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a b s t r a c t

In this article, we present a numerical method to solve two-dimensional Fredholm integral
equations of the second kind on general domains. The method utilizes meshless and
spectral collocation techniques but it is not traditional meshless collocation method. The
point interpolation method with the help of strictly positive definite radial basis functions
is used to construct shape functions as a basis functions in the frame of spectral collocation
methods. These basis functions (shape functions) have Kronecker delta function property.
Since the proposed method is meshless, it does not need any domain element and so it is
independent of the geometry of the domain. The method reduces the solution of the two-
dimensional integral equation to the solution of a linear system of algebraic equations.
Convergence analysis with error estimates are given with full discussion. Furthermore,
some numerical examples are presented to show the validity and efficiency of SMRPI.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following two-dimensional Fredholm integral equation of the second kind

u(x, y) = g(x, y) + λ


Ω

K(x, y, t, s)u(t, s)dtds, (x, y) ∈ Ω, (1)

where g and K are known functions, u(x, y) is the unknown function to be determined, λ is a constant and Ω ⊆ R2 is a
two-dimensional general domain.

Many problems in engineering andmechanics can be converted into two-dimensional Fredholm integral equations of the
second kind. For instance, it is usually required to solve Fredholm integral equations in plasma physics, the image deblurring
problem, axisymmetric contact problems for bodies with complex rheology, diffraction theory and the electrochemical
behavior of an inlaid microband electrode for the case of equal diffusion coefficients [1]. These types of integral equation
also occur as reformulations from somemixed boundary value problems arising in various branches of applied science such
as solid and fluid mechanics, electrostatics, heat transfer, diffraction and scattering of waves, etc. [2,3].

There are many works on developing and analyzing numerical methods for solving Fredholm integral equations of the
second kind [4–9]. The Galerkin and collocation methods are the two commonly used methods for the numerical solutions
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of the two-dimensional integral equations. The analysis for convergence of these methods is well recorded in the literature
[4–6]. Han andWang approximated the two-dimensional Fredholm integral equations by theGalerkin iterativemethod [10].
Hadizadeh and Asgary solved the linear Volterra–Fredholm integral equations of the second kind by using the bivariate
Chebyshev collocation method [11].

Moreover, radial basis functions (RBF) have been used to approximate the solution of one-dimensional integral equa-
tions [12]. Golbabai and Seifollahi have applied the one-dimensional RBF networks to solve the linear second kind
integral equations of Fredholm and Volterra types [13] and the linear integro-differential equations [14]. A numerical tech-
nique based on the spectral method has been presented for the numerical solution of one-dimensional Volterra–Fredholm–
Hammerstein integral equations using RBFs in [15]. Golbabai et al. [16] have introduced a numerical method, based on RBFs
for the solution of a system of nonlinear integral equations. The numerical solution of two-dimensional Fredholm integral
equations of the second kind on the square domain by Gaussian radial basis functions has been introduced in [17]. Also a
meshless method based on the moving least squares (MLS) method has been introduced to solve one and two-dimensional
integral equations [18]. However, a few number of methods for the solution of the Fredholm integral equations on general
domains have been given in the literature [1,18].

In the two last decades, in order to overcome the difficulty of mesh based techniques, so-called meshless methods have
been proposed [19–21]. These methods are used to establish system of algebraic equations for the entire domain of the
problem without the use of predefined mesh for the domain discretization. There are three types of meshless methods:
Meshless methods based on weak forms [22–32], meshless techniques based on collocation techniques (strong forms)
[33–35,1,36–38] and meshless techniques based on the combination of weak forms and collocation technique [39–42]. On
the other hand, spectral collocation methods (also is called pseudo-spectral method) have been used to solve numerically
differential equations by many authors. This method is accomplished successfully by using Chebyshev polynomials
approximation and generating approximations for the higher order derivatives through successive differentiation of the
approximate solution, the readers are referred to [43–45] (and references therein).

