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Abstract. In this paper we introduce the non-coprime graph associated to the group G with vertex set G\ {e} such

that two distinct vertices are adjacent whenever their orders are relatively non-coprime. Some numerical invariants like
diameter, girth, dominating number, independence and chromatic numbers are determined and it has been proved that the

non-coprime graph associated to a group Gis planar if and only if G is isomorphic to one of the groups
Zza Z3, Z4, Zz X Zza Zs’ Z6 or S3 . Moreover, we prove that non-coprime graph of a nilpotent group
G is regular if and only if G isa P -group, where P is prime number. Furthermore, a connection between the non-
coprime graph and known prime graph has been stated here.

Keywords: Nilpotent group, abelian group, non-coprime graph.
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INTRODUCTION

Mathematicians define specific graphs on groups or rings and use advantage of the graph properties for the
groups or rings and vice versa. We try to find the interplay between graph theory and group theory.

For a positive integer 7, let 77(n) be the set of all prime divisors of 7. If G is a finite group, we set
7(G)=7(| G|) . The Gruenberg-Kegel graph of G, or the prime graph of G , is denoted by I'; and is defined

as follows. The vertex set of FG is the set 7(G) and two distinct primes p and ¢ are joined by an edge if and
only if G contains an element of order pg (see [1]).

We assign a simple graph to the group G' which its vertex set contains non-identity elements of the group G .
Moreover, two vertices are adjacent whenever their orders are relatively non-coprime. We call it non-coprime graph

and denote by Il . In this paper, we discuss about general properties of the non-coprime graph. For instance we
find the diameter of the graph associated to the abelian groups, non-abelian nilpotent groups and non-nilpotent
groups with non-trivial center. Furthermore, we prove that girth (IT G) = 3. The domination number, independence
number and planarity of the graph are the subjects which are verified in this paper. We also observe that for a finite

group G, non-coprime graph HG is a planar graph if and only if G is isomorphic to one of the groups
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Zz , Z3 , Z4 , Zz X Zz , Zs , Z6 or S3 .Let G be anilpotent group, thenHG is a regular graph if and only if
G isa p -group, where p is a prime number. We conclude that if the order of G is an odd number, then I
has a perfect matching. The number of edges for the non-coprime graph associated to the group Z g xZ ” is
obtained. The structure of the adjacency matrix of I 2,02, is presented. Furthermore, we obtain the eigenvalues
of this matrix for some small prime numbers p and ¢ using the software MATLAB. The number of the spanning

trees in the non-coprime graph I1,  isachieved. We also clarify to imagine 11 D, > where D, is dihedral group
2 ps n
of order 2n. I, and 11 b, are examples of perfect graphs, where 7 is an odd number. The bound for clique
prqs n
number of the graph are given. Finally, we attempt to find a link between non-coprime graph and prime graph.
Throughout the paper, graphs are simple and all the notations and terminologies about the graphs are standard
(for instance see [2, 3, 4]).

MAIN RESULTS

Let us start with the definition of the non-coprime graph associated to a group G . We should remindthat in the
following definition the group G is not necessary to be finite, but all elements have to be of finite order. Of course,

when G is finite then every element has finite order. In this paper, we always assume that ( is finite.

Definition 1. Let G be a group. The non-coprime graph of G is a graph with vertex set G\ {e} and two distinct
vertices X and Y join by an edge whenever gcd (| x|,| y|) #1. We denote it by 11 .

It is clear 1 ¢ is not an empty graph for the group G of order greater and equal than 3.

Theorem 1. Let G be a finite group of order greater or equal that 4 . Then girth (HG) =3.

Proof. We may consider the following two cases:
Case 1.G has a Sylow p -subgroup P of order at least 4. In this case, non-identity elements of P induce a

complete graph K s Where m =| P|—12>3. Thus we have a triangle and the result holds.
Case 2. All Sylow p -subgroups of G have order at most 3. So G' must be a group of order at least 6 . We can
easily check that non-coprime graphs 11 Z, and I1 5 have a triangle and the proof is complete.

The following corollary is a direct result of the Theorem 1.

Corollary I.HG is a cyclic graph if and only if G = 22 X 22 or 24.
Proof. Suppose HG is a cyclic graph. If |G |>5, then we have a triangle by Theorem 1 and at least one more

vertex which is a contradiction. Thus | G |<4 and the only cyclic non-coprime graphs are Z,xZ, and Z, as

required. The converse is trivial.

