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Abstract 
Length-biased data are widely seen in applications. They are mostly applicable in 

epidemiological studies or survival analysis in medical researches. Here we aim to 
propose a Berry-Esseen type bound for the kernel density estimator of this kind of 
data.The rate of normal convergence in the proposed Berry-Esseen type theorem is 
shown to be O(n^(-1/6) ) modulo logarithmic term as n tends to infinity by a proper 
choice of the bandwidth.The results of a simulation study is also presented in this paper 
inorder to examine the performance of the result.  
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Introduction 
Length-biased data happen in different applications. 

If larger elements of the population (in size, length or 
volume) are more probable to be sampled, then this 
sample is called length-biased. One of the most 
important applications of analysing this kind of data is 
in survival analysis. When survival data are collected 
from patients with diseases such as AIDS, cancer or 
dementia, in most cases the initiation time of the 
diseases is not definite. In these cases it is obvious that 
any individual who lives longer, is more probable to be 
sampled. Thus, this sample of survival data is length-
biased. 

The phenomenon of length-bias is noticed by 
Wicksell [18] for the first time. In his research he 
noticed that only the cells that were larger than a 
particular amount, were visible in the microscope. This 
caused a length-biased sample of cells to be studied. 
Length-bias was later statistically studied by Mcfadden 

[12], Blumenthal [3] and Cox [5]. There are many other 
examples of application of length-biased data that give a 
good reason to work on various aspects of these kinds of 
data. Estimating the density function of the population 
of such data is of high interest. Here we use two kernel 
density estimators that are proposed by Jones [8] and 
Bhattacharyya et al. [2]. Various properties of these 
estimators are studied, but the rate of normal 
convergence is not investigated. The rate of normal 
convergence isusually achieved in the form of a theorem 
that is referred to as the Berry-Esseen type theorem in 
the similar works. Parzen [14] achieved a Berry-Esseen 
type bound for the kernel density estimator when the 
sample is independent and identically distributed (i.i.d.), 
Rosenblatt [17] investigated the normality of the kernel 
density estimator of a sample from a stationary Markov 
process and Parakasa Rao [15] proposed a Berry-Esseen 
type theorem for this estimator. Isogai [9] investigated a 
Berry-Esseen type bound for the estimator of the 
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derivatives of the density function of a random sample. 
Several works have been done for a random right 

censorship model. Liuguan and Lixing [11] investigated 
the Berry-Esseen type bound for the kernel density 
estimator of the population density function of such 
data. Liang and Uña-Álvarez [10] have proposed a 
Berry-Esseen type theorem for the kernel density 
estimator when the data are strongly mixing and are also 
opposed to random censorship. Asghari et al. [1] have 
started e Berry-Esseen type theorem for the kernel 
density estimator of left truncated data.Investigating a 
Berry-Esseen type bound for the kernel density 
estimator of length-biased data is the main purpose of 
this paper. 

The layout of this paper is organized as follows. In 
preliminary section the needed notations and some 
preliminaries are given. The main results of the paper 
are proposed in th main results section. A simulation 
study is performed in the simulation section. A 
conclusion from the main results of the paper is briefed 
in the conclusion section. The proofs of the main results 
are stated in the the proof section. 

 
Prelimaniers  

Let  be a population and suppose that  is the 
random variable of interest in this population with 
density function . It is well-known that in a length-
biased model, the data should be positive.  i.i.d. 
random variables , … ,  are sampled from this 
population with the condition that any individual that is 
larger in size, length, volume or lives longer than other 
individuals, has a higher probability to be sampled than 
other individuals. This sample is length-biased with the 
length-biased density function that is shown by  ( ) = ( ) > 0, 

 
in which =  ( ) < ∞ is the mean of the 

population. According to the definition of  it can be 
obtained that  =  ( ) . 