In recent year, a new spectral meshless radial point interpolation (SMRPI) method has been proposed to solve 3-D
nonlinear wave equations and two-dimensional diffusion equation with an integral (non-classical) condition [46,47]. In
SMRPI, the point interpolation method with the help of radial basis functions is proposed to construct shape functions
which have Kronecker delta function property and are used as basis function in the frame of this technique. In this paper,
we use this method for solving (1) while the domain of the problem is general. Also, we use strictly positive definite radial
basis functions to obtain shape functions without encountering singularity of the moment matrix. To show the efficiency
and validity of the present method, we give some numerical experiments.

2. The basis functions in SMRPI

Definition 2.1. A radial basis function K(x, y) ≡ φ(x − y) : Rd
× Rd

→ R is said to be strictly positive definite function if
for any set of points x1, x2, . . . , xN in Rd the N × N matrix Aij = φ(xi − xj) is positive definite, i.e.

V TAV =

N
i=1

N
j=1

vivjAij > 0

for all nonzero V ∈ RN [48].

If φ(r) be strictly positive definite function on a linear space, then the eigenvalues and determinant of A are positive.
Therefore we easily use a linear combination translation of φ(r) to interpolate data in high dimension [48].

Theorem 2.2 (Bochner’s Theorem [48]). Let f be a nonnegative Borel function on R, if 0 <


R ϕ < ∞, then ϕ̂ is strictly positive
definite, where ϕ̂ is the Fourier transform of function ϕ, which is

ϕ̂(x) =


∞

−∞

ϕ(y)eixydy.

Now, one can findmany strictly positive definite functions by using this theorem. In Table 1, three important strictly positive
definite RBFs are given by using Bochner’s Theorem. Consider a continuous function u(x) defined in a domainΩ ⊂ R2, which
is represented by a set of field nodes. The u(x) at a point of interest x is approximated in the form of

u(x) =

n
i=1

Ri(x)ai = RT (x)a, (2)

where Ri(x) is a strictly positive definite radial basis function (RBF), n is the number of RBFs and coefficients ai are unknown
which should be determined. There are a number of types of strictly positive definite RBFs, and the characteristics of
them have been widely investigated [33,49,50]. In the present work, we use those listed in Table 1. In the radial basis
function Ri(x), the variable is only the distance between the point of interest x = (x, y) and a node at xi = (xi, yi), i.e.
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Table 1
Some strictly positive definite RBFs.

Inverse quadratic (IQ) 1
1+(cr)2

Inverse Multiquadratic (IMQ) 1√
1+(cr)2

Gaussian (GA) e−cr2

Fig. 1. Local support domains for an arbitrary nodal point xi for two-dimensional hypothesis domain.

r =


(x − xi)2 + (y − yi)2. In order to determine ai’s in Eq. (2), a support domain is formed for the point of interest at x,
and n field nodes are included in the support domain (see Fig. 1) (support domain is usually a diskwith radius rs). Coefficients
ai in Eq. (2) can be determined by enforcing Eq. (2) to be satisfied at these n nodes surrounding the point of interest x. This
leads to the linear systemof n algebraic equations, one for each node. Thematrix formof these equations can be expressed as:

Us = Rna, (3)

where the vector of function values Us is

Us = {u1 u2 u3 . . . un}
T , (4)

the moment matrix is

Rn =


R1(r1) R2(r1) · · · Rn(r1)
R1(r2) R2(r2) · · · Rn(r2)

...
...

. . .
...