We are going to find the diameter of the non-coprime graph under different circumstances for the group
associated to the graph. Among those we also discuss about some other properties of the graph such as being
Hamiltonian and star graph.

Proposition 1. Let G be an abelian group. Then
(@)diam(I1;) <2 and I1 is connected.

(i) If | G [> 4, then II is Hamiltonian.
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Proof.
(i) Suppose x and y are two non-adjacent vertices. Since | Xy |=| x || J’|, the vertex Xy is a vertex which

make the path XXy . y.
(ii) If all the vertices are adjacent, then the proof is clear. Assume X does not join ) . Therefore {x,xy} and
{»y,xy} are edges. Now choose another vertex ¢. If ¢ join X or ), then continue the path otherwise {x,x¢} or

{y, yt} are edges. Similar to this method we can make a cycle which pass all the vertices and use each edges once.

Theorem 2. If G is a non-abelian nilpotent group, then diam(I1;)<2.
Proof. Since G is a nilpotent group, it is direct product of its Sylow subgroups, S[. Let x=5,---5, and

Y =S{++5; be two distinct vertices such that at least one of the §; (1<7</) and s (1< j<k) arc in the
same Sylow subgroup so they are adjacent. Assume X and ) belong to two distinct product of Sylow subgroups,

thus Xy is a vertex which joins both x and y and d(x,y) = 2. Hence diam(I1;)<2.

Theorem 3. Let G be a non-nilpotent group, with Z(G) # 1. Then diam(I1;)<3.
Proof. Suppose X and ) are two non-adjacent vertices. If there is z € Z((G) such that it is adjacent to both X and
V, then d(x,y)=2. Assume, this does not happen. Since X and ) commute with z, order of #z divides the

least common multiple of | # | and | z |, where £ =X or . Since Xz and Yz join by an edge, then d(x,y)=3.

By Theorems 2 and 3, we deduced the non-coprime graph associated to nilpotent or non-nilpotent groups with
non-trivial center is connected.

Theorem 4.Let G be a nilpotent group such that it does not have any Sylow 2 -groups of order 2 then HG is

Hamiltonian.

Proof. Assume G is direct product of its Sylow subgroups, S » of order p:k , 1<k <n.Suppose xeS , SO
k i

| x|~ piﬂ, 0<p<a,. Thus deg(x)=|G|-1-]| Hk#Spk |2V (I1;)|/2. Moreover,deg(y) = deg(x) for

all other vertices. Hence the assertion is clear.

1
2 2 (132) (13)
o I &. 4 5 / A
b | 1 3 (123) (12) 23)
Iz,
3 3 HS

HZg HZ4 = HZ:XZ:

3

|
HZS I—‘[Zé
FIGURE 1.Non-coprime graphs of groups of order less than or equal 6

Proposition 2. Let G be a group.
(i) If G is an abelian group of order greater than 3, then HG is not a star graph.

(ii) If G is a non-abelian group and 1 ¢ 1s connected, then HG is not a star graph.
Proof.
(1) It is obvious.

(ii) By Theorem 1, groups of order greater or equal than 6 has always a triangle. Therefore it is impossible for
such a graph to be a star.
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A dominating set for a graph I is a subset D of V(") such that every vertex outside D is adjacent to at least
one member of D . The domination number y(I") is the size of the smallest dominating set of I". It is clear that

}/(HG) <| 7(G) |. Finding the smallest dominating set is an important problem in graph theory.

Theorem 5.Let G be a group.
(i) If G is a nilpotent group, then y(I1.)=1

(i) If G is a soluble group of class /, then y(I1;)</.

Proof.

(i) Since G is a nilpotent group, it can be written as direct product of its Sylow subgroups G = Spl XX S b
n

a.
1

where |SP1' = p;". There exists X, ESPi’ 1<i<n.Put X=Xx,X, X, . Itis clear that | X|= p,p, - p, and

every non-identity element of the group is adjacent to X . Hence the singleton {x} is a dominating set for the graph
and the assertion is clear.
(ii) As G is a soluble group, we have the following abelian series for G ,
1=G,<G, <G, <G, <G, =G.
It is clear that Gi/ Gi—l is a nilpotent group. Therefore by the first part X; € Gi \GH exist such that x,GH is
adjacent to all non-identity elements of Gi/ Gifl . Consequently X, join to all elements of Gi \GH. Moreover

U._, G\G_ =G\{e} .Hence A={x,,~=,X,} isa dominating set for [T .