 
It gives the idea of using the following estimator of  

that is denoted by ̂   ̂ = ∑  (1) 
 
 Here a Berry-Esseen type bound is obtained for two 

kernel density estimators that are shown by  and  
and are defined as follows  ( ) = ∑  ,  (2) 

( ) = ∑  , 
 
 in which (⋅) is a kernel function.  is defined for > 0 and  is defined for >  for an arbitrary 

constant > 0.  and  are originally proposed and 
investigated respectively by Jones [8] and 
Bhattacharyya et al. [2]. In order to achieve the desired 
result, we need to present another versions of Jones and 
Bhattacharyya estimators of , which are denoted by  
and . These estimators are defined as bellow  

 ( ) = ∑  , > 0. ( ) = ∑  , > . 
 ( ) and ( ) are usefull when  is known. In 

this paper we present the Berry-Esseen type theorem for 
 and . We also compare their achieved normality 

rate. First we give an abstract modification for the 
variance of  and  because of their usage in the 
main theorems.  ( ) = ℎ 1 −ℎ  

= ℎ  −ℎ ( )
−  −ℎ ( )

 =  ( ) ( ) −  ( ) ( +ℎ ) ),
 ( ) = ℎ −ℎ  

= ℎ  −ℎ ( )−  −ℎ ( )  = ℎ  ( )( + ℎ ) ( + ℎ )  

 −  ( )( + ℎ ) ( +ℎ ) . (7) 
 
Let ( ): = ℎ ( )  and ( ): =ℎ ( ) . From (6) and (7) it can be written that  ( ) =
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 ( ) ( ) − ℎ  ( ) ( + ℎ ) , (8) ( ) =  ( )( + ℎ ) ( + ℎ )  

 −  ( )( + ℎ ) ( + ℎ ) . (9) 
 
Another notation that is needed here is ( ): =( )  ( ) . ( ) will be clarified in Lemma 1.  
 
Remark 1.It should be noted again that ( ), ( ) and ( ) are defined for > 0 and ( ), ( ) and ( ) are defined for >  in which  is 

anarbitrary positive constant. Therefore, in this paper 
wherever ( ), ( ) and ( ) are studied,  is 
assumed to be positive and wherever ( ), ( ) and ( ) are studied, it is assumed that > .  

 

Results 
Main Theorems 

Before starting the main results, some assumptions 
are needed. Theseneeded assumptions are simillar to the 
assumptions that are used in Asghari et al. [1]. Here we 
just use the number of the assumption from Section 3 of 
Asghari et al. [1]. So by Assumption A1 we mean 
Assumption A1 from Section 3 of Asghari et al. [1].  

Theorem 1. Under Assumptions A1 and A3(i), if  is 
continuous in a neighbourhood of , then we have 

 sup∈ℝ ℎ ( ) − ( ) ≤ ( ) − Φ( )= ( ℎ ) /    = 1,2. 
 
Theorem 2. If the assumptions of Theorem 1 and 

A3(ii) are satisfied, we have 
 sup∈ℝ ℎ ( ) − ( ) ≤ ( ) − Φ( )  = ( ℎ ) / + (ℎ loglog ) /     = 1,2. 

 
Theorem 3. If Assumptions A1, A3-A5 are satisfied and 

 and  have bounded first derivatives in a 
neighbourhood of , then for > 0 we have  
 sup∈ℝ ℎ ( ) − ( ) ≤ ( ) − Φ( )= ( )   = 1,2, 

 
where = ( ℎ ) / + (ℎ loglog ) / + ℎ +/ ℎ / . 
 
Remark 2. As it can be seen from the definition of 

( ) when  is unknown, ( ) is unknown too, so 
Theorem 3 is not applicable to inferential purposes such 
as creating a confidence interval or in hypotheses 
testing. In order to cover the applicability issue we need 
to estimate ( ). Two estimators are proposed for ( ). They are shown by ( ) for = 1, 2. The 
consistency of these proposed estimators is studied in 
Corollary 1. Then we present another version of 
Theorem 3 using this estimator instead of ( ). For = 1,2 let ( ): = ( )  ( ) . 

 
In the following corollary, we substitute A3(i) with 

the following assumption.  
 
 A3(i)′: ℎ → 0 and → ∞ → ∞,  
and we also have an additional assumption which is  
 
 H:There exists a small > 0 such that ( ) = 0 for 

all 0 < ≤  . 
 
Corollary 1.Let Assumptions A1, A3(i), A3(ii), A4 

and A5 be satisfied, 
i: if Assumption H is also satisfied, then for > 0we 

have | ( ) − ( )| = logℎ + ℎ . . 
ii: for >  we have | ( ) − ( )| = loglogℎ + ℎ . . 
 