R1(rn) R2(rn) · · · Rn(rn)


n×n

. (5)

Also, the vector of unknown coefficients is

aT = {a1 a2 . . . an} . (6)

We notify that in Eq. (5), rk in Ri(rk) is defined as

rk =


(xk − xi)2 + (yk − yi)2. (7)

Since the matrix Rn is symmetric positive definite, Eq. (3) yields

a = R−1
n Us. (8)

Now using Eq. (8), Eq. (2) can be rewritten as

u(x) = RT (x)R−1
n Us = 8T (x)Us, (9)
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where 8T (x) can be rewritten as

8T (x) = RT (x)R−1
n = {φ1(x) φ2(x) . . . φn(x)} . (10)

These n functions of the above vector function are called the RPIM shape functions corresponding to the nodal displacements,
then Eq. (9) is converted to the following one

u(x) = 8T (x)Us =

n
i=1

φi(x)ui. (11)

We add the RPIM shape functions which have the Kronecker delta function property, that is

φi(xj) =


1, i = j, j = 1, 2, . . . , n,
0, i ≠ j, i, j = 1, 2, . . . , n. (12)

This is because the RPIM shape functions are created to pass thorough nodal values. Moreover, the shape functions are the
partitions of unity, i.e.

n
i=1

φi(x) = 1. (13)

3. Discretizing the two-dimensional Fredholm integral equations

Suppose that the number of total nodes covering Ω is N . As we know, n depends on point of interest x (so, after that we
call it nx) in Eq. (11) which is the number of nodes included in support domain Ωx corresponding to the point of interest x
(for example Ωx can be a disk centered at xwith radius rs). Therefore, we have nx ≤ N and Eq. (11) can be modified as

u(x) ≈ 8T (x)Us =

N
j=1

φj(x)uj. (14)

In fact, corresponding to node xj there is a shape function φj(x), j = 1, 2, 3, . . . ,N , we define Ωc
x =


xj : xj ∉ Ωx


, then it

is clear from the previous section that

∀xj ∈ Ωc
x : φj(x) = 0. (15)

The derivatives and integrals of u(x) are easily obtained as

∂u(x)
∂x

=

N
j=1

∂φj(x)
∂x

uj,
∂u(x)
∂y

=

N
j=1

∂φj(x)
∂y

uj,


Ω

u(x)dΩ =

N
j=1

uj


Ω

φj(x)dΩ. (16)

Therefore, the proposed method could be easily applied on the differential equations, integral equations and combination
of both.

Now, we consider integral equation (1) and explain how to implement spectral meshless radial point interpolation
(SMRPI) method to obtain discrete equations. Substituting approximation expression (14) with x = (x, y) into Eq. (1) yields:

N
j=1

φj(x, y)uj = g(x, y) + λ


Ω

K(x, y, t, s)
N
j=1

φj(t, s)ujdtds

= g(x, y) + λ

N
j=1

uj


Ω

K(x, y, t, s)φj(t, s)dtds. (17)

Using Eq. (15), Eq. (17) is converted into
N
j=1

φj(x, y)uj = g(x, y) + λ

N
j=1

uj


Ωxj

K(x, y, t, s)φj(t, s)dtds, (18)

where Ωxj is the support domain of xj = (xj, yj), that is a disk centered at xj with radius rs.
Now, setting x = xi, i = 1, 2, 3, . . . ,N (N is the number of total nodes on Ω) in the above equation implies

N
j=1

φj(xi, yi)uj = g(xi, yi) + λ

N
j=1

uj


Ωxj

K(xi, yi, t, s)φj(t, s)dtds, (19)

or equivalently
N
j=1


δij − λ


Ωxj

K(xi, yi, t, s)φj(t, s)dtds


uj = g(xi, yi), i = 1, 2, 3, . . . ,N, (20)
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because all RPIM shape functions have the Kronecker delta function property, i.e.

φj(xi, yi) = δij =


1, i = j;
0, i ≠ j. (21)

The matrix form of Eq. (20) can be given as follows:

[I − λA]U = g, (22)

where U = (u1, u2, . . . , uN)T and, N × N matrix A and N-vector g are defined as follows:

Aij =


Ωxj

K(xi, yi, t, s)φj(t, s)dtds, (23)

gi = g(xi, yi). (24)

Moreover, The integral term (23) is evaluated by Gaussian quadrature rule.

4. Convergence analysis and error estimates

In this section, a convergence analysis for our numerical technique to solve Eq. (1) will be provided. The aim is to show
that the rate of convergence is exponential, i.e., the spectral accuracy can be obtained for the proposed spectral meshless
radial point interpolation (SMRPI) approximation. First, we restrict ourselves to the domains satisfying an interior cone
condition defined as follows.