Theorem 6. Let G be a group. Then at(11.) =| 7(G) |, where a(I1) is the independence number of 1 ;.

Proof. Suppose 7(G)= {pl,pZ,“',pn}. There is X; of order p,, 1<i<n. Thus {xl,---,xn} is an
independent set for HG and OC(HG) >n 2’ 7(G) ‘ . On the other hand, if a(HG) Z‘ {yl,' . ',yk} ’Z k , then
7y Dnza(y, ) =D for i#j and n=|7(G)F z(|y DVr(y,)---Un(y,) 2k this means

| 7(G) |2 C((HG) . Hence the assertion is clear.

Theorem 7. Let G be a group. Then HG is a planar graph if and only if G is isomorphic to one of the groups
Zy, Ly, Toyy Toyx Ly, Log, Zg ot S5

Proof. Suppose HG is a planar graph. It is clear that the order of each Sylow p -subgroup of G is at most 5. This
means | G| is divisor of 60 . Moreover G has at most four Sylow 2 -subgroup, two Sylow 3 -subgroup and one
Sylow 5 -subgroup. Thus, as I1 is planar, we must have | G |[<13. The only non-coprime graphs associated to
groups Zz , Z3 , Z4 R Zz X Zz: Z5 , Zé and S3 are planar (see Figure 1.). Clearly all the non-coprime graphs of
P -groups of order greater than 6 and less or equal than 13 are not planar. It is enough to check all groups of order

10 and 12. It is easy to see that the non-coprime graphs of these groups are not planar. The converse can be
observe by Figure 1.

By [4], we know a graph that contains a perfect matching has an even number of vertices. Therefore the perfect
matching of a non-coprime graph is meaningful whenever the order of the group is an odd number. Hence we
deduce the following proposition.
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Proposition 3. HG has a perfect matching, where | G | is an odd number.

Proof. Since every element of the group has an odd order, then each vertex is adjacent to its inverse. Hence the
assertion is clear.

Proposition 4. HG is a complete graph if and only if G isa p -group.

o0

I1 z, is a complete connected graph. Furthermore, I1,  is infinite complete non-coprime graph, where p is
P

a prime number.

Proposition 5. Let p and q be two distinct prime numbers. Then y(I1,  )=w(1, )=p'(q'-1),
prqs prqs
where P and q are distinct prime numbers

Proof. Suppose p’ < g . Clearly the number of elements of order t* in the group Z are " —¢*"", where

rqs
t=porqand 1<k<r or 1<k<s,respectively. Since p" <¢’, the colors which are used for the coloring

of all the vertices of order qi, 1<i<s can be used for the vertices of order pj , 1< j <r. Therefore
. r_s S li -1
2@ )=pg-1-3 p'-p.
»

P

Proposition 6. We have the following properties for I1, | p#2.
2p%

(i) The edge number of IT, is obtained by the following formula,
2p%
2p’ -1 .
| E(T, )= ( )=(p" D).
2p5 2

(i1) The number of the spanning trees in the non-coprime graph sz . is
)4

@p =3)""@p -1
Proof.

(i) Since there is only one element of order 2 in Z2 . » then the first part is clear.
P

(i) As IT, is obtained by omitting of ps —1 distinct edges of the complete graph of order 2 ps —1, then by [2,
2p%

Lemma 4.6] the eigenvalues of Laplacian matrix are zero, 2p”° —3 and 2p° —1 with multiplicity one, p’ —1 and

p’ —1.Thus [2, Theorem 4.11] implies the result.

Proposition 7. Let G = qu xZ  where p and q are prime numbers. Then

rq’

Ea)PD Y —g o, n

Moreover, there are (p° —1) vertices of degree (pq)° —q>—1, (g>—1) vertices of degree
(pq)* — p” —1 and the rest vertices are of degree (pgq)” —2.

Proof. 1t is clear that two distinct vertices in HG are not adjacent whenever their orders are p or ¢ . The number

of vertices of order p and ¢ are p2 —1 and ¢ ‘-1 respectively. Hence we conclude (1) easily and the rest of the
assertion is clear.
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TABLE 1. Eigenvalues of the adjacency matrix of I, .

pa”“pq
p=2, =2

Eigenvalues 0 8 -1 2

Eigenvalues Multiplicity 3 1 10 1
p=2, 4=3

Eigenvalues 0 7 -1 23

Eigenvalues Multiplicity 3 1 30 1
p=2, q=5

Eigenvalues 0 21 -1 71

Eigenvalues Multiplicity 3 1 92 1
p=3,q=3

Eigenvalues 0 63 -1 7

Eigenvalues Multiplicity 8 1 90 1

By the above proposition, we conclude that the adjacency matrix of I1, _, is a square matrix of rank
pa”“pq

(pq)” —1 which has four blocks that organized as follows,

The first block has ( pq)2 - p2 —-q ? +1 rows and columns with zero in diagonal entries and 1 in all the other
entries.