Theorem 4. Let Assumptions A1 and A3-A5 are 

satisfied, 
i: if Assumption H is also satisfied, then for > 0we 

have 
 sup∈ℝ ℎ ( ) − ( ) ≤ ( ) − Φ( )

= + logℎ  . . 
 
ii: for > we have 
 sup∈ℝ ℎ ( ) − ( ) ≤ ( ) − Φ( )

= + loglogℎ . . 
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Remark 3.Let ℎ = ( ) for < < 1. By 

choosing  close to , the Berry-Esseen type bound for 

 and  in Theorem 4, reduces to  modulo 
logarithmic term as → ∞. 
 
Simulation study 

In this section we invetigate the convergance rate of 
Theorem 4 via a simulation study. To simulate a length-
biased sample , … , , the distribution of the 
population is assumed to be the gamma distribution with 
density fucntion ( ) =   > 0. 

So the length-bias density function would be ( ) =    > 0.It should be noted that the 
distribution of the population is chosen to be the 
mentioned gamma distribution, so that the length-biased 
density satisfies Assumption H.Here 1000 samples of 
size n=٢00 are generated from this gamma distribution. 
We chose = 0 for different values of y which are 0.5, 
1.5, 2 and 3. The following kernel function is used 

( ) ( ) ( )23 1 1
4

K u u I u= − ≤ . 

 
Then we evaluated ℎ ( ) − ( ) ≤( )    = 1,2 ,using Monte Carlo based on 

1000 replications. This estimator would be noted by ℎ ( ) − ( ) ≤ ( )    = 1,2. 
 
Then ( , )   = 1,2 is calculated. ( , ) 

is defined as bellow ( , ) ≔ ℎ ( ) − ( ) ≤ ( )− Φ( )    = 1,2. 
 
The used bandwidth is the bandwidth that minimizes 

the observed integrated square error (ISE) of ( ) and 
the population density which is ( ). ISE is caclulated 
as bellow 

( ) ( ) ( )
2ˆ ˆ, ; ,ni n niISE f h f f y f y dy = −   

and as it is mentioned 

( )
2

1 3

ˆargmin , ; .
n

ISE ni n

n h n

h ISE f h f
−−− < <

= Results of the  

performed simulation are presented in Table 1.  
  

From Table 1, it can be concluded that for small 
values of  such as 0.5, the Berry-Esseen rate for ( ) 

works better than ( ). The reason appears to refer to 
the Assumption H. On the other hand the Berry-Esseen 
rate for ( ) works better than ( ) for higher 
values of  such as 1, 1.5, 2 and 3.  
 
Conclusion  

In this paper a Berry-Esseen type bound for the 
kernel density estimator of length biased data is 
investigated . Two types of estimators are used. One is 
proposed by Jones [8] ( ) and the other one is 
presented by Bhattacharya et al. [2] ( ). From 
Theorems 3 and 4 it can be concluded that  and  
appear to have similar normal convergence rates, but 
there is a principal difference between them. The results 
for  are valid for all > 0, but the results for  are 
not valid for ’s near 0.  
 
Proofs 

 In this section we start the proofs to the theorems 
and corollary that are stated in main results section. In 
order to ease the procedure of the proofs, some lemmas 
are presented. These lemmas are stated where they are 
needed. From here on, let  be a positive constant that 
can be changed from one line to other line.  

 
Lemma 1. If Assumptions A1 and A3(i) are satisfied 

and  is continuous in a neighbourhood of , then ( ) → ( ) as → ∞ for = 1,2. Furthermore, if 
 has bounded first derivative in a neighbourhood of  

then we have  | ( ) − ( )| = (ℎ ), = 1,2. 
 
Proof. Since  is continuous in a neighbourhood of 

, it is also bounded in this neighbourhood. So for ( ) since ℎ → 0    → ∞ we have 
  ( ) ( + ℎ )+ ℎ → ( )  ( ) , 

ℎ  ( ) ( + ℎ ) → 0, 
 
as → ∞. So using (8) we have ( ) → ( ) → ∞, 
 

Table 1. Simulation results 
y An1 (0,y) An2 (0,y) 

0.5 0.0101 0.0007 
1.5 0.0019 0.0022 
2 0.0056 0.0107 
3 0.0041 0.0060 

 



A Berry-Esseen Type Bound for the Kernel Density Estimator of … 

269 

and for ( ) we have 
  ( )( + ℎ ) ( + ℎ )→ ( )  ( ) → ∞, 

ℎ  ( )( + ℎ ) ( + ℎ ) → 0    → ∞, 
 
so from (9) we have ( ) → ( ) → ∞. 
 