Definition 4.1. A set Ω ⊂ R2 is said to satisfy an interior cone condition if there exist an angle θ ∈ (0, π
2 ) and a radius

r > 0 such that for every x ∈ Ω a unit vector ξ(x) exists such that the cone

C(x, ξ(x), θ, r) =

x + λy : y ∈ R2, ∥y∥2 = 1, yT ξ(x) ≥ cos θ, λ ∈ [0, r]


, (25)

is contained in Ω .

Now, we present some definitions which are important to measure the quality of data points and to estimate the rate of
convergence in the interpolation by RBFs in the frame work of SMRPI.

Definition 4.2. The fill distance of a set of points X = {x1, . . . , xN} ⊂ Ω for a bounded domain Ω is defined by

hX,Ω = sup
x∈Ω

min
1≤j≤N

∥x − xj∥2. (26)

There is a close connection between the radial basis functions and the reproducing kernels that are defined in the
following [51]. All of the strictly positive definite radial basis functions give rise to reproducing kernels with respect to
some Hilbert spaces.

Definition 4.3. Let H be a real Hilbert space of functions u : Ω → R. A function K : Ω × Ω → R is called reproducing
kernel for H if

• K(x, .) ∈ H for all x ∈ Ω ,
• u(x) =


u, K(., x)


H
for all u ∈ H and all x ∈ Ω .

If we assume that K(x, y) = Φ(x − y), x, y ∈ Rd, where Φ is a strictly radial basis function, then it is shown that K is a
symmetric reproducing kernel [52] and also

HΦ(Ω) = span {Φ(· − y) : y ∈ Ω} , (27)

is the pre-Hilbert space with an associated bilinear form N
j=1

cjΦ(· − xj),
N

k=1

dkΦ(· − yk)

Φ

=

N
j=1

N
k=1

cjdkΦ(xj, yk), (28)

provided xj, yk ∈ Ω .

Definition 4.4. The native space HΦ(Ω) of Φ is now defined to be the completion of HΦ(Ω) with respect to the Φ-norm
∥ · ∥Φ so that ∥u∥Φ = ∥u∥HΦ (Ω) for all u ∈ HΦ(Ω).

Now, we give the following four important lemmas which play essential role in our error analysis, the first one is about the
error of Gaussian quadrature rule in integrating (23).
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Lemma 4.5 ([53], Integration Error from Gaussian Quadrature). Assume that a (M + 1)-point Gaussian quadrature formula is
used to integrate the product u(x)φ(x), where u ∈ Hm(Ω) (Sobolev space of order m) for some m ≥ 1 and φ ∈ HΦ(Ω). Then
there exists a constant C independent of M such that

Ω

u(x)φ(x)dx − (u, φ)M

 ≤ CM−m
∥u∥Hm(Ω)∥φ∥L2(Ω), (29)

where

∥u∥Hm(Ω) =


|α|≤m

∥Dαu∥2
L2(Ω)

 1
2

, (30)

(u, φ)M =

M
j=0

ωju(xj)φ(xj), (31)

Hm(Ω) =


u ∈ L2(Ω) : for each nonnegative multi-index α with |α|

≤ m, the distributional derivative Dαu belongs to L2(Ω)


. (32)

The following lemma is about the error bound for approximating u by INu =
N

j=1 φj(x)uj, defined in (14), where φj(x) is
shape function defined by (10). Notice that INu could be equivalently rewritten as INu =

N
j=1 ajRj(x), where Rj(x) is strictly

positive definite function.

Lemma 4.6 ([52]). Let Ω ⊂ R2 be open and bounded, satisfying an interior cone condition. Suppose that Φ is IQ or IMQ radial
basis function and INu approximation to u ∈ HΦ(Ω). Then there exist constants, c > 0 such that the following estimates hold:

∥u − INu∥L∞(Ω) ≤ C∥u∥HΦ (Ω), C =

e
−

c| log hX,Ω |

hX,Ω , Φ is GA;

e
−

c
hX,Ω , Φ is IQ or IMQ .

