAMES 177

listed as follows:

Case 1. If λ > 0 and µ > 0, then (5) has the following hyperbolic function
solutions:


F (ξ) = C1 cosh(

√
λ
√
µξ) + C2

√
λ

√
µ
sinh(

√
λ
√
µξ),

G(ξ) = C1

√
µ

√
λ
sinh(

√
λ
√
µξ) + C2 cosh(

√
λ
√
µξ).

(6)

Case 2. If λ < 0 and µ < 0, then (5) has the following hyperbolic function
solutions:


F (ξ) = C1 cosh(

√
−λ

√
−µξ)− C2

√
−λ√
−µ

sinh(
√
−λ

√
−µξ),

G(ξ) = −C1

√
−µ√
−λ

sinh(
√
−λ

√
−µξ) + C2 cosh(

√
−λ

√
−µξ).

(7)

Case 3. If λ > 0 and µ < 0, then (5) has the following trigonometric function
solutions:


F (ξ) = C1 cos(

√
λ
√
−µξ) + C2

√
λ√
−µ

sin(
√
λ
√
−µξ)

G(ξ) = −C1

√
−µ√
λ

sin(
√
λ
√
−µξ) + C2 cos(

√
λ
√
−µξ).

(8)

Case 4. If λ < 0 and µ > 0, then (5) has the following trigonometric function
solutions:


F (ξ) = C1 cos(

√
−λ

√
µξ)− C2

√
−λ
√
µ

sin(
√
−λ

√
µξ),

G(ξ) = C1

√
µ

√
−λ

sin(
√
−λ

√
µξ) + C2 cos(

√
−λ

√
µξ).

(9)

Step 3. Substituting (4) and (5) into equation (3) separately yields a set of alge-
braic equations for (FG )i(i = 1, 2, . . . ,m). Setting the coefficients of (FG )i to zero
yields a set of nonlinear algebraic equations in ai(i = 0, 1, 2, . . . ,m) and w. Solv-
ing the nonlinear algebraic equations by Maple and Mathematica, we obtain many
exact solutions of (1) according to (2), (4),(6), (7),(8) and (9).
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Remark: From the above cases, it is concluded that the proposed method can

produce more traveling solutions compare with the (G
′

G )-expansion method. This
can be easily seen from the characteristic equation of (5).

3. Application to the Zoomeron equation

In this section, we will apply the (FG )-expansion method to construct the travel-
ing solutions for Zoomeron equation [25]

(
uxy

u
)tt − (

uxy

u
)xx + 2(u2)xt = 0, (10)

where u(x, y, t) is the amplitude of the relevant wave mode. We know that this
equation was introduced by Calogero and Degasperis [26]. The travelig wave vari-
able below,

u(x, y, t) = u(ξ), ξ = x− cy − wt, (11)

Permits us to convert (10) into an ODE for u(x, y, t) = u(ξ) in the form

c(1− w2)u
′′
− 2wu3 −Ru = 0, (12)

where R is a constant of integration and w ̸= {0, 1}.
By balancing between u

′′
with u3 in (12) we get m = 1. Consequently, we get

u(ξ) = a0 + a1(
F

G
) a1 ̸= 0, (13)

where a0, a1 are constants to be determined later
By substituting (13) into (12) and collecting all terms with the same power of

(FG ) together, the left- hand side of (12) is converted into another polynomial in

(FG ). Equating each coefficient of this polynomial to zero, yields a set of algebraic
equations for a0, a1, λ, R, µ and w as follows:

(
F

G
)1 : −2wa30 − ra0 = 0,

(
F

G
)2 : −6wa20a1 + 2cw2a1µλ−Ra1 − 2ca1λµ = 0,

(
F

G
)3 : −6wa0a

2
1 = 0,

(
F

G
)4 : −2cw2a1µ

2 − 2wa31 + 2ca1µ
2 = 0.