Now using Assumption A1, if  has bounded first 

derivative in a neighbourhood of , it can be written that 
 | ( ) − ( )| =  ( ) ( + ℎ )+ ℎ− ℎ  ( ) ( + ℎ )  

 − ( )  ( )  = (ℎ ), 
 | ( ) − ( )| =  ( )( + ℎ ) (+ ℎ )  

 −  ( )( + ℎ ) ( +ℎ ) − ( )  ( )  

 = (ℎ ), 
 
 and the proof is completed.  
 
Proof of Theorem 1. Let  
 : = ℎ 1 −ℎ − 1 −ℎ , 
 (12) : = − , (13) 
 
so it can be written that  
 ( ) − ( ) =  , 
( ) − ( ) =  . 
 

Let : = ∑  Var( ) and : = 
 ∑  Var( ). Now from Theorem 5.7 of Petrov 

[16] it can be concluded that  
 sup∈ℝ ℎ ( ) − ( ) ≤ ( ) − Φ( )= sup∈ℝ ∑  V (∑  ) ≤

− Φ( )  

 ≤ ∑  | |  

 = | | , sup∈ℝ ℎ ( ) − ( ) ≤ ( ) − Φ( )  

 = sup∈ℝ ∑  ∑  ≤ − Φ( )  

 ≤ ∑  | |  

 = | | .

 
From the definition of | |  and | |  and by 

using the  inequality (Gut [6]) we have  | | ≤ ( ℎ ) 1 −ℎ  

 
 =  ( ) ( )( ) , 
 (16) | | ≤ ( ℎ ) −ℎ  =  ( )( + ℎ ) ( + ℎ ) ,
 
so using Assumption A1, Lemma 1, (16) and (17) it 

can be written that  (14) ≤ ( )ℎ ( ℎ )  ( ) ( + ℎ )( + ℎ )  

 = ( )( ℎ )  ( ) ( + ℎ )( + ℎ )  

 = ( ℎ ) ,
 
and  
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(15) ≤ ( )ℎ ( ℎ )  ( )( + ℎ ) (
+ ℎ )  = ( )( ℎ )  ( )( + ℎ ) ( + ℎ )  

= ( ℎ ) . (19) 
 
In the last equalities in (18) and (19) we used 

Assumption A1 and the fact that  is bounded in a 
neighbourhood of . □ 

 
Proof of Theorem 2. Using Lemma 2 of Asghari et 

al. [1], for any > 0 and > 0 it can be written that  sup∈ℝ ℎ ( ) − ( ) ≤ ( )− Φ( )  
 ≤ sup∈ℝ ℎ ( ) − ( ) ≤( ) − Φ( ) + √  
 
 + ( ) ( ) − ( ) > , (20) 
 and  
 sup∈ℝ ℎ ( ) − ( ) ≤ ( )− Φ( )  
 ≤ sup∈ℝ ℎ ( ) − ( ) ≤( ) − Φ( ) + √  
 
 + ( ) ( ) − ( ) > , (21) 
on the other hand we have 
 

( ) ( ) − ( ) > ≤
( ) ( ) − ( )    = 1,2. (22) 

 
By the law of the iterated logarithm for partial sums 

of i.i.d. random variables, we have  
 | ̂ − | = . . (23) 

 
Now using Assumption A1, continuousness of  in a 

neighbourhood of  and (23), it can be written that 
 

( ) − ( ) ≤ 1ℎ  | ̂ − | −ℎ  

 ≤ ( ) //  

 = /  ( ) ( )  

 = , 
 and  
 ( ) − ( ) ≤ 1ℎ  | ̂ − | −ℎ  

 ≤ ( ) //  

 = ( ) //  ( ) ( +ℎ )  

 = . 
 