(33)

Lemma 4.7 ([52]). Let Ω ⊂ R2 be open and bounded, satisfying an interior cone condition. Suppose that Φ is strictly positive
definite and INu approximation to u ∈ Hm(Ω). Then there exist constants, C > 0 such that the following estimates hold:

∥u − INu∥L2(Ω) ≤ Ch
m
2
X,Ω∥u∥Hm(Ω). (34)

Lemma 4.8 ([52]). Let Ω ⊂ R2 be open and bounded, satisfying an interior cone condition. Suppose that Φ is strictly positive
definite and INu approximation to u ∈ Hm(Ω). Then there exist constants, C > 0 such that the following estimates hold:

∥u − INu∥Hm(Ω) ≤ Chτ−m
X,Ω ∥u∥Hm(Ω), τ > 1. (35)

Lemma 4.9 (Gronwall Inequality). If a non-negative integrable function E(x) satisfies

E(x) = C1


Ω

E(x)dx + G(x), (36)

where G(x) is an integrable function, then

∥E∥Lp(Ω) ≤ C∥G∥Lp(Ω), p ≥ 1. (37)

Now, we will carry our convergence analysis in both L2 and L∞ spaces.

4.1. Error analysis in L2

Theorem 4.10. Let u be the exact solution of the Fredholm equation (1) and assume that

UN(x) =

N
j=1

ujφj(x), (38)
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where uj is given by (22) and φj(x) is the jth shape function defined by (10) associated with the X = {x1, . . . , xN} ⊂ Ω covering
the domain Ω . If u ∈ Hm(Ω), m ≥ 1, and u ∈ HΦ(Ω), then

∥u − UN
∥L2(Ω) ≤ CM−m max

x∈Ω
∥K(x, ·)∥Hm(Ω)∥u∥L2(Ω) + C


hX,Ω∥u∥Hm(Ω), (39)

provided that M is sufficiently large and hX,Ω is sufficiently small, where C is a constant independent of M and N.

Proof. Following the notations of (31), we let

(K(x, s), φ(s))M,s =

M
j=0

ωjK(x, sj)φ(sj). (40)

Then the numerical scheme (19) can be written as

ui − λ

N
j=1

uj


M

k=0

ωkK(xi, sk)φj(sk)


= g(xi), (41)

or equivalently

ui − λ

K(xi, s),UN(s)


M,s = g(xi), (42)

which gives

ui − λ


Ω

K(xi, s)UN(s)ds = g(xi) + J1(xi), 1 ≤ i ≤ N, (43)

where

J1(x) = λ

K(x, s),UN(s)


M,s − λ


Ω

K(x, s)UN(s)ds. (44)

Using Lemma 4.5 gives

|J1(x)| ≤ C1M−m
∥K(x, ·)∥Hm(Ω)∥UN

∥L2(Ω). (45)

Considering (43) and multiplying φi(x) on both sides and summing up from 0 to N yields

UN(x) − λIN


Ω

K(x, s)u(s)ds


− λIN


Ω

K(x, s)e(s)ds


= IN(g) + IN(J1), (46)

where UN is defined by (38), the interpolation operator IN is defined in paragraph after Lemma 4.5, e denotes the error
function, i.e.,

e(x) = UN(x) − u(x), x ∈ Ω. (47)

It follows from (46) and (1) that

UN(x) + IN(g − u) − λIN


Ω

K(x, s)e(s)ds


= IN(g) + IN(J1), (48)

which gives

e(x) + (u − INu)(x) − λIN


Ω

K(x, s)e(s)ds


= IN(J1). (49)

Consequently,

e(x) − λ


Ω

K(x, s)e(s)ds = IN(J1) + J2(x) + J3(x), (50)

where

J2 = INu(x) − u(x), J3 = λIN


Ω

K(x, s)e(s)ds


− λ


Ω

K(x, s)e(s)ds. (51)