On solving the above algebraic equations using the Maple or Mathematica, we get
the following results:

a0 = 0, a1 =

√
c(1− w2)

w
, R = 2cw2µλ− 2cλµ. (14)

Substituting (14) into (13) we can obtain four types of traveling wave solutions of
the Zoomeron (10) as follows:
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When λ > 0 and µ > 0, we obtain the hyperbolic function solutions

u1(x, y, t) =

√
c(1− w2)

w


C1 cosh(

√
λ
√
µξ) + C2

√
λ

√
µ
sinh(

√
λ
√
µξ)

C1

√
µ

√
λ
sinh(

√
λ
√
µξ) + C2 cosh(

√
λ
√
µξ)

 , (15)

where ξ = x− cy − wt, C1 and C2 are arbitrary constants.
In particular, if C1 = 0, C2 ̸= 0, we have the solitary wave solution

u1(x, y, t) =

√
λc(1− w2)

µw

(
tanh(

√
λ
√
µξ)

)
. (16)

When λ < 0 and µ < 0, we obtain the hyperbolic function solutions

u2(x, y, t) =

√
c(1− w2)

w


C1 cosh(

√
−λ

√
−µξ)− C2

√
−λ√
−µ

sinh(
√
−λ

√
−µξ)

−C1

√
−µ√
−λ

sinh(
√
−λ

√
−µξ) + C2 cosh(

√
−λ

√
−µξ)

 ,

(17)

where ξ = x− cy − wt, C1 and C2 are arbitrary constants.
If C1 = 0, C2 ̸= 0, we have the solitary wave solution

u2(x, y, t) = −

√
λc(1− w2)

µw

(
tanh(

√
−λ

√
−µξ)

)
. (18)

When λ > 0 and µ < 0, we obtain the trigonometric function solutions

u3(x, y, t) =

√
c(1− w2)

w


C1 cos(

√
λ
√
−µξ) + C2

√
λ√
−µ

sin(
√
λ
√
−µξ)

−C1

√
−µ√
λ

sin(
√
λ
√
−µξ) + C2 cos(

√
λ
√
−µξ)

 , (19)

where ξ = x− cy − wt, C1 and C2 are arbitrary constants.
When λ < 0 and µ > 0, we obtain the trigonometric function solutions

u4(x, y, t) =

√
c(1− w2)

w


C1 cos(

√
−λ

√
µξ)− C2

√
−λ
√
µ

sin(
√
−λ

√
µξ)

C1

√
µ

√
−λ

sin(
√
−λ

√
µξ) + C2 cos(

√
−λ

√
µξ)

 , (20)

where ξ = x− cy − wt, C1 and C2 are arbitrary constants.
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4. Application to the CDR equation

We consider the one dimensional convection-diffusion reaction equation by using
(FG )-expansion[27, 28]

ϕt + uϕx − kϕxx + F = 0, (21)

Where the reaction term F is a source. We remark that geologists, civil engineers,
mathematicians, and so on, frequently use different terminology in describing the
phenomena embodied in (21). As found in [23], if the tracer is radioactive with
decay rate c, then F = cϕ and we obtain the linear CDR

ϕt + uϕx − kϕxx + cϕ = 0. (22)

If the tracer is a biological species with logistic growth rate F = rϕ(1 − ϕp

R
),

where r is the growth constant, R is the carrying capacity, and p ̸= 1 is a positive
quantity. Then we start with the CDR equation (convection-diffusion equation with
growth) in the form

ϕt + uϕx − kϕxx + αϕ− βϕp = 0, (23)

where k, α and β are nonzero constants. To solve equation (23), consider the wave
transformation

ϕ(x, t) = ϕ(ξ), ξ = x− wt, (24)

where w is constants that to be determined later.
By using the transformation ξ, (24), equation (23) can be coverted to following
ODE

αϕ+ (u− w)ϕ
′
− kϕ

′′
− βϕp = 0. (25)