Now by letting = = (ℎ loglog )  in (20) and 

(21), substituting (24) and (25) in (22) and by using 
Theorem 1 we get the result. □ 

 
Proof of Theorem 3. By triangular inequality and 

using Lemma 2 of Asghari et al. [1] for =
( ) | ( ) − ( )|, we have 
 sup∈ℝ ℎ ( ) − ( ) ≤ ( ) − Φ( )  ≤ sup∈ℝ ℎ( ) ( ) − ( ) ≤ ( )( )− Φ ( )( )  

 +sup∈ℝ Φ ( )( ) − Φ( ) +
√ ( ) | ( ) − ( )|.

 
It should be noted that in (26) we used the fact that 

the event ( ) | ( ) − ( )| >  does not happen 
for the sellected .  

Also by letting = ( ) | ( ) − ( )|,in 
Lemma 2 of Asghari et al. [1] and using the same 
argument, we have 

  sup∈ℝ ℎ ( ) − ( ) ≤ ( ) − Φ( )  

 ≤ sup∈ℝ ( ) ( ) − ( ) ≤ ( )( ) −
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Φ ( )( )  

 +sup∈ℝ Φ ( )( ) − Φ( ) +
√ ( ) | ( ) − ( )|, (27) 

 
a little calculation and a usage of Lemma 1 yields  sup∈ℝ Φ ( )( ) − Φ( ) = (| ( ) − ( )|) = (ℎ )   = 1,2. (28) 
 
On the other hand using a Taylor expansion gives  | ( ) − ( )| = (ℎ )  = 1,2, (29) 
now by substituting (29) in (26) and (27), using 

Theorem 3 and (28) we get the desired result. □ 
Proof of Corollary 1. From the definition of  and 
 we have  
 | ( ) − ( )| = ̂ ( ) − ( )  ( )  

 ≤ ( )| ̂ − | + ̂ ( ) −( ) . (30) 
For the second part of (30), the triangle inequality 

gives  
 ( ) − ( ) ≤ sup∈ℝ| ( ) − ( )|+ ( ) − ( )  
 +| ( ) − ( )| 
 =: I + II + III. (31) 
 
Under the assumptions of the corollary, using the 

method that is used in the proving procedure of Lemma 
1 of Ould-Saïd and Tatachak [13], results the following  I = . . (32) 

For II we have  II = ℎ̂  1 −ℎ − ℎ  1 −ℎ  

≤ | ̂ − | 1ℎ  −ℎ  = | | ( ) (33) = . . (34) 

 
In (33), ( ) is a kernel density estimator of (⋅) 

based on , … , . Here we used the fact that ( ) 
converges to ( ). Recall that from the proof of 
Theorem 3 we have  

 III = (ℎ ). 
 
Substituting (32), (34) and (35) in (31) gives  (31) = + ℎ . . 
 
Now using (23) and (36) it can be concluded that  
 (30) = logℎ + ℎ . . 
For  we have  
 | ( ) − ( )| = ̂ ( ) − ( )  ( )  

 ≤ ( )| ̂ − | + ̂ ( ) −( ) . (37) 
 
For the second part of (37), by using the triangle 

inequality it can be written  
 ( ) − ( ) ≤ ( ) − ( )+ ( ) − ( )  
 =: I′ + II′. 
 
Under Assumptions A1, A3(i) and A3(ii), Theorem 2 

of Hall [7] gives the following  I′ = . .,
 
 and on the other hand from the proof of Theorem 3 

we know that  II′ = (ℎ ),
now using (37), (38), (39) and (40), the corollary is 

proved.  
 
Proof of Theorem 4.  Here we only give the proof to 

the first part ( ). The proof to the second part ( ) is 
analogous. From Corollary 1 we have  

 sup∈ℝ Φ ( )( ) − Φ( ) = (| ( ) − ( )|) 

 = + ℎ . . 
 
By using triangular inequality, it can be concluded 

that 
 sup∈ℝ ℎ ( ) − ( ) ≤ ( ) − Φ( )  
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≤ sup∈ℝ ℎ( ) ( ) − ( ) ≤ ( )( )− Φ ( )( )  +sup∈ℝ Φ ( )( ) − Φ( )  

 = sup∈ℝ ( ) ( ) − ( ) ≤ −Φ( ) + + ℎ . .   (42) 

 
By using Theorem 3, we get the desired result. The 

same argument for  gives the result. 
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