It follows from the Gronwall inequality (see Lemma 4.9) with p = 2 that

∥e∥L2(Ω) ≤ C

∥IN(J1)∥L2(Ω) + ∥J2∥L2(Ω) + ∥J3∥L2(Ω)


. (52)
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Using (45) and (13) gives

∥IN(J1)∥L2(Ω) ≤ C1M−m max
x∈Ω

∥K(x, ·)∥Hm(Ω)∥UN
∥L2(Ω)

≤ C1M−m max
x∈Ω

∥K(x, ·)∥Hm(Ω)(∥e∥L2(Ω) + ∥u∥L2(Ω)). (53)

Using the L2-error bound for the SMRPI approximation (i.e., Lemma 4.7) gives

∥J2∥L2(Ω) ≤ C2

hX,Ω∥u∥Hm(Ω) (54)

and, by lettingm = 1 in Lemma 4.7, yields

∥J3∥L2(Ω) ≤ λC3

hX,Ω


Ω

D[K(x, s)]e(s)ds

L2(Ω)

, (55)

where, D is the distributional derivatives with respect to xwhich is bounded by D1 from (32), then (55) yields

∥J3∥L2(Ω) ≤ λC3D1

hX,Ω∥e∥L2(Ω). (56)

The above estimates, together with (52), yield

∥e∥L2(Ω) ≤ CC1M−m max
x∈Ω

∥K(x, ·)∥Hm(Ω)(∥e∥L2(Ω) + ∥u∥L2(Ω))

+ CC2

hX,Ω∥u∥Hm(Ω) + λCC3D1


hX,Ω∥e∥L2(Ω), (57)

which leads to (39) provided that M is sufficiently large and hX,Ω is sufficiently small. This completes the proof of this
theorem.

4.2. Error analysis in L∞

Below we will extend the L2 error estimate in the last subsection to the L∞ space.

Theorem 4.11. Let u be the exact solution of the Fredholm equation (1) and UN be defined by (38). If u ∈ Hm(Ω) and u ∈

HΦ(Ω), then for m ≥ 1,

∥u − UN
∥L2(Ω) ≤ CM−m max

x∈Ω
∥K(x, ·)∥Hm(Ω)∥u∥L2(Ω) + C∥u∥HΦ (Ω), (58)

provided that M is sufficiently large and hX,Ω is sufficiently small, where C is a constant independent of M and N.

Proof. Following the same procedure as in the proof of Theorem 4.10, we have

e(x) − λ


Ω

K(x, s)e(s)ds = IN(J1) + J2(x) + J3(x), (59)

where IN(J1), J2 and J3 are defined by (44) and (51), respectively. It follows from the Gronwall inequality (see Lemma 4.9)
that

∥e∥L∞(Ω) ≤ C

∥IN(J1)∥L∞(Ω) + ∥J2∥L∞(Ω) + ∥J3∥L∞(Ω)


. (60)

Using (45) and (13) gives

∥IN(J1)∥L∞(Ω) ≤ C1M−m max
x∈Ω

∥K(x, ·)∥Hm(Ω)∥UN
∥L2(Ω)

≤ C1M−m max
x∈Ω

∥K(x, ·)∥Hm(Ω)(∥e∥L2(Ω) + ∥u∥L2(Ω))

≤ C∗

1M
−m max

x∈Ω
∥K(x, ·)∥Hm(Ω)(∥e∥L∞(Ω) + ∥u∥L2(Ω)). (61)

Using Lemma 4.6, we have

∥J2∥L∞(Ω) = ∥u − INu∥L∞(Ω) ≤ C2∥u∥HΦ (Ω). (62)

Also, lettingm = 1 in Lemma 4.7, yields

∥J3∥L2(Ω) ≤ λC3

hX,Ω


Ω

D[K(x, s)]e(s)ds

L2(Ω)