By balancing ϕ
′′
and ϕp we get

m+ 2 = mp ⇒ m =
2

p− 1
(26)

To get a colsed form analytic solution, the parameter m should be integer. A trans-
formation formula

ϕ = v
2

p−1 (27)

Should be use to achieve our goal. This in turn transforms (25) to

αv2 +
2

p− 1
(u− w)v

′
v − 2k

p− 1
v

′′
v − 2k(3− p)

(p− 1)2
(v

′
)2 − βv(4) = 0. (28)

Balancing v
′′
v and v(4), we find

m+ 2 +m = 4m ⇒ m = 1.

Consequently from (4) we get

v(ξ) = a0 + a1(
F

G
). (29)

Substituting (29) into equation (28), collecting the coefficients of each power of

(
F

G
), and solve the system of algebraic equations using Maple, we obtain the set of
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solution:

a0 = a0, a1 = a1, µ = µ λ =
a20µ

a21
(30)

w = −2kµa0p− ua1p+ 6a0µk + ua1
a1(p− 1)

.

Substituting these results into (29) and using (6)-(9) we can obtain four types of
traveling wave solutions of the CDR (23) as follows:
When λ > 0 and µ > 0, we obtain the hyperbolic function solutions

ϕ1(x, t) =

a0 + a1

C1 cosh(
a0µ

a1
ξ) + C2

a0
a1

sinh(
a0µ

a1
ξ)

C1
a1
a0

sinh(
a0µ

a1
ξ) + C2 cosh(

a0µ

a1
ξ)




2

p− 1

, (31)

where ξ = x − (−2kµa0p− ua1p+ 6a0µk + ua1
a1(p− 1)

)t, C1 and C2 are arbitrary con-

stants.

When λ < 0 and µ < 0, we obtain the hyperbolic function solutions

ϕ2(x, t) =

a0 + a1

 C1 cosh(
a0µ

a1
ξ)− C2

a0
a1

sinh(
a0µ

a1
ξ)

−C1
a1
a0

sinh(
a0µ

a1
ξ) + C2 cosh(

a0µ

a1
ξ)




2

p− 1

, (32)

where ξ = x − (−2kµa0p− ua1p+ 6a0µk + ua1
a1(p− 1)

)t, C1 and C2 are arbitrary con-

stants.
When λ > 0 and µ < 0, we obtain the trigonometric function solutions

ϕ3(x, t) =

a0 + a1

 C1 cos(
a0
a1

√
µ
√
−µξ) + C2

a0
a1

√
µ

√
−µ

sin(
a0
a1

√
µ
√
−µξ)

−C1
a1
a0

√
−µ
√
µ

sin(
a0
a1

√
µ
√
−µξ) + C2 cos(

a0
a1

√
µ
√
−µξ)




2

p− 1

,

(33)

where ξ = x − (−2kµa0p− ua1p+ 6a0µk + ua1
a1(p− 1)

)t, C1 and C2 are arbitrary con-

stants.

When λ < 0 and µ > 0, we obtain the trigonometric function solutions

ϕ4(x, t) =


a0 + a1


C1 cos(

√
−

a2
0µ

a2
1

√
µξ) − C2

√
−

a2
0µ

a2
1√

µ
sin(

√
−

a2
0µ

a2
1

√
µξ)

C1

√
µ√

−
a2
0

a2
1

µ

sin(

√
−

a2
0µ

a2
1

√
µξ) + C2 cos(

√
−

a2
0µ

a2
1

√
µξ)





2

p − 1

, (34)
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where ξ = x − (−2kµa0p− ua1p+ 6a0µk + ua1
a1(p− 1)

)t, C1 and C2 are arbitrary con-

stants.

In particular, if C1 = 0, C2 ̸= 0, p = 2, λµ > 0, then (31) and (32) become

ϕ(x, t) = a0

(
1 + tanh(

a0µ

a1
(x+

2kµa0p+ ua1p− 6a0µk − ua1
a1(p− 1)

t))

)
, (35)

which are the solitary wave solutions of the CDR equation (23).