The second block and the third block are ((pg)" —p° —q¢  +D)x(p>+q¢°=2) and
(p2 + 6]2 -2)x ((pq)2 - p2 - q2 +1) matrices, respectively. All their entries are 1.

The forth block is formed by four submatrix 4;, i =1,2,3,4. 4, is (p2 -1)x (p2 —1) matrix for which
its main diagonal is zero and all the other entries is 1. All entries of 4, and A, are zero, where A, and A, are
(p° =1)x(g*>=1) and (¢> =1)x(p° —1) submatrixes. Moreover, A, is (¢> —=1)x(g”> —1) matrix such that

all entries are zero and the other entries are one.
We use MATLAB to compute the eigenvalues of this adjacency matrix for some primes p and ¢ (see TABLE
1.). It is clear that II, _, is an integral graph for p and ¢ which are mentioned in the above tables. For the
pa”"pq
bigger prime numbers p and ¢ we obtain decimal eigenvalues.

Theorem 8.The non-coprime graph associated to Z g X Zp g s not | -planar, where p and q are prime numbers.

Proof. Lemma 2.2 in [5] and Proposition 7 imply the result.

Proposition 8. Let D, ={a,b:a" = b= I, a’ = a71> be a dihedral group of order 2n, where n >4 . Then

(i) If 7 is a prime power and odd, then T D, contains two complete components K , and K a1 - Moreover,

n

ET D, )=4n—06, where E(I1 D, ) denotes the energy of the graph.

iIfn=p1ps2---p” then IT, is connected, where p, =2 and p. are odd prime numbers 2 <7 < ¢

by Py b D,, P Pi
. (iii) (1T = y(I1 =n, where 1 is a prime power and odd.
D, VAR
n n
(iv) 1T D, is not a planar graph.

Proof.
(i) We label the adjacency matrix of T1 D, in the form of block-diagonal matrix which contains two blocks. By [2,
n

Theorem 3.4] the assertion is clear.
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(i) and (iii) follows by use of the element orders of D, .

Gv) IT Dy is not a planar graph by Theorem 7. If n>15, then a'b are the vertices which are adjacent, where
0<i<n-—1 and we have K 5 as the subgraph of I1 D, - The rest parts are clear.
n

It is clear that I1 D,, is not a regular graph, where 7 is an integer satisfies (i) and (ii) in Proposition §.

Theorem 9. Let G be a nilpotent group. Then HG is a regular graph if and only if G is a p -group.

Proof. If G is an abelian group such that I is a regular graph then every vertex is adjacent to each generators.

Thus degree of each vertex is complete and so by Proposition 2.13 the result is clear. Now if (G is non-abelian

nilpotent group, then G = .§ oy X1 X S, ., where S, are distinct Sylow p; -subgroups of G . We conclude that
n 1

the vertices which belong to the different Sylow p, -subgroups have distinct degrees so the result is clear.

Let X and Y be two graphs with two disjoint vertex sets. The product of X and Y, denoted by X XY is
the graph with vertex set V' (X)xV(Y) such that two vertices (x,,),) and (x,,),) are adjacent if and only if

{x,,%,} € E(X) and {y,,y,} € E(Y). The sum of X and Y, denoted by X +Y, is the graph with vertex set
V(X)xV(Y) such that two vertices (x,,),) and (x,,y,) are adjacent if and only if either {x,,x,} € E(X)

and y; =y, or {y, y,} € E(Y) and x; =x,.

Theorem 10. Let (a,b) be a vertex of HGI +HGZ’ where G, and G, are two groups. Then

deg((a,b)) = deg(a)+deg(b).
Proof. The proof is clear by definition of the sum of two graphs.

Proposition 9. Let Zn be a cyclic group of order n .

M II, +II, is (p+q—4)-regular, where p and ¢ are prime numbers.
p q

(ii)Z(Hzp +qu):p+q_3-

(p-D(g-D(d+y(p-D(g-1))
(iii) 24/ pg— P —¢q SE(HZP +qu)é 5 .