, (63)

where, D is the distributional derivatives with respect to xwhich is bounded by D1 from (32), then (63) yields

∥J3∥L2(Ω) ≤ λC3D1

hX,Ω∥e∥L2(Ω) ≤ C∗

3


hX,Ω∥e∥L∞(Ω). (64)
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On the other hand, considering (30), (35) and (51) withm = 1 yields

∥J3∥H1(Ω) ≤ λC⋆
3h

τ−1
X,Ω


Ω

D[K(x, s)]e(s)ds

L2(Ω)

≤ λD1C⋆
3h

τ−1
X,Ω∥e∥L2(Ω)

≤ λD1C⋆⋆
3 hτ−1

X,Ω∥e∥L∞(Ω), τ > 1. (65)

Using the inequality in the Sobolev Space [53]

∥ω∥L∞(Ω) ≤ c∥ω∥

1
2
L2(Ω)

∥ω∥

1
2
H1(Ω)

, (66)

we have

∥J3∥L∞(Ω) ≤ CĎ
3h

2τ−1
4

X,Ω ∥e∥L∞(Ω), τ > 1. (67)

Now, setting estimates (61), (62) and (67) into (60), yields

∥e∥L∞(Ω) ≤ CC∗

1M
−m max

x∈Ω
∥K(x, ·)∥Hm(Ω)(∥e∥L∞(Ω) + ∥u∥L2(Ω)) + CC2∥u∥HΦ (Ω) + CCĎ

3h
2τ−1

4
X,Ω ∥e∥L∞(Ω), (68)

which leads to (58) provided that M is sufficiently large and hX,Ω is sufficiently small. This completes the proof of this
theorem.

5. Numerical experiments and comparison

In this section, we show the results obtained for three examples using the SMRPI method described in previous sections.
To show the accuracy and convergence of the method two kinds of error measures, maximum absolute error ∥u∥∞ and
relative error ∥u∥R:

∥u∥∞ =

uexact − uapprox


∞

= max

|uexact(xi) − uapprox(xi)|, i = 1, 2, . . . ,N


, (69)

∥u∥R =


N
i=1


uexact(xi) − uapprox(xi)

2
N
i=1

(uexact(xi))2
, (70)

are used, where uexact(xi) and uapprox(xi) denote the exact and approximate solutions, respectively. In these examples, N ,
the number of total nodal points covering Ω , is regularly distributed. Also in order to implement the SMRPI method, the
radius of support domain (that is a disk) to construct basis functions is chosen rs = h (for simplicity), where h is the distance
between the nodes in x or y direction. Also, the integrals (23) are evaluated with 16 = 4 × 4 points Gaussian quadrature
rule.

Example 1. For the first test problem consider Eq. (1) with the following

g(x, y) =
1

(1 + x + y)2
−

x
6(8 + y)

, (71)

K(x, y, t, s) =
x

(8 + y)(1 + t + s)
, λ = 1, (72)

Ω = [0, 1] × [0, 1]. (73)

In this example the domain is supposed to be regular and the exact solution is

u(x, y) =
1

(1 + x + y)2
. (74)

Here, the presented technique is employed to solve the problem. The maximum absolute error (∥u∥∞) of SMRPI solution
with number of nodal points N = 1681 and different strictly positive definite RBFs are given in Table 2. Also, Fig. 2 shows
the maximum absolute and relative error for different number of nodal points and different strictly positive definite RBFs.
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Table 2
Maximum absolute error (∥u∥∞) of SMRPI solution with N = 1681 and
different RBFs for Example 1.