5. conclusion

In this paper, (FG ) -expansion method is used to obtain more general exact solu-

tions of the nonlinear evolution equations. The advantages of the (FG ) -expansion
method is that it is possible to obtain more traveling wave solutions with distinct
physical structures. Form our results, some results previous known as traveling
wave solutions and soliton-like solutions can be recovered. Moreover, the proposed
method is capable of greatly can be minimizing the size of computational work
compared to the existing technique. Finally, it is worth to mention that the im-
plementation of this proposed method is very simple and straightforward, and it
can also be applied to other nonlinear evolution equations arising in mathematical
physics.

References

[1] N. Taghizadeh and M. Mirzazadeh, The modified tanh method for solving the improved

Eckhaus equation and the (2+1)-dimensional improved Eckhaus equation, Australian J. of
Basic and Applied Sciences, Vol. 4(12), 6373-6379, 2010.

[2] A.M. Wazwaz, The CamassaHolmKP equations with compact and noncompact traveling wave
solutions, Appl. Math. Comput, Vol. 170(3), 4760, 2005.

[3] H. Triki, A. Yildirim, T. Hayat, O.M. Aldossary and A. Biswas, Topological and non-
topological soliton solutions of the bretherton equation, Proceedings of The Romanian Acad-
emy, Series A, Vol. 13, 103-108, 2012.

[4] H. Triki, S. Crutcher, A. Yildirim, T. Hayat, O.M. Aldossary and A. Biswas, Bright and dark
solitons of the modified Complex Ginzburg Landau equation with parabolic and dual power
law nonlinearity, Romanian Reports in physics, Vol. 64, 367-380, 2012.

[5] A. Biswas, Optical solitons with time-dependent dispersion nonlinearity and attenuation in

a kerr-law media, Int. J. Theor. Phys, Vol. 48, 256-260, 2009.
[6] A. Biswas, 1-Soliton solution of the K(m,n) equation with generalized evolution, Phys. Lett.

A, Vol. 372(25), 4601-4602, 2008.
[7] A. Biswas, Solitary wave solution for the generalized Kawahara equation, Appl. Math. Lett,

Vol. 22, 208210, 2009.
[8] A. Biswas, 1-Soliton solution of the K(m,n) equation with generalized evolution and time

dependent damping and dispersion, Comput. Math. Appl, Vol. 59(8), 2538-2542, 2010.
[9] C.M. Khalique and A. Biswas, A Lie symmetry approach to nonlinear Schrodingers equa-

tion with non-Kerr law nonlinearity, Communications in Nonlinear Science and Numerical
Simulation, Vol. 14(12), 4033-4040, 2009.

[10] X.Z. Li and M.L. Wang, A sub-ODE method for finding exact solutions of a generalized
KdV-mKdV equation with high-order nonlinear terms, Phys. Lett. A, Vol. 361, 115-118,

2007.
[11] G. Ebadi, A. Yildirim and A. Biswas, Chiral solitons with Bohm potential using method and

exp-function method, Romanian Reports in Physics, Vol. 64(2), 357-366, 2012.

[12] J.H. He and X.H. Wu, Exp-function method for nonlinear wave equations, Chaos. Solitons
Fractals, Vol. 30, 700-708, 2006



EJMAA-2016/4(1) ON THE FRACTIONAL-ORDER GAMES 183

[13] X. Zhao, L. Wang and W. Sun, The repeated homogeneous balance method and its appli-

cations to nonlinear partial differential equations, Chaos, Solitons and Fractals, Vol. 28(2),
448-453, 2006.