(iv) sz +1I1, isacomplete graph.
p

Proof.
(i) Follows by Theorem 10.

(ii) Clearly y(IT, +II, )= p+¢g—3. Now [2, Theorem 6.8] implies that the greatest eigenvalue of
P a

IT1, +II, is p+q—4 with multiplicity one. Hence the result follows by [2, Theorem 3.18].
P q
(iii) By [6, Theorems 10 and 12] is clear. (iv) It is obvious.

In the following we show that for all p -groups of certain order, there is only one non-coprime graph.

Proposition 10. Let G be a finite p -group. Then G and H have isomorphic non-coprime graphs if and only if
|G H .
As an example for the Proposition 10, if I Dy = IT,,, then H =D, Qg or an abelian group of order §.

Moreover, it shows that being abelian or non-abelian does not inherit via graph isomorphism.
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Proposition 11. /f I1, = Hs3’ then G = §;.

Proposition 11 is not valid for all groups for example non-coprime graphs associated to Z2 ><Z2 and Z 4 are

isomorphic but Z, xZ, and Z, are not.

NON-COPRIME GRAPH AND PRIME GRAPH

Finally we try to find a connection between non-coprime graph and prime graph.

Theorem 11.Suppose FG and 11 ¢ are prime graph and non-coprime graph associated to the group G . Then
y@To)<y(ly).

Proof. Let y(I1;) =k and A={x,,---,x,} be the dominating set for I1;. Therefore p, | | x, |, 1<i<k.
We claim [ ={p,, p,,"**, P, } is a dominating set for I';. Assume p € 7(G)\I.Since A4 is a dominating set
of Il ; we deduce p e 7| X; ) for some 7. Thus PD; | | X; | and a suitable power of X; is of order pp, . This

means p and P, are adjacent in the prime graph and [ is its dominating set. Hence the result is clear.

Example 1./n this example we present some groups which confirm the validity of the above theorem.

()75 =23} | and 7(T15) = {12,123} 50 #([5) = #(0L))
() /(Tyyus,) =1 {5} and 7(0T0) = (@100 (@, (123D} | 50 (Tp05) < /(T )  where a is

a generator of Z5 .

Theorem 12.The prime graph associated to the group G is connected if and only if 11 G IS connected.
Proof. Suppose FG is connected graph. Let X,y € V(HG) two non-adjacent vertices. There are distinct prime
numbers p,q such that p| |x| and g| | y|. Connectedness of I'; implies that 7,---,7, € 7(G) and

Zy, 21, "2, € G existsuch that | z, [= pn,| z, [F 11| 2, [F 11y -++,| 2, [F ¥,q . Hence we find a path between

X and y . Conversely let p and g be two distinct prime numbers. Therefore X and ) are p and ¢ elements,
respectively. Since I1 is connected there is a path between X and ). Suppose X =X, X, i-*+1X, ,1X, =) is
the shortest path from X to ). Moreover (|X;|,| X, [)#] and (|x; |,|x/. )=1 where i—j>1. Let

p; | x| and | X, | and put p= p, and ¢ = p, . ltis clear that p, and p, are adjacent vertices in I,

. k - .
because p,p, | x, | so there is an element X, of order p,p, for k € N. Hence by continuing this process the
result follows.

Theorem 13.Let G be a finite group. If FG is Hamiltonian, then HG is Hamiltonian. In particular, the converse

is valid whenever G is an abelian group.

Proof. Suppose |G |= H:;l “, where p, prime numbers. There is a cycle which passes all the vertices of the
graph I';. With out loss of generality assume that p,: p,---:p, . p, is the cycle. Therefore y,--+,y, are
elements of orders p,p,,;, 1 <i<n.Wehave X;,---,x, €V(Il;) such that | X, [= p,. It is clear that we can
make a cycleas X, 1), 1 X, Y, 01X, Y, X,.If z is a vertex of the non-coprime graph distinct from X, and

Y; , then we have the path *--1 X ---1ZI---1 Y by using of the orders. Hence the rest is clear.

N
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CONCLUSION

In this research, the non coprime graph of a group is defined and the diameter, girth, connectivity, Hamiltonian,
planarity, independence number and domination number are determined. Moreover, some more properties of the
graph for nilpotent and abelian groups are also investigated. Furthermore, the energy of this graph for some special
cases of the group are computed here.
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