x y GA IMQ IQ

0.0 0.0 0.000000e+000 0.000000e+000 0.000000e+000
0.1 0.1 5.314645e−005 5.291803e−005 5.325470e−005
0.2 0.2 1.049967e−004 1.045454e−004 1.052105e−004
0.3 0.3 1.555974e−004 1.549287e−004 1.559144e−004
0.4 0.4 2.049935e−004 2.041124e−004 2.054110e−004
0.5 0.5 2.532272e−004 2.521388e−004 2.537430e−004
0.6 0.6 3.003393e−004 2.990484e−004 3.009510e−004
0.7 0.7 3.463683e−004 3.448796e−004 3.470737e−004
0.8 0.8 3.913512e−004 3.896691e−004 3.921482e−004
0.9 0.9 4.353232e−004 4.334522e−004 4.362098e−004
1.0 1.0 4.783181e−004 4.762623e−004 4.792923e−004
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rr

o r

 

 
||u||

R
; Gaussian Based Shape Function

||u||∞; Gaussian Based Shape Function

||u||
R

; IMQ Based Shape Function

||u||∞; IMQ Based Shape Function

||u||
R

; IQ Based Shape Function

||u||∞; IQ Based Shape Function

Fig. 2. The maximum absolute and relative error versus number of nodal points for Example 1.

Example 2. As a second test problem, we consider Eq. (1) with

g(x, y) = x2 + y2 −
98 − 36e

3e
e−(x+y), (75)

K(x, y, t, s) = e−(x+y+t+s)(1 − t − s), λ = 1, (76)
Ω = {(x, y) : 0 ≤ x + y ≤ 1, 0 ≤ x ≤ 1}. (77)

The exact solution is

u(x, y) = x2 + y2. (78)

In this example, the domain is chosen to be general. Fig. 3 shows the domain for different number of nodal points. As previous
example, we apply SMRPI to solve this problem. The maximum absolute error (∥u∥∞) of SMRPI solution with number of
nodal points N = 1326 and different strictly positive definite RBFs are given in Table 3. Also, Fig. 4 shows the maximum
absolute error of SMRPI solution with inverse quadratic RBF and number of nodal points N = 1326.

Example 3. As a last test problem, let us consider Eq. (1) with

g(x, y) =


x −

1
2

2

+


y −

1
2

2

−
1

20480(x + y)
, (79)

K(x, y, t, s) =
s

100π(x + y)
, λ = 1, (80)

Ω =


(x, y) :


x −

1
2

2

+ 4

y −

1
2

2

≤
1
4


. (81)
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Fig. 3. The domain of Example 2 with different number of nodal points.
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Fig. 4. The maximum absolute error of SMRPI solution with N = 1326 and inverse quadratic RBF for Example 2.

The exact solution is

u(x, y) =


x −

1
2

2

+


y −

1
2

2

. (82)
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Fig. 5. The domain of Example 3 with different number of nodal points.
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Fig. 6. The maximum absolute error of SMRPI solution with N = 629 and inverse multiquadratic RBF for Example 3.

As it is seen, the domain is the inside of an oval. Fig. 5 shows the domain for different number of nodal points. Furthermore,
the maximum absolute error of SMRPI solution by inverse multiquadratic RBF and number of nodal points N = 629 has
been plotted in Fig. 6.
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Table 3
Maximum absolute error (∥u∥∞) of SMRPI solution with N = 1326 and
different RBFs for Example 2.

x y GA IMQ IQ

0.0 0.0 7.233361e−003 7.233412e−003 7.233361e−003
0.1 0.1 5.922175e−003 5.922217e−003 5.922175e−003
0.2 0.2 4.848667e−003 4.848701e−003 4.848667e−003
0.3 0.3 3.969753e−003 3.969780e−003 3.969753e−003
0.4 0.4 3.250159e−003 3.250181e−003 3.250159e−003
0.5 0.5 2.661005e−003 2.661023e−003 2.661005e−003

6. Conclusions

In this paper, a new spectral meshless radial point interpolation (SMRPI) method has been proposed and applied to
the two-dimensional Fredholm integral equations of the second kind on general domains. The present method is based on
meshless methods and benefits from spectral collocation techniques. The interpolation with the help of strictly positive
definite radial basis functions has been used to construct shape (basis) functions which have Kronecker delta function
property. The method does not need any domain element and so it is independent of the geometry of the domain. We
have given error analysis with some numerical experiments to show the validity and efficiency of SMRPI.
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