[14] M. Mirzazadeh and M. Eslami, Exact solutions of the KudryashovSinelshchikov equation and
nonlinear telegraph equation via the first integral method, Nonlinear Anal. Modell. Control,

Vol. 17 (4), 481-488, 2012.
[15] M. Eslami, B. Fathi Vajargah, M. Mirzazadeh and A. Biswas, Application of first integral

method to fractional partial differential equations, Indian Journal of Physics, Vol. 88(2),
177-184, 2014.

[16] M. Eslami, M. Mirzazadeh and A. Biswas, Soliton solutions of the resonant nonlinear
Schrodingers equation in optical fibers with time-dependent coefficients by simplest equa-
tion approach, Journal of Modern Optics, Vol. 60(19), 1627-1636, 2013.

[17] A. Yildirim, A. Samiei Paghaleh, M. Mirzazadeh, H. Moosaei and A. Biswas, New exact

travelling wave solutions for DS-I and DS-II equations, Nonlinear Anal. Modell. Control, Vol.
17 (3), 369-378, 2012.

[18] M. Wang, X. Li and J. Zhang, The (G
′
/G)-expansion method and travelling wave solutions

of nonlinear evolution equations in mathematical physics, Phys. Lett. A, Vol. 372, 417-423,
2008.

[19] G. Ebadi and A. Biswas, Application of the (G
′
/G)-expansion method for nonlinear diffusion

equations with nonlinear source, Journal of the Franklin Institute, Vol. 347(7), 1391-1398,
2010.

[20] M. Mirzazadeh, M. Eslami and A. Biswas, Soliton solutions of the generalized Klein-Gordon

equation by using (G
′
/G)-expansion method, Comp. Appl. Math, Vol. 33(3), 831-839, 2014.

[21] S. Zhang, L. Dong, J.M. Ba and Y.N. Sun, The (G
′
/G)-expansion method for nonlinear

diferential-diference equations, Phys. Lett. A, Vol. 373, 905-910, 2009.
[22] I. Harari and T.J.R. Hughes, Finite element methods for the Helmholtz equation in an exterior

domain, Model problems, Comput, Methods Appl. Mech. Eng, Vol. 87, 59-96, 1991.
[23] F. Ilinca and D. Pelletier, Positivity preservation and adaptive solution for the k-ϵ model of

turbulence, AIAA. J. Vol. 36, 44-50, 1998.
[24] M.J. Crochet, A.R. Davies and K. Walters, Numerical Simulation of Non-Newtonian Flow,

Elsevier. NewYork, 1984.
[25] R. Abazari, The solitary wave solutions of Zoomeron equation, Appl. Math. Sci, Vol. 5, 2943

- 2949, 2011.
[26] F. Calogero and A. Degasperis, Nonlinear evolution equations solvable by the inverse spectral

transform - I, Nuovo, Cimento, B, Vol. 32, 201-242, 1976.
[27] J. David Logan, Transport modeling in hydrogeochemical systems, In. Appl. Math, 2001.
[28] M. Ohlberger, A Posterior Error Estimates For Centered Finite Volume Approximations of

Convection-Diffusion-Reaction Equations, Math. Model. and Numr. Analy, Vol. 35, 355-387,

2001.
[29] G. Ebadi, N. Yousefzadeh Fard, A.H. Bhrawy, S. Kumar, H. Triki, A. Yildirim and A. Biswas,

Solitons and other solutions to the (3+1)-dimensional extended Kadomtsev-Petviasvili equa-
tion with power law nonlinearity, Romanian Reports in Physics, Vol. 65, 27-62, 2013.

[30] A. Biswas, C. Zony and E. Zerrad, Soliton perturbation theory for the quadratic nonlinear
Klein-Gordon equation, Appl. Math. Comput, Vol. 203 (1), 153-156, 2008.

M. Mortazavi
Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi Uni-

versity of Mashhad, Mashhad, Iran
E-mail address: m mortazavi95@yahoo.com

M. Gachpazan

Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi Uni-
versity of Mashhad, Mashhad, Iran

E-mail address: ghachpazan@um.ac.